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CNN	=	Neural	Network	 with	a	convoluFon	operaFon	
instead	of	matrix	mulFplicaFon		
in	at	least	one	of	the	layers	

What	are	CNNs	? 



airplane		
automobile		
bird		
cat		
deer		

dog		
frog		
horse		
ship		
truck	

Input	example	:	one	image	 Output	example	:	one	class	

Neural Networks 



A	typical	CNN	architecture 
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with  
activation functions 
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Preview: ConvNet is a sequence of Convolutional Layers, interspersed with  
activation functions 
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CONV,  
ReLU 
e.g. 10  
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CONV,  
ReLU 

…. 

10 

24 

24 

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson 



Biological neuron &  
mathematical model 
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Convolution 



The convolution operation 



The	convoluFon	operaFon	



3 reasons why convolution is cool 



Reason 1 : Sparse Connectivity 



Reason 2 : Parameter sharing 



Reason 3 : Equivariant Representations 

When	the	input	changes	->	output	changes	in	the	same	way	

Eg.	Let	I	be	a	funcFon	giving	images	brightness	at	integer	coordinates	
Let	g	be	a	funcFon	mapping	one	image	funcFon	to	another	image	funcFon,		
such	that	I’	=	g(I)	is	the	image	funcFon	with	I’(x,y)	=	I(x	−	1,y).		
This	shiZs	every	pixel	of	I	one	unit	to	the	right.		
If	we	apply	this	transformaFon	to	I,	then	apply	convoluFon,		
the	result	will	be	the	same	as	if	we	applied	convoluFon	to	I’,		
then	applied	the	transformaFon	g	to	the	output.		
	
	



Convolution Layers 
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Convolution Layer 
32x32x3 image 

width 

height 

32 
depth 
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32 

32 

3 

5x5x3 filter 

32x32x3 image 

Convolve the filter with the image 
i.e. “slide over the image spatially,  
computing dot products” 

Convolution Layer 
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32 

32 

3 

5x5x3 filter 

32x32x3 image 

Convolve the filter with the image 
i.e. “slide over the image spatially,  
computing dot products” 

Filters always extend the full  
depth of the input volume 

Convolution Layer 
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32 

32 

3 

32x32x3 image  
5x5x3 filter 

1 number: 
the result of taking a dot product between the  
filter and a small 5x5x3 chunk of the image 
(i.e. 5*5*3 = 75-dimensional dot product + bias) 

Convolution Layer 
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activation map 
32x32x3 image 
5x5x3 filter 

1 
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convolve (slide) over all  
spatial locations 

Convolution Layer 
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32 

32 

3 

32x32x3 image  
5x5x3 filter 

activation maps 

1 

28 

28 
 

convolve (slide) over all  
spatial locations 

consider a second, green filter 

Convolution Layer 
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32 

3 6 

28 

activation maps 
 
32 

28 
 

Convolution Layer 

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps: 

We stack these up to get a “new image” of size 28x28x6! 
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Stride 



A closer look at spatial dimensions: 
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3 

activation map 
32x32x3 image 
5x5x3 filter 
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28 
 

convolve (slide) over all  
spatial locations 
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7 

7x7 input (spatially)  
assume 3x3 filter 

 

7 

A closer look at spatial dimensions: 
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7 

7x7 input (spatially)  
assume 3x3 filter 
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A closer look at spatial dimensions: 
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7 

7x7 input (spatially)  
assume 3x3 filter 
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A closer look at spatial dimensions: 
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7 

7x7 input (spatially)  
assume 3x3 filter 

 

7 

A closer look at spatial dimensions: 
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=> 5x5 output 

7 

7x7 input (spatially)  
assume 3x3 filter 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially)  
assume 3x3 filter  
applied with stride 2 

7 
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A closer look at spatial dimensions: 
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7x7 input (spatially)  
assume 3x3 filter  
applied with stride 2 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially)  
assume 3x3 filter  
applied with stride 2 
=> 3x3 output! 

7 

7 

A closer look at spatial dimensions: 
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7x7 input (spatially)  
assume 3x3 filter  
applied with stride 3? 
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7 

A closer look at spatial dimensions: 
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7x7 input (spatially)  
assume 3x3 filter  
applied with stride 3? 

