
1/31

Reading Group on Deep Learning
Session 1

Stephane Lathuiliere & Pablo Mesejo

2 June 2016

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



2/31

Contents

Introduction to Artificial Neural Networks to understand, and
to be able to efficiently use, the popular and successful techniques
known as Deep Learning.

Sessions 1 and 2: discussion and analysis of the Chapter 5 about
Neural Networks from the book “Pattern Recognition and Machine
Learning” by Christopher M. Bishop (Springer, 2006)

I Session 1 (2nd of June): 5.1, 5.2, 5.3. and 5.4.

I Session 2 (10th of June): 5.5, 5.6 and 5.7.

“The importance of neural networks is that they offer a very powerful and very general
framework for representing non-linear mappings from several input variables to several

output variables, where the form of the mapping is governed by a number of
adjustable parameters.”

Christopher Bishop

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



3/31

Chapter Structure

I Introduction.

I 5.1. Feed-forward Network Functions.

I 5.2. Network Training.

I 5.3. Error Backpropagation.

I 5.4. The Hessian Matrix.

I 5.5. Regularization in Neural Networks.

I 5.6. Mixture Density Networks.

I 5.7. Bayesian Neural Networks.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



3/31

Chapter Structure

I Introduction.

I 5.1. Feed-forward Network Functions.

I 5.2. Network Training.

I 5.3. Error Backpropagation.

I 5.4. The Hessian Matrix.

I 5.5. Regularization in Neural Networks.

I 5.6. Mixture Density Networks.

I 5.7. Bayesian Neural Networks.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



4/31

Introduction

Given a training data set comprising N observations {xn}, where
n = 1, . . . , N , together with corresponding target values {tn}, the
goal is to predict the value of t for a new value of x:

t = y(x,w) + ε (3.7)

I y(x,w) is the model (w are the parameters).

I ε is the residual error.

More generally, from a probabilistic perspective, we aim to model
the predictive distribution p(t|x) because this expresses our
uncertainty about the value of t for each value of x.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



5/31

Introduction: the perceptron (Rosenblatt, 1957)
Linear discriminant model (Section 4.1.7.):

y(x) = f(wTφ(x)) (4.52)

I φ(x) is a feature vector obtained using a fixed nonlinear
transformation of input vector x.

I w = (w0, . . . , wM )> are the model coefficients, or weights.
I f(·) is a nonlinear activation function (sign function)

f(a) =

{
+1, a ≥ 0

−1, a < 0

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



6/31

Introduction: the perceptron (Rosenblatt, 1957)

We are seeking w s.t. xn in class C1 will have wTφ(xn) > 0,
whereas xn in class C2 have wTφ(xn) < 0.

Using t ∈ {−1,+1}, the perceptron criterion is

EP (w) = −
∑
n∈M

wTφ(xn)tn (4.54)

where M denotes the set of all misclassified patterns.

We now apply the stochastic gradient descent algorithm to
minimize this error function. The change in the weight vector w is
given by

w(τ+1) = w(τ) − η∇EP (w) = w(τ) + ηφ(xn)tn (4.55)

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



7/31

Introduction: the perceptron (Rosenblatt, 1957)

Perceptron convergence theorem: if the training data set is lin-
early separable, then the perceptron learning algorithm is guaran-
teed to find an exact solution in a finite number of steps.

Problems:

I Learning algorithm:
I Linearly separable: there may be many solutions, and which

one is found will depend on the parameters initialization and
on the order of presentation of the data points.

I Not linearly separable: the algorithm will never converge.

I Does not provide probabilistic outputs.

I Does not generalize readily to K > 2 classes.

I It is based on linear combinations of fixed basis functions.

A closely related system called the adaline (‘adaptive linear
element’) was also presented by Widrow and Hoff (1960).

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



8/31

Chapter Structure

I Introduction.

I 5.1. Feed-forward Network Functions.

I 5.2. Network Training.

I 5.3. Error Backpropagation.

I 5.4. The Hessian Matrix.

I 5.5. Regularization in Neural Networks.

I 5.6. Mixture Density Networks.

I 5.7. Bayesian Neural Networks.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



8/31

Chapter Structure

I Introduction.

I 5.1. Feed-forward Network Functions.

I 5.2. Network Training.

I 5.3. Error Backpropagation.

