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Contents

Introduction to Artificial Neural Networks to understand, and
to be able to efficiently use, the popular and successful techniques
known as Deep Learning.

Sessions 1 and 2: discussion and analysis of the Chapter 5 about
Neural Networks from the book “Pattern Recognition and Machine
Learning” by Christopher M. Bishop (Springer, 2006)

I Session 1 (2nd of June): 5.1, 5.2, 5.3. and 5.4.

I Session 2 (10th of June): 5.5, 5.6 and 5.7.

“The importance of neural networks is that they offer a very powerful and very general
framework for representing non-linear mappings from several input variables to several

output variables, where the form of the mapping is governed by a number of
adjustable parameters.”

Christopher Bishop
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Introduction

Given a training data set comprising N observations {xn}, where
n = 1, . . . , N , together with corresponding target values {tn}, the
goal is to predict the value of t for a new value of x:

t = y(x,w) + ε (3.7)

I y(x,w) is the model (w are the parameters).

I ε is the residual error.

More generally, from a probabilistic perspective, we aim to model
the predictive distribution p(t|x) because this expresses our
uncertainty about the value of t for each value of x.
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Introduction: the perceptron (Rosenblatt, 1957)
Linear discriminant model (Section 4.1.7.):

y(x) = f(wTφ(x)) (4.52)

I φ(x) is a feature vector obtained using a fixed nonlinear
transformation of input vector x.

I w = (w0, . . . , wM )> are the model coefficients, or weights.
I f(·) is a nonlinear activation function (sign function)

f(a) =

{
+1, a ≥ 0

−1, a < 0
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Introduction: the perceptron (Rosenblatt, 1957)

We are seeking w s.t. xn in class C1 will have wTφ(xn) > 0,
whereas xn in class C2 have wTφ(xn) < 0.

Using t ∈ {−1,+1}, the perceptron criterion is

EP (w) = −
∑
n∈M

wTφ(xn)tn (4.54)

where M denotes the set of all misclassified patterns.

We now apply the stochastic gradient descent algorithm to
minimize this error function. The change in the weight vector w is
given by

w(τ+1) = w(τ) − η∇EP (w) = w(τ) + ηφ(xn)tn (4.55)
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Introduction: the perceptron (Rosenblatt, 1957)

Perceptron convergence theorem: if the training data set is lin-
early separable, then the perceptron learning algorithm is guaran-
teed to find an exact solution in a finite number of steps.

Problems:

I Learning algorithm:
I Linearly separable: there may be many solutions, and which

one is found will depend on the parameters initialization and
on the order of presentation of the data points.

I Not linearly separable: the algorithm will never converge.

I Does not provide probabilistic outputs.

I Does not generalize readily to K > 2 classes.

I It is based on linear combinations of fixed basis functions.

A closely related system called the adaline (‘adaptive linear
element’) was also presented by Widrow and Hoff (1960).
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5.1. Activations
The basic neural network model can be described as a series of
functional transformations.

Construct M linear combinations of the inputs x1, . . . , xD:

a
(1)
j =

D∑
i=1

w
(1)
ji xi + w

(1)
j0 (5.2)

I a
(1)
j are the layer one activations, j = 1, . . . ,M .

I w
(1)
ji are the layer one weights, i = 1 . . . D.

I w
(1)
j0 are the layer one biases, that allow for any fixed offset in

the data.

Each linear combination a
(1)
j is transformed by a (nonlinear,

differentiable) activation function:

zj = h(a
(1)
j ) (5.3)
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5.1. Activations
The nonlinear functions h(·) are generally chosen to be sigmoidal
functions such as the logistic sigmoid or the ‘tanh’.

I “In modern neural networks, the default recommendation is to
use the rectified linear unit or ReLU [as activation function]”
(Chapter 6, “Deep Learning” by Goodfellow et al, 2016)

I “Deep convolutional neural networks with ReLUs train several times faster
than their equivalents with ‘tanh’ units.” (“ImageNet Classification with
Deep Convolutional Neural Networks” by Krizhevsky et al, NIPS 2012)
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5.1. Output Activations
The hidden outputs zj = h(aj) are linearly combined in layer two:

a
(2)
k =

M∑
j=1

w
(2)
kj zj + w

(2)
k0 (5.4)

I a
(2)
k are the layer two output activations, k = 1, . . . ,K.

I w
(2)
kj are the layer two weights, j = 1 . . . D.

I w
(2)
k0 are the layer two biases.

The output activations a
(2)
k are transformed by the output

activation function:
yk = σ(a

(2)
k ) (5.5)

I yk are the final outputs.

I σ(·) can be, like h(·), a logistic sigmoid function.
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5.1. The Complete Two-Layer Model
The model yk = σ(ak) is, after substituting the definitions of aj
and ak:

I Regression problems, the activation function σ(·) is the
identity so that yk = ak.