7 

7 

A closer look at spatial dimensions: 

doesn’t fit! 
cannot apply 3x3 filter on  
7x7 input with stride 3. 
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N 

F 

F 

N 
Output size: 
(N - F) / stride + 1 

e.g. N = 7, F = 3: 
stride 1 => (7 - 3)/1 + 1 = 5 
stride 2 => (7 - 3)/2 + 1 = 3 
stride 3 => (7 - 3)/3 + 1 = 2.33 :\ 
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Zero-Padding 



0 0 0 0 0 0 

0 

0 

0 

0 

e.g. input 7x7 
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output? 

(recall:) 
(N - F) / stride + 1 
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Zero-Padding: common to the border 



e.g. input 7x7 
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output? 
 
7x7 output! 

0 0 0 0 0 0 

0 

0 

0 

0 
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Zero-Padding: common to the border 



e.g. input 7x7 
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output? 
 
7x7 output! 
in general, common to see CONV layers with  
stride 1, filters of size FxF, and zero-padding with  
(F-1)/2. (will preserve size spatially) 
e.g. F = 3 => zero pad with 1  

F = 5 => zero pad with 2  
F = 7 => zero pad with 3 

0 0 0 0 0 0 

0 

0 

0 

0 

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson 

Zero-Padding: common to the border 



Examples time: 
 
Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 
 
Output volume size: ? 
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Examples time: 
 
Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 
 
Output volume size: 
(32+2*2-5)/1+1 = 32 spatially, so 
32x32x10 
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Examples time: 
 
Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 
 
Number of parameters in this layer? 
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Examples time: 

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 

(+1 for bias) 

Number of parameters in this layer?  
each filter has 5*5*3 + 1 = 76 params 
=> 76*10 = 760 
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Summary 
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Common settings: 
 
K = (powers of 2, e.g. 32, 64, 128, 512) 

-  F = 3, S = 1, P = 1 
-  F = 5, S = 1, P = 2 
-  F = 5, S = 2, P = ? (whatever fits) 
-  F = 1, S = 1, P = 0 
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Local connectivity & 
tiled convolution 



Local connectivity 

Locally	connected	layer	

ConvoluFonal	layer	

Fully	connected	layer	



Tiled convolution 

Locally	connected	layer	

Tiled	convoluFon	

ConvoluFonal	layer	



Pooling 



Effect	=	invariance	to	small	translaFons	of	the	input	

Pooling 



Pooling 



-  makes the representations smaller and more manageable 
-  operates over each activation map independently 

Pooling 
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1 1 2 4 

5 6 7 8 

3 2 1 0 

1 2 3 4 

Single depth slice 

x 

y 

max pool with 2x2 filters  
and stride 2 6 8 

3 4 

Max Pooling 
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Summary 
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Common settings: 
 
F = 2, S = 2 
F = 3, S = 2 

Summary 
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Back propagation 



Convolutional Network  
(AlexNet) 

input image  
weights 
 

loss 
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e.g. x = -2, y = 5, z = -4 
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e.g. x = -2, y = 5, z = -4 

Want: 
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e.g. x = -2, y = 5, z = -4 

Want: 
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e.g. x = -2, y = 5, z = -4 

Chain rule: 
 
 
Want: 
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e.g. x = -2, y = 5, z = -4 

Want: 
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e.g. x = -2, y = 5, z = -4 

Chain rule: 
 
 
Want: 
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f 

activations 
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activations 

“local gradient” 
 
 

f 
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activations 

“local gradient” 
 
 

f 
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activations 

“local gradient” 
 
 

f 
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activations 

“local gradient” 
 
 

f 
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activations 

“local gradient” 
 
 

f 
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Patterns in backward flow 

add gate: gradient distributor 
max gate: gradient router 
mul gate: gradient… “switcher”? 
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Activation function 
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Activation Functions 
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Sigmoid 

tanh tanh(x) 

ReLU max(0,x) 

Maxout  

ELU 

Leaky 
ReLU 

Activation Functions 
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Sigmoid 

-  Squashes numbers to range [0,1] 
-  Historically popular since they  

have nice interpretation as a  
saturating “firing rate” of a neuron 

Activation Functions 
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Sigmoid 
1.  Saturated neurons “kill” the  

gradients 
2.  Sigmoid outputs are not zero-  

centered 
3.  exp() is a bit compute expensive 

-  Squashes numbers to range [0,1] 
-  Historically popular since they  

have nice interpretation as a  
saturating “firing rate” of a neuron 

Activation Functions 
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-  Squashes numbers to range [-1,1] 
-  zero centered (nice) 
-  still kills gradients when saturated :( 

tanh(x) 
 