I 5.4. The Hessian Matrix.

I 5.5. Regularization in Neural Networks.

I 5.6. Mixture Density Networks.

I 5.7. Bayesian Neural Networks.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



9/31

5.1. Activations
The basic neural network model can be described as a series of
functional transformations.

Construct M linear combinations of the inputs x1, . . . , xD:

a
(1)
j =

D∑
i=1

w
(1)
ji xi + w

(1)
j0 (5.2)

I a
(1)
j are the layer one activations, j = 1, . . . ,M .

I w
(1)
ji are the layer one weights, i = 1 . . . D.

I w
(1)
j0 are the layer one biases, that allow for any fixed offset in

the data.

Each linear combination a
(1)
j is transformed by a (nonlinear,

differentiable) activation function:

zj = h(a
(1)
j ) (5.3)

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



10/31

5.1. Activations
The nonlinear functions h(·) are generally chosen to be sigmoidal
functions such as the logistic sigmoid or the ‘tanh’.

I “In modern neural networks, the default recommendation is to
use the rectified linear unit or ReLU [as activation function]”
(Chapter 6, “Deep Learning” by Goodfellow et al, 2016)

I “Deep convolutional neural networks with ReLUs train several times faster
than their equivalents with ‘tanh’ units.” (“ImageNet Classification with
Deep Convolutional Neural Networks” by Krizhevsky et al, NIPS 2012)

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



11/31

5.1. Output Activations
The hidden outputs zj = h(aj) are linearly combined in layer two:

a
(2)
k =

M∑
j=1

w
(2)
kj zj + w

(2)
k0 (5.4)

I a
(2)
k are the layer two output activations, k = 1, . . . ,K.

I w
(2)
kj are the layer two weights, j = 1 . . . D.

I w
(2)
k0 are the layer two biases.

The output activations a
(2)
k are transformed by the output

activation function:
yk = σ(a

(2)
k ) (5.5)

I yk are the final outputs.

I σ(·) can be, like h(·), a logistic sigmoid function.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



12/31

5.1. The Complete Two-Layer Model
The model yk = σ(ak) is, after substituting the definitions of aj
and ak:

I Regression problems, the activation function σ(·) is the
identity so that yk = ak.

I Classification problems, each output unit activation maps to a
posterior probability (e.g. using a logistic sigmoid function).

I Evaluation of (5.9) is called forward propagation.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



13/31

5.1. Network Diagram

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

Figure: 5.1
I Nodes are input, hidden and output units. Links are

corresponding weights.
I Fig. 5.1 displays a two-layer network: w(1) is the first layer

and w(2) is the second one.
I Information propagates ‘forwards’ from the explanatory

variable x to the estimated response yk(x,w).

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



14/31

5.1. Properties & Generalizations

I If all hidden units have linear h(·) then we can always find an
equivalent network without hidden units.

I Individual units do not need to be fully connected to the next
layer and their links may skip over one or more subsequent
layers.

I Networks with two or more layers are universal approximators:
I Any continuous function can be uniformly approximated to

arbitrary accuracy, given enough hidden units.
I This is true for many definitions of h(·), but excluding

polynomials.
I The key problem is how to find suitable parameter values given

a set of training data.

I There may be symmetries in the weight space, meaning that
different choices of w may define the same mapping from
input to output.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



15/31

Chapter Structure

I Introduction.

I 5.1. Feed-forward Network Functions.

I 5.2. Network Training.

I 5.3. Error Backpropagation.

I 5.4. The Hessian Matrix.

I 5.5. Regularization in Neural Networks.

I 5.6. Mixture Density Networks.

I 5.7. Bayesian Neural Networks.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



15/31

Chapter Structure

I Introduction.

I 5.1. Feed-forward Network Functions.

I 5.2. Network Training.

I 5.3. Error Backpropagation.

I 5.4. The Hessian Matrix.

I 5.5. Regularization in Neural Networks.

I 5.6. Mixture Density Networks.

I 5.7. Bayesian Neural Networks.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



16/31

5.2. Network Training

Given a training set comprising a set of input vectors {xn}, where
n = 1, . . . , N , together with a corresponding set of target vectors
{tn}, we minimize the error function

E(w) =
1

2

N∑
n=1

∥∥∥y(xn,w)− tn
∥∥∥2 (5.11)

The aim is to minimize the residual error between y(xn,w) and tn.

