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5.5. Regularization in Neural Networks

First approach: Number of hidden units

Figure: 5.9. Examples of two-layer networks trained on 10 data points
drawn from the sinusoidal data set. The graphs show the result of fitting
networks having M = 1, 3 and 10 hidden units, respectively.
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5.5. Gaussian priors
Second approach:

Before we proposed to train the network by optimizing:

p(t|x,w) = N
(
t
∣∣ y(x,w), β−1

)
(5.12)

Now, we optimize the posterior probability:

p(w|t,x, λ) ∝ p(t|x,w)p(w|λ)

with the following prior

p(w|λ) = N
(
w
∣∣0, λ−1I)

Taking the negative logarithm, we obtain the error function

Ẽ(w) = E(w) +
λ

2
w>w (5.112)
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5.5. Consistent Gaussian priors
Let’s illustrate the inconsistency of a simple Gaussian prior.

First hidden layer:

zj = h
(∑

i

(wjixi + wj0)
)

(5.113)

Output units:

yk =
∑
j

(wkjzj + wk0) (5.114)

We apply a linear transformation on the data: x̃i = axi + b

Equivalent Network:

I w̃ji =
1

a
wji

I w̃j0 = wj0 −
b

a

∑
i

wji
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5.5. Consistent Gaussian priors

We apply a similar transformation on the output: ỹk = cyk + d

Equivalent Network:

I w̃kj = cwkj
I w̃k0 = cwk0 + d

Problem:

There is no λ̃ such that λ̃w̃>w̃ = λw>w

Thus, if we train a MLP on the transformed data, we do not
obtain the equivalent network described above.
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5.5. Consistent Gaussian priors

Solution:

We consider the following prior

p(w|α1, α2) ∝ exp
(
−α1

2

∑
w∈W1

w2 − α2

2

∑
w∈W2

w2
)

(5.122)

and we obtain the following regularizer

λ1
2

∑
w∈W1

w2 +
λ2
2

∑
w∈W2

w2 (5.121)

Then we can chose: λ̃1 = a
1
2λ1 and λ̃2 = c

−1
2 λ2
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5.5. Consistent Gaussian priors

p(w|α1, α2) ∝ exp
(
− αw1

2

∑
w∈Ww

1

w2 − αw2
2

∑
w∈Ww

2

w2

− αb1
2

∑
w∈Wb

1

w2 − αb2
2

∑
w∈Wb

2

w2)

Figure: 5.11. Samples from the prior and plotting the corresponding
network functions
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5.5. Early stopping

Third approach:

Figure: 5.12. Illustration of the behaviour of training set error and
validation set error
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5.5. Learning Invariances by Augmenting the Data

Fourth approach:

Figure: 5.14. Illustration of the synthetic warping of a handwritten digit.
The original image is shown on the left. On the right, the top row shows
three examples of warped digits, with the corresponding displacement
fields shown on the bottom row.
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5.5. Learning Invariances by Augmenting the Data

We consider:

I Transformation governed by a single parameter ξ

I Transformation s(x, ξ) with s(x, 0) = x

I Sum-of-squares error function

Error function for the untransformed data (infinite dataset):

E =
1

2

∫∫
{y(x)− t}2p(t|x)p(x) dxdt (5.129)

Error function for the expanded data:

Ẽ =
1

2

∫∫∫
{y(s(x, ξ))− t}2p(t|x)p(x)p(ξ) dx dt dξ (5.130)
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5.5. Learning Invariances by Augmenting the Data

Expand s as a Taylor series:

s(x, ξ) = s(x, 0) + ξ
∂s

∂ξ
(x, ξ)

∣∣∣
ξ=0

+
ξ2

2

∂2s

∂ξ2
(x, ξ)

∣∣∣
ξ=0

+O(ξ3)

= x+ ξτ +
1

2
ξ2τ ′ +O(ξ3)

This allows us to expand the model function:

y(s(x, ξ)) = y(x) + ξτ>∇y(x)