 

[LeCun et al., 1991] 

Activation Functions 
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ReLU 
(Rectified Linear Unit) 

Computes f(x) = max(0,x) 

-  Does not saturate (in +region) 
-  Very computationally efficient 
-  Converges much faster than  

sigmoid/tanh in practice (e.g. 6x) 

 

Activation Functions 

[Krizhevsky et al., 2012] 
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ReLU 
(Rectified Linear Unit) 

Computes f(x) = max(0,x) 

-  Does not saturate (in +region) 
-  Very computationally efficient 
-  Converges much faster than  

sigmoid/tanh in practice (e.g. 6x) 

-  Not zero-centered output 
-  ReLU units can “die” 

 

Activation Functions 
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-  Does not saturate 
-  Computationally efficient 
-  Converges much faster than  

sigmoid/tanh in practice! (e.g. 6x) 
-  will not “die”. 

 
Leaky ReLU 

Activation Functions 

[Mass et al., 2013]  [He et al., 2015] 
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-  Use ReLU. Be careful with your learning rates 
-  Try out Leaky ReLU / Maxout / ELU 
-  Try out tanh but don’t expect much 
-  Don’t use sigmoid 

In practice 
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Preprocessing data 



Preprocessing data 
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Preprocessing data 
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e.g. consider CIFAR-10 example with [32,32,3] images 

-  Subtract the mean image (e.g. AlexNet)  
(mean image = [32,32,3] array) 

-  Subtract per-channel mean (e.g. VGGNet)  
(mean along each channel = 3 numbers) 

 
Not common to normalize  
variance, to do PCA or  
whitening 

In practice: for images 
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Weights initialization 



•  If	the	weights	in	a	network	start	too	small,		
then	the	signal	shrinks	as	it	passes	through	each	layer	unFl	it’s	too	
Fny	to	be	useful.	

•  If	the	weights	in	a	network	start	too	large,		
then	the	signal	grows	as	it	passes	through	each	layer	unFl	it’s	too	
massive	to	be	useful.	

Weights initialization 
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•  All	zero	iniFalizaFon	
	
	

•  Small	random	numbers	
	
	

•  Draw	weights	from	a	Gaussian	distribuFon		
with	standard	deviaFon	of	sqrt(2/n),		
where	n	is	the	number	of	outputs	to	the	neuron	

Weights initialization 



Batch normalization 



[Ioffe and Szegedy, 2015] 

Initialization of NNs by explicitly forcing the activations throughout 
the network to take on a unit Gaussian distribution at the beginning 
of the training.  
 

Batch normalization 

Normalization is a simple differentiable operation 



FC 

BN 

tanh 

FC 

BN 

tanh 

... 

Usually inserted after Fully  
Connected and/or Convolutional 
layers, and before nonlinearity. 

Batch normalization 
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-  Improves gradient flow through the network 
-  Allows higher learning rates 
-  Reduces the strong dependence on initialization 
-  Acts as a form of regularization in a funny way, and 

slightly reduces the need for dropout 

Batch normalization 



Thank you for your attention 



AlexNet example 



Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
 
First layer (CONV1): 96 11x11 filters applied at stride 4 
=> 
Q: what is the output volume size? Hint: (227-11)/4+1 = 55 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
 
First layer (CONV1): 96 11x11 filters applied at stride 4 
=> 
Output volume [55x55x96] 
 
Q: What is the total number of parameters in this layer? 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
 
First layer (CONV1): 96 11x11 filters applied at stride 4 
=> 
Output volume [55x55x96] 
Parameters: (11*11*3)*96 = 35K 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images  
After CONV1: 55x55x96 

Second layer (POOL1): 3x3 filters applied at stride 2  

Q: what is the output volume size? Hint: (55-3)/2+1 = 27 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images  
After CONV1: 55x55x96 
 
Second layer (POOL1): 3x3 filters applied at stride 2  
Output volume: 27x27x96 
 
Q: what is the number of parameters in this layer? 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images  
After CONV1: 55x55x96 
 
Second layer (POOL1): 3x3 filters applied at stride 2  
Output volume: 27x27x96 
Parameters: 0! 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images  
After CONV1: 55x55x96  
After POOL1: 27x27x96 
... 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Full (simplified) AlexNet architecture:  
[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0  
[27x27x96] MAX POOL1: 3x3 filters at stride 2  
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2  
[13x13x256] MAX POOL2: 3x3 filters at stride 