We can provide a much more general view of network training by
first giving a probabilistic interpretation to the network outputs.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



17/31

5.2. Network Training

A single target variable t has a Gaussian distribution with an
x-dependent mean, given by the output of the neural network:

p(t|x,w) = N
(
t
∣∣ y(x,w), β−1

)
(5.12)

where β is the precision (inverse variance) of the Gaussian noise.

Given N independent and identically distributed observations, we
can construct the corresponding likelihood function

p
(
{t1, . . . , tN}

∣∣∣{x1, . . . ,xN},w, β
)

=
N∏
n=1

p(tn|xn,w, β)

Taking the negative logarithm, we obtain the error function

β

2

N∑
n=1

{
y(xn,w)− tn

}2
− N

2
log β +

N

2
log 2π (5.13)

which can be used to learn the parameters w and β.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



18/31

5.2. Maximum Likelihood w
A widely used frequentist estimator is maximum likelihood, in
which w is set to the value that maximizes the likelihood function
p(D|w):

p(w|D) =
p(D|w)p(w)

p(D)
(1.43)

posterior ∝ likelihood× prior

Maximizing the likelihood function is equivalent to minimizing the
sum-of-squares error function given by

E(w) =
1

2

N∑
n=1

{
y(xn,w)− tn

}2
(5.14)

where we have discarded additive and multiplicative constants.

The maximum-likelihood estimate of w can be obtained by
minimizing E(w):

wML = min
w

E(w)

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



19/31

5.2. Maximum Likelihood β

Having obtained the ML parameter estimate wML, the precision, β
can also be estimated. E.g. if the N observations are IID, then
their joint probability is

p
(
{t1, . . . , tN}

∣∣∣{x1, . . . ,xN},w, β
)

=

N∏
n=1

p(tn|xn,w, β)

The negative log-likelihood, in this case, is

− log p = βE(wML)− N

2
log β +

N

2
log 2π (5.13)

The derivative d/dβ is E(wML)− N
2β and so

1

βML
=

1

N
2E(wML) =

1

N

N∑
n=1

{
y(xn,wML)− tn

}2
(5.15)

And 1/βML = 1
NK 2E(wML) for K target variables.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



20/31

5.2. Pairing of the error function and output units h(·)
There is a natural choice of both the output unit activation
function and matching error function, according to the type of
problem being solved.

I Regression
I p(t|x,w) = N

(
t
∣∣ y(x,w), β−1

)
I Output activation function: identity

⇒Error function: sum-of-squares error (see Eq. 5.14)
I Binary Classification

I p(t|x,w) = y(x,w)t{1− y(x,w)}1−t

I Output activation function: logistic sigmoid, with
0 ≤ y(x,w) ≤ 1.

⇒Error function: cross-entropy error

E(w) = −
N∑
n=1

{tn ln yn + (1− tn) ln(1− yn)} (5.21)

where yn denotes y(xn,w)

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



21/31

5.2. Pairing of the error function and output units h(·)

I Multiclass Classification
I p(t|x,w) =

∏K
k=1 yk(x,w)tk{1− yk(x,w)}1−tk

I Output activation function: softmax (or normalized
exponential)

yk(x,w) =
exp(a

(2)
k (x,w))∑

j exp(a
(2)
j (x,w))

(5.25)

which satisfies 0 ≤ yk ≤ 1 and
∑

k yk = 1.

⇒Error function: multiclass cross-entropy error

E(w) = −
N∑
n=1

K∑
k=1

tnk ln yk(xn,w) (5.24)

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



22/31

5.2. Error Surface

The residual error E(w) can be visualized as a surface in the
weight-space:

w1

w2

E(w)

wA wB wC

∇E

Figure: 5.5

I The error will, in practice, be highly multimodal.

I There will be inequivalent minima (local minima), determined
by the particular data and model, as well as equivalent
minima, corresponding to weight-space symmetries.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



23/31

5.2. Parameter Optimization

Our goal:
w = argmin(E(w)).

So we want to solve:
∇E(w) = 0 (5.26)

Iterative search for a local minimum of the error:

w(τ+1) = w(τ) + ∆w(τ) (5.27)

I τ is the time-step.