+
ξ2

2
[(τ ′)>∇y(x) + τ>∇∇y(x)τ ] +O(ξ3)
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5.5. Learning Invariances by Augmenting the Data

After replacing in Ẽ:

Ẽ = E + λΩ (5.131)

with

Ω =
1

2

∫ (
τ>∇y(x)

)2
p(x) dx (5.134)

and if we choose s : x→ x+ ξ

Ω =
1

2

∫
||∇y(x)||2p(x) dx (5.135)

This is known as Tikhonov regularization.
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5.5. Convolutional networks (Convnets)
Fifth approach:

Figure: Cat recognition
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5.5. Convolutional networks (Convnets)
Fifth approach:

Figure: Cat recognition
Weight Sharing!
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5.5. Convolutional networks (Convnets)

Figure: Architecture of LeNet-5, a Convolution Neural network, here for
digits recognition. Each plane is a feature map, i.e. a set of units whose
weights are constrained to be identical.1

First layer:

I Without weight sharing: 5x5x6x28x28 = 117600

I with weight sharing: 5x5x6 = 150
1Y. LeCun, et al.: Gradient-Based Learning Applied to Document

Recognition,1998
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5.5. Soft weight sharing
Sixth approach:

p(w) =
∏
i

p(wi) (5.136)

with

p(wi) =

M∑
j=1

πjN
(
wi|µj , σ2j ) (5.137)

Total error function:

Ẽ(w) = E(w) + λΩ(w) (5.139)

with

Ω(w) = −
∑
i

ln

 M∑
j=1

πjN
(
wi|µj , σ2j )

 (5.138)
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5.6. Mixture Density Networks
Goal of supervised learning: model p(t|x).

I Generative approach: model p(t,x) = p(x|t)p(t) and use
Bayes’ Theorem p(t|x) = p(x|t)p(t)/p(x)

I Discriminative approach: model p(t|x) directly.

With inverse problems the distribution can be multimodal.

I Forward problem: Model parameters → Data/Predictions.
I Inverse problem: Data → Model parameters.

Figure: 5.19: Left: forward problem (x → t). Right: inverse problem (t → x).
A standard ANN trained by least squares approximates the conditional mean.
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5.6. Mixture Density Networks
We seek a general framework for modeling p(t|x).

Mixture Density Network (MDN): mixture model in which both the
mixing coefficients πk(x) as well as the component densities
(µk(x), σ2k(x)) are flexible functions of the input vector x.

p(t|x) =

K∑
k=1

πk(x)N
(
t|µk(x), σ2k(x)I) (5.148)

Recall that the Gaussian mixture distribution can be written as a
linear superposition of Gaussians in the form

p(x) =

K∑
k=1

πkN
(
µk,Σk) (9.7)

Note: we can use other distributions for the components, such as Bernoulli
distributions if the target variables are binary rather than continuous.
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5.6. Mixture Density Networks

I Mixing coefficients must satisfy the constraints

K∑
k=1

πk(x) = 1, 0 ≤ πk(x) ≤ 1 (5.149)

which can be achieved using a set of softmax outputs.

πk(x) =
exp(aπk)∑K
l=1 exp(a

π
l )

(5.150)

I Variances must satisfy σ2k ≥ 0 and so can be represented using

σk(x) = exp(aσk) (5.151)

I Means have real components, they can be represented directly
by the network output activations µkj(x) = aµkj

Stephane Lathuiliere & Pablo Mesejo Reading Group on Deep Learning Session 2



21/39

5.6. Mixture Density Networks

Figure: MDN architecture (from Heiga Zen’s slides, researcher at Google
working in statistical speech synthesis and recognition)

The total number of network outputs is given by (L+ 2)K, having
K (=2) components in the mixture model and L (=1)
components in t.
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5.6. Mixture Density Networks

Minimization of the negative logarithm of the likelihood:

E(w) = −
N∑
n=1

ln

{ K∑
k=1

πk(xn,w)N
(
tn|µk(xn,w), σ2k(xn,w)I

)}
(5.153)

In order to minimize the error function, we need to calculate the
derivatives of the error E(w) with respect to the components of w.