I Classification problems, each output unit activation maps to a
posterior probability (e.g. using a logistic sigmoid function).

I Evaluation of (5.9) is called forward propagation.
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5.1. Network Diagram
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Figure: 5.1
I Nodes are input, hidden and output units. Links are

corresponding weights.
I Fig. 5.1 displays a two-layer network: w(1) is the first layer

and w(2) is the second one.
I Information propagates ‘forwards’ from the explanatory

variable x to the estimated response yk(x,w).
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5.1. Properties & Generalizations

I If all hidden units have linear h(·) then we can always find an
equivalent network without hidden units.

I Individual units do not need to be fully connected to the next
layer and their links may skip over one or more subsequent
layers.

I Networks with two or more layers are universal approximators:
I Any continuous function can be uniformly approximated to

arbitrary accuracy, given enough hidden units.
I This is true for many definitions of h(·), but excluding

polynomials.
I The key problem is how to find suitable parameter values given

a set of training data.

I There may be symmetries in the weight space, meaning that
different choices of w may define the same mapping from
input to output.
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5.2. Network Training

Given a training set comprising a set of input vectors {xn}, where
n = 1, . . . , N , together with a corresponding set of target vectors
{tn}, we minimize the error function

E(w) =
1

2

N∑
n=1

∥∥∥y(xn,w)− tn
∥∥∥2 (5.11)

The aim is to minimize the residual error between y(xn,w) and tn.

We can provide a much more general view of network training by
first giving a probabilistic interpretation to the network outputs.
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5.2. Network Training

A single target variable t has a Gaussian distribution with an
x-dependent mean, given by the output of the neural network:

p(t|x,w) = N
(
t
∣∣ y(x,w), β−1

)
(5.12)

where β is the precision (inverse variance) of the Gaussian noise.

Given N independent and identically distributed observations, we
can construct the corresponding likelihood function

p
(
{t1, . . . , tN}

∣∣∣{x1, . . . ,xN},w, β
)

=
N∏
n=1

p(tn|xn,w, β)

Taking the negative logarithm, we obtain the error function

β

2

N∑
n=1

{
y(xn,w)− tn

}2
− N

2
log β +

N

2
log 2π (5.13)

which can be used to learn the parameters w and β.
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5.2. Maximum Likelihood w
A widely used frequentist estimator is maximum likelihood, in
which w is set to the value that maximizes the likelihood function
p(D|w):

p(w|D) =
p(D|w)p(w)

p(D)
(1.43)

posterior ∝ likelihood× prior

Maximizing the likelihood function is equivalent to minimizing the
sum-of-squares error function given by

E(w) =
1

2

N∑
n=1

{
y(xn,w)− tn

}2
(5.14)

where we have discarded additive and multiplicative constants.

The maximum-likelihood estimate of w can be obtained by
minimizing E(w):

wML = min
w

E(w)
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5.2. Maximum Likelihood β

Having obtained the ML parameter estimate wML, the precision, β
can also be estimated. E.g. if the N observations are IID, then
their joint probability is

p
(
{t1, . . . , tN}

∣∣∣{x1, . . . ,xN},w, β
)

=

N∏
n=1

p(tn|xn,w, β)

The negative log-likelihood, in this case, is

− log p = βE(wML)− N

2
log β +

N

2
log 2π (5.13)

The derivative d/dβ is E(wML)− N
2β and so

1

βML
=

1

N
2E(wML) =

1

N

N∑
n=1

{
y(xn,wML)− tn

}2
(5.15)

And 1/βML = 1
NK 2E(wML) for K target variables.
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5.2. Pairing of the error function and output units h(·)
There is a natural choice of both the output unit activation
function and matching error function, according to the type of
problem being solved.

I Regression
I p(t|x,w) = N

(
t
∣∣ y(x,w), β−1

)
I Output activation function: identity

⇒Error function: sum-of-squares error (see Eq. 5.14)
I Binary Classification

I p(t|x,w) = y(x,w)t{1− y(x,w)}1−t

I Output activation function: logistic sigmoid, with
0 ≤ y(x,w) ≤ 1.

⇒Error function: cross-entropy error

E(w) = −
N∑
n=1

{tn ln yn + (1− tn) ln(1− yn)} (5.21)

where yn denotes y(xn,w)
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5.2. Pairing of the error function and output units h(·)

I Multiclass Classification
I p(t|x,w) =

∏K
k=1 yk(x,w)tk{1− yk(x,w)}1−tk

I Output activation function: softmax (or normalized
exponential)

yk(x,w) =
exp(a

(2)
k (x,w))∑

j exp(a
(2)
j (x,w))

(5.25)

which satisfies 0 ≤ yk ≤ 1 and
∑

k yk = 1.