I ∆w(τ) is the weight-vector update.

I vector ∇E(w) points in the direction of greatest rate of
increase of the error function.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



24/31

5.2. Gradient Descent

The simplest approach is to update w by a displacement in the
negative gradient direction.

w(τ+1) = w(τ) − η∇E
(
w(τ)

)
(5.41)

where η > 0 is the learning rate.
I This is a batch method, as evaluation of ∇E involves the

entire training data set.

I Stochastic methods can be used. Only a part of the training
set is used at each iteration.

I Conjugate gradients or quasi-Newton methods may be
preferred because they have the property that the error
function always decreases at each iteration.

I Many initializations can be tested.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



25/31

5.2. Optimization Scheme

Each iteration of the descent algorithm has two stages:

I I. Evaluate derivatives of error with respect to weights. An
efficient method for the evaluation of ∇E(w) is needed. It
involves backpropagation of error though the network.

I II. Use derivatives to compute adjustments of the weights
(e.g. steepest descent).

Backpropagation is a general principle, which can be applied to
many types of network and error function.

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



26/31

5.3. Simple Backpropagation

The error function is, typically, a sum over the data points
E(w) =

∑N
n=1En(w). For example, consider a linear model (1

layer).

yk =
∑
i

wkixi (5.45)

The error function, for an individual input xn, is

En =
1

2

∑
k

(ynk − tnk)2, where ynk = yk(xn,w). (5.46)

The gradient with respect to a weight wji is

∂En
∂wji

= (ynj − tnj)xni (5.47)

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



27/31

5.3. General Backpropagation
Recall that, in general, each unit computes a weighted sum:

aj =
∑
i

wjizi with activation zj = h(aj). (5.48,5.49)

For each error-term:
∂En
∂wji

=
∂En
∂aj︸︷︷︸
≡δj

∂aj
∂wji︸ ︷︷ ︸
zi

= δjzi (5.50,5.53)

In the network: δj ≡
∂En
∂aj

=
∑
k

∂En
∂ak

∂ak
∂aj

where j→{k} (5.55)

Algorithm: δj =
∑
k

δkwkjh
′(aj) as ∂ak

∂aj
= ∂ak

∂zj

∂zj
∂aj

(5.56)

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



28/31

5.3. Backpropagation Algorithm

I Forward pass: Apply input x, and forward propagate to find
all the ai and zi

I Back propagate the δ’s to obtain a δj for each hidden unit.
To do so, we first evaluate δk directly for the output units and
then propagate them with δj = h′(aj)

∑
k wkjδk.

zi

zj

δj
δk

δ1

wji wkj

I Evaluate the derivatives ∂En
∂wji

= δjzi.

I Update w by a displacement in the negative gradient
direction:

w(τ+1) = w(τ) − η∇E
(
w(τ)

)
(5.41)

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



29/31

5.3. Computational Efficiency

The back-propagation algorithm is computationally more efficient
than standard numerical minimization of En. Suppose that W is
the total number of weights and biases in the network.

I Backpropagation: The evaluation is O(W ) for large W , as
there are many more weights than units.

I Standard approach: Perturb each weight, and compute
En
(
w
)
− E

(
w + (0, . . . , 0,∆wij , 0, . . . , 0, )

)
. This requires

W ×O(W ) computations, so the total complexity is O(W 2).

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



30/31

5.3. Jacobian Matrix

The properties of the network can be investigated via the Jacobian

Jki =
∂yk
∂xi

(5.70)

For example, (small) errors can be propagated through the trained
network:

∆yk '
∂yk
∂xi

∆xi (5.72)

This is useful, but costly, as Jki itself depends on x. However, note
that

∂yk
∂xi

=
∑
j

∂yk
∂aj

∂aj
∂xi

=
∑
j

wji
∂yk
∂aj︸︷︷︸
δ̃kj

(5.74)

As before, we can show δ̃kj = h′(aj)
∑
l

wlj δ̃kl

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1



31/31

5.4. Hessian Matrix

H =

(
∂2E

∂wji∂wlk

)
(5.78)

Backpropagation principle can be used to get:

I Diagonal approximation of H in O(W )

I Approximation of the Hessian in O(W 2)

I Exact computation of the Hessian in O(W 2)

I Compute vTH in O(W )

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 1