These can be evaluated using backpropagation. We need the
derivatives of the error wrt the output-unit activations (δ’s).

δπk = ∂En
∂aπk

= πk − γnk, δµk = ∂En
∂aµkl

= γnk
{µkl−tnl

σ2
k

}
,

δσk = ∂En
∂aσk

= γnk
{
L− ‖tn−µk‖

2

σ2
k

}
where γnk = γk(tn|xn) = πkNnk∑K

l=1 πlNnl
and Nnk denotes

N (tn|µk(xn), σ2k(xn)I). γnk represents p(xn ∈ Gk)
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5.6. Mixture Density Networks
Once an MDN has been trained, it can predict the conditional density
function of the target data for any given input vector. This conditional
density represents a complete description of the generator of the data.

Figure: 5.21. Bottom right: Mean of the most probable component (i.e., the one
with the largest mixing coefficient) at each value of x
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5.7. Bayesian Neural Networks
Main idea:

I Apply Bayesian inference to get an entire probability
distribution over the network weights, w, given the training
data: p(w|D)

I Classical neural networks training algorithms get a single
solution

Approach Training
Equivalent Problem /

Solution

ML
argmax

w
p(t|x,w) =

argmax
w
N (t|y(x,w), β−1)

E(w) =

1
2

∑N
n=1

{
y(xn,w)− tn

}2

MAP

argmax
w

p(w|t,x, λ) =
argmax

w
p(t|x,w)p(w|λ) with

p(w|λ) = N
(
w
∣∣0, λ−1I

) Ẽ(w) = E(w) + λ
2
wTw

Posterior p(w|D) ????
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5.7. Bayesian Neural Networks

I In multilayered network
I Highly nonlinear dependence of y(x,w) on w

I Exact Bayesian treatment not possible because log of
posterior distribution is non-convex

I Approximate methods are therefore necessary

I First approximation:
I Laplace approximation: replace posterior by a Gaussian

centered at a mode of true posterior
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5.7. Bayesian Neural Networks: Simple Regression Case

I Predict single continuous target t from vector x of inputs
assuming hyperparameters α and β are fixed and known.

p(t|x,w, β) = N (t|y(x,w), β−1) (5.161)

I Prior over weights assumed Gaussian

p(w|α) = N (w|0, α−1I) (5.162)

I Likelihood function

p(D|w, β) =

N∏
n=1

N (tn|y(xn,w), β−1) (5.163)

I Posterior is

p(w|D, α, β) ∝ p(w|α)p(D|w, β) (5.164)

I It will be non-Gaussian as a consequence of the nonlinear
dependence of y(x,w) on w → Laplace approximation
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5.7. Bayesian Neural Networks: Gaussian approx. to p(w|D, α, β)

I Convenient to maximize the logarithm of the posterior (which
corresponds to the regularized sum-of-squares error)

ln p(w|D, α, β) = −α
2
wTw− β

2

∑
{y(xn,w)− tn}2 + const

(5.165)
The maximum is denoted as wMAP which is found using
nonlinear optimization methods (e.g. conjugate gradient).

I Having found the mode wMAP, we can build a local Gaussian
approximation

q(w|D) = N (w|wMAP,A
-1) (5.167)

where A is in terms of the Hessian of the sum-of-squares error
function

A = −∇∇ ln p(w|D, α, β) = αI + βH (5.166)
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5.7. Bayesian Neural Networks

Approach Training Equivalent Problem / Solution Testing

ML argmax
w

p(t|x,w)

argmin
w

E(w)

where E(w) =

1

2

N∑
n=1

{
y(xn,w)− tn

}2

argmax
t
p(t|wML,x) =

argmax
t
N (t|y(x,wML), β

−1
)

MAP argmax
w

p(w|t,x, λ)
argmin

w
Ẽ(w)

where
Ẽ(w) = E(w) + λ

2
wTw

argmax
t
p(t|wMAP,x) =

argmax
t
N (t|y(x,wMAP), β

−1
)

Posterior p(w|D, α, β) q(w|D) ????

