
Introduction to Convolutional
Neural Networks

Vicky	Kalogeiton	

Reading	Group	on	Deep	Learning:	Session	3	

1	July	2016	

CNN	=	Neural	Network	 with	a	convoluFon	operaFon	
instead	of	matrix	mulFplicaFon		
in	at	least	one	of	the	layers	

What	are	CNNs	?

airplane		
automobile		
bird		
cat		
deer		

dog		
frog		
horse		
ship		
truck	

Input	example	:	one	image	 Output	example	:	one	class	

Neural Networks

A	typical	CNN	architecture

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

28

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Biological neuron &
mathematical model

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Convolution

The convolution operation

The	convoluFon	operaFon	

3 reasons why convolution is cool

Reason 1 : Sparse Connectivity

Reason 2 : Parameter sharing

Reason 3 : Equivariant Representations

When	the	input	changes	->	output	changes	in	the	same	way	

Eg.	Let	I	be	a	funcFon	giving	images	brightness	at	integer	coordinates	
Let	g	be	a	funcFon	mapping	one	image	funcFon	to	another	image	funcFon,		
such	that	I’	=	g(I)	is	the	image	funcFon	with	I’(x,y)	=	I(x	−	1,y).		
This	shiZs	every	pixel	of	I	one	unit	to	the	right.		
If	we	apply	this	transformaFon	to	I,	then	apply	convoluFon,		
the	result	will	be	the	same	as	if	we	applied	convoluFon	to	I’,		
then	applied	the	transformaFon	g	to	the	output.		
	
	

Convolution Layers

32

3

Convolution Layer
32x32x3 image

width

height

32
depth

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

activation map
32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all
spatial locations

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

32x32x3 image
5x5x3 filter

activation maps

1

28

28

convolve (slide) over all
spatial locations

consider a second, green filter

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Stride

A closer look at spatial dimensions:

32

32

3

activation map
32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all
spatial locations

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

=> 5x5 output

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

N

F

F

N
Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Zero-Padding

0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Zero-Padding: common to the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Zero-Padding: common to the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Zero-Padding: common to the border

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params
=> 76*10 = 760

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Summary

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Local connectivity &
tiled convolution

Local connectivity

Locally	connected	layer	

ConvoluFonal	layer	

Fully	connected	layer	

Tiled convolution

Locally	connected	layer	

Tiled	convoluFon	

ConvoluFonal	layer	

Pooling

Effect	=	invariance	to	small	translaFons	of	the	input	

Pooling

Pooling

-  makes the representations smaller and more manageable
-  operates over each activation map independently

Pooling

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

Max Pooling

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Summary

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Common settings:

F = 2, S = 2
F = 3, S = 2

Summary

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Back propagation

Convolutional Network
(AlexNet)

input image
weights

loss

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Want:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

f

activations

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

activations

“local gradient”

f

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

activations

“local gradient”

f

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

activations

“local gradient”

f

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

activations

“local gradient”

f

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

activations

“local gradient”

f

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient… “switcher”?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation function

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Maxout

ELU

Leaky
ReLU

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Sigmoid

-  Squashes numbers to range [0,1]
-  Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Sigmoid
1.  Saturated neurons “kill” the

gradients
2.  Sigmoid outputs are not zero-

centered
3.  exp() is a bit compute expensive

-  Squashes numbers to range [0,1]
-  Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

-  Squashes numbers to range [-1,1]
-  zero centered (nice)
-  still kills gradients when saturated :(

tanh(x)

[LeCun et al., 1991]

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

ReLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

-  Does not saturate (in +region)
-  Very computationally efficient
-  Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

Activation Functions

[Krizhevsky et al., 2012]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

ReLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

-  Does not saturate (in +region)
-  Very computationally efficient
-  Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

-  Not zero-centered output
-  ReLU units can “die”

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

-  Does not saturate
-  Computationally efficient
-  Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Leaky ReLU

Activation Functions

[Mass et al., 2013] [He et al., 2015]
	

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

-  Use ReLU. Be careful with your learning rates
-  Try out Leaky ReLU / Maxout / ELU
-  Try out tanh but don’t expect much
-  Don’t use sigmoid

In practice

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Preprocessing data

Preprocessing data

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Preprocessing data

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

e.g. consider CIFAR-10 example with [32,32,3] images

-  Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

-  Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening

In practice: for images

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Weights initialization

•  If	the	weights	in	a	network	start	too	small,		
then	the	signal	shrinks	as	it	passes	through	each	layer	unFl	it’s	too	
Fny	to	be	useful.	

•  If	the	weights	in	a	network	start	too	large,		
then	the	signal	grows	as	it	passes	through	each	layer	unFl	it’s	too	
massive	to	be	useful.	

Weights initialization

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

•  All	zero	iniFalizaFon	
	
	

•  Small	random	numbers	
	
	

•  Draw	weights	from	a	Gaussian	distribuFon		
with	standard	deviaFon	of	sqrt(2/n),		
where	n	is	the	number	of	outputs	to	the	neuron	

Weights initialization

Batch normalization

[Ioffe and Szegedy, 2015]

Initialization of NNs by explicitly forcing the activations throughout
the network to take on a unit Gaussian distribution at the beginning
of the training.

Batch normalization

Normalization is a simple differentiable operation

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully
Connected and/or Convolutional
layers, and before nonlinearity.

Batch normalization

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

-  Improves gradient flow through the network
-  Allows higher learning rates
-  Reduces the strong dependence on initialization
-  Acts as a form of regularization in a funny way, and

slightly reduces the need for dropout

Batch normalization

Thank you for your attention

AlexNet example

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: (227-11)/4+1 = 55

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96
...

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