⇒Error function: multiclass cross-entropy error

E(w) = −
N∑
n=1

K∑
k=1

tnk ln yk(xn,w) (5.24)
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5.2. Error Surface

The residual error E(w) can be visualized as a surface in the
weight-space:

w1

w2

E(w)

wA wB wC

∇E

Figure: 5.5

I The error will, in practice, be highly multimodal.

I There will be inequivalent minima (local minima), determined
by the particular data and model, as well as equivalent
minima, corresponding to weight-space symmetries.
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5.2. Parameter Optimization

Our goal:
w = argmin(E(w)).

So we want to solve:
∇E(w) = 0 (5.26)

Iterative search for a local minimum of the error:

w(τ+1) = w(τ) + ∆w(τ) (5.27)

I τ is the time-step.

I ∆w(τ) is the weight-vector update.

I vector ∇E(w) points in the direction of greatest rate of
increase of the error function.
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5.2. Gradient Descent

The simplest approach is to update w by a displacement in the
negative gradient direction.

w(τ+1) = w(τ) − η∇E
(
w(τ)

)
(5.41)

where η > 0 is the learning rate.
I This is a batch method, as evaluation of ∇E involves the

entire training data set.

I Stochastic methods can be used. Only a part of the training
set is used at each iteration.

I Conjugate gradients or quasi-Newton methods may be
preferred because they have the property that the error
function always decreases at each iteration.

I Many initializations can be tested.
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5.2. Optimization Scheme

Each iteration of the descent algorithm has two stages:

I I. Evaluate derivatives of error with respect to weights. An
efficient method for the evaluation of ∇E(w) is needed. It
involves backpropagation of error though the network.

I II. Use derivatives to compute adjustments of the weights
(e.g. steepest descent).

Backpropagation is a general principle, which can be applied to
many types of network and error function.
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5.3. Simple Backpropagation

The error function is, typically, a sum over the data points
E(w) =

∑N
n=1En(w). For example, consider a linear model (1

layer).

yk =
∑
i

wkixi (5.45)

The error function, for an individual input xn, is

En =
1

2

∑
k

(ynk − tnk)2, where ynk = yk(xn,w). (5.46)

The gradient with respect to a weight wji is

∂En
∂wji

= (ynj − tnj)xni (5.47)
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5.3. General Backpropagation
Recall that, in general, each unit computes a weighted sum:

aj =
∑
i

wjizi with activation zj = h(aj). (5.48,5.49)

For each error-term:
∂En
∂wji

=
∂En
∂aj︸︷︷︸
≡δj

∂aj
∂wji︸ ︷︷ ︸
zi

= δjzi (5.50,5.53)

In the network: δj ≡
∂En
∂aj

=
∑
k

∂En
∂ak

∂ak
∂aj

where j→{k} (5.55)

Algorithm: δj =
∑
k

δkwkjh
′(aj) as ∂ak

∂aj
= ∂ak

∂zj

∂zj
∂aj

(5.56)
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5.3. Backpropagation Algorithm

I Forward pass: Apply input x, and forward propagate to find
all the ai and zi

I Back propagate the δ’s to obtain a δj for each hidden unit.
To do so, we first evaluate δk directly for the output units and
then propagate them with δj = h′(aj)

∑
k wkjδk.

zi

zj

δj
δk

δ1

wji wkj

I Evaluate the derivatives ∂En
∂wji

= δjzi.

I Update w by a displacement in the negative gradient
direction:

w(τ+1) = w(τ) − η∇E
(
w(τ)

)
(5.41)
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5.3. Computational Efficiency

The back-propagation algorithm is computationally more efficient
than standard numerical minimization of En. Suppose that W is
the total number of weights and biases in the network.

I Backpropagation: The evaluation is O(W ) for large W , as
there are many more weights than units.

I Standard approach: Perturb each weight, and compute
En
(
w
)
− E

(
w + (0, . . . , 0,∆wij , 0, . . . , 0, )

)
. This requires

W ×O(W ) computations, so the total complexity is O(W 2).
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5.3. Jacobian Matrix

The properties of the network can be investigated via the Jacobian

Jki =
∂yk
∂xi

(5.70)

For example, (small) errors can be propagated through the trained
network:

∆yk '
∂yk
∂xi

∆xi (5.72)

This is useful, but costly, as Jki itself depends on x. However, note
that

∂yk
∂xi

=
∑
j

∂yk
∂aj

∂aj
∂xi

=
∑
j

wji
∂yk
∂aj︸︷︷︸
δ̃kj

(5.74)

As before, we can show δ̃kj = h′(aj)
∑
l

wlj δ̃kl
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5.4. Hessian Matrix

H =

(
∂2E

∂wji∂wlk

)
(5.78)

Backpropagation principle can be used to get:

I Diagonal approximation of H in O(W )

I Approximation of the Hessian in O(W 2)

I Exact computation of the Hessian in O(W 2)

I Compute vTH in O(W )
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