Table: Summary in case of using Gaussian distributions.
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5.7. Bayesian Neural Networks: p(t|x,D)
I Similarly, the predictive distribution is obtained by

marginalizing wrt this posterior distribution

p(t|x,D) =

∫
p(t|x,w)q(w|D)dw (5.168)

I This integration is still analytically intractable due to the
nonlinearity of y(x,w) as a function of w.

I Second approximation: the posterior has small variance
compared with the characteristic scales of w over which
y(x,w) is varying.
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5.7. Bayesian Neural Networks: p(t|x,D)
I Similarly, the predictive distribution is obtained by

marginalizing wrt this posterior distribution

p(t|x,D) =

∫
p(t|x,w)q(w|D)dw (5.168)

I This integration is still analytically intractable due to the
nonlinearity of y(x,w) as a function of w.

I Second approximation: the posterior has small variance
compared with the characteristic scales of w over which
y(x,w) is varying.
This allows us to make a Taylor series expansion of the
network function around wMAP and retain only the linear
terms:

y(x,w) ' y(x,wMAP) + gT (w −wMAP) (5.169)

where g = ∇wy(x,w)|w=wMAP
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5.7. Bayesian Neural Networks: p(t|x,D)
I We now have a linear-Gaussian model with a Gaussian

distribution for p(w) and a Gaussian for p(t|w) whose mean is
a linear function of w of the form

p(t|x,w, β) ' N (t|y(x,wMAP) + gT (w −wMAP), β−1)
(5.171)

I We can make use of the general result (2.115) for the
marginal p(t) to give

p(t|x,D, α, β) = N (t|y(x,wMAP), σ2(x)) (5.172)

where σ2(x) = β−1 + gTA-1g

2.3.3 Marginal and Conditional Gaussians: Given a marginal Gaussian distribu-
tion for x and a conditional Gaussian distribution for y given x in the form
p(x) = N (x|µ,Λ−1) and p(y|x) = N (y|Ax + b,L−1), the marginal distribu-
tion of y and the conditional distribution of x given y are given by

p(y) = N (y|Aµ+ b,L−1 + AΛ−1AT ) (2.115)
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5.7. Bayesian Neural Networks

Approach Training Equivalent Problem / Solution Testing

ML argmax
w

p(t|x,w)

argmin
w

E(w)

where E(w) =

1

2

N∑
n=1

{
y(xn,w)− tn

}2

argmax
t
p(t|wML,x) =

argmax
t
N (t|y(x,wML), β

−1
)

MAP argmax
w

p(w|t,x, λ)
argmin

w
Ẽ(w)

where
Ẽ(w) = E(w) + λ

2
wTw

argmax
t
p(t|wMAP,x) =

argmax
t
N (t|y(x,wMAP), β

−1
)

Posterior p(w|D, α, β) q(w|D)
argmax

t
p(t|x,D) =

argmax
t
N (t|y(x,wMAP), σ

2
(x))

Table: Summary in case of using Gaussian distributions.
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5.7. Bayesian Neural Networks: Hyperparameter Optimization

I Estimates are obtained for α and β by maximizing
ln p(D|α, β) given by

p(D|α, β) =

∫
p(D|w, β)p(w|α)dw (5.174)

I This is easily evaluated using the Laplace approximation
results (4.135). Taking logarithms then gives

ln p(D|α, β) ' −E(wMAP)− 1

2
ln |A|+W

2
lnα+

N

2
lnβ−N

2
ln(2π)

(5.175)

where W is the total number of parameters in w, and the
regularized error function is defined by

E(wMAP) =
β

2

N∑
n=1

{y(xn,wMAP)−tn}2+
α

2
wT

MAPwMAP (5.176)

Z =

∫
f(z)dz ' f(z0)

(2π)W/2

|A|1/2
(4.135)
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5.7. Bayesian Neural Networks: Hyperparameter Optimization

I Consider first the maximization with respect to α.

α =
γ

wT
MAPwMAP

(5.178)

where γ represents the effective number of parameters and is
defined by

γ =

W∑
i=1

λi
α+ λi

(5.179)

and βHui = λiui is the eigenvalue equation.

I Maximizing the evidence with respect to β gives

1

β
=

1

N − γ

N∑
n=1

{y(xn,wMAP)− tn}2 (5.180)
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5.7. Bayesian Neural Networks: Comparison of Models

I Consider a set of candidate models Hi to compare.

I We can apply Bayes’ Theorem to compute the posterior
distribution over models, then pick the model with the largest
posterior p(Hi|D) ∝ p(D|Hi)p(Hi)

I The term p(D|Hi) is called the evidence for Hi and is given by
p(D|Hi) =

∫
p(D|w,Hi)p(w|Hi)dw

I Assuming that we have no reason to assign strongly different
priors p(Hi), models Hi are ranked by evaluating the evidence.

I The evidence is approximated by taking (5.175) and
substituting the values of α and β obtained from the iterative
optimization of these hyperparameters:

ln p(D|α, β) ' −E(wMAP)−1

2
ln |A|+W

2
lnα+

N

2
lnβ+

N

2
ln(2π)

(5.175)
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I 5.5. Regularization in Neural Networks.

I 5.6. Mixture Density Networks.

I 5.7. Bayesian Neural Networks.

I Possible Future Topics.
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Possible Future Topics: Models

I Self-Organizing Maps (SOM)
I Ch. 9 “Neural Networks and Learning Machines” (S. Haykin, 2009)

I Radial Basis Function Networks (RBFN)
I Ch. 5 “Neural Networks for Pattern Recognition” (C.M. Bishop, 1995)

I Convolutional Neural Networks (CNN)
I AlexNet: “ImageNet Classification with Deep Convolutional Neural Networks” (Krizhevsky et al.,

NIPS’12)
I LeNet-5, convolutional neural networks http://yann.lecun.com/exdb/lenet/
I VGGNet: “Very Deep Convolutional Networks for Large-Scale Image Recognition” (Simonyan and

Zisserman, arXiv, 2014)
I GoogleLeNet: “Going deeper with convolutions” (Szegedy et al., arXiv, 2014)
I DeepFace: “DeepFace: Closing the Gap to Human-Level Performance in Face Verification”

(Taigman et al., CVPR’14)

I Recurrent Neural Networks (RNN)
I LSTM: “Long short-term memory” (Hochreiter and Schmidhuber, Neural Computation, 1997)
I Boltzmann Machine: Ch. 11.7 from Haykin’09, Ch. 7 from “Introduction to the theory of neural

computation” (Hertz et al., 1991)
I Hopfield Network: Ch. 13.7 from Haykin’09, Ch. 2 from Hertz’91, Ch. 13 from “Neural Networks

- A Systematic Introduction” (Raul Rojas, 1996)

I Deep Belief Networks (DBN)
I Ch. 11.9 from Haykin’09, “A fast learning algorithm for deep belief nets” (Hinton et al., Neural

Computation, 2006)

Webpage: https://project.inria.fr/deeplearning

Mailing list: deeplearning@inria.fr
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Possible Future Topics: Problems

I Transfer Learning (or domain adaptation)
I How to transfer the knowledge gained solving one problem to a

different but related problem?
I Machine learning methods work well under the assumption

that the training and test data are drawn from the same
feature space and the same distribution. When the
distribution changes, it would be nice to reduce the need and
effort to recollect a new training data.

I Integrating supervised and unsupervised learning in a single
algorithm

I It seems that Deep Boltzmann Machines do this, but there are
issues of scalability

Webpage: https://project.inria.fr/deeplearning

Mailing list: deeplearning@inria.fr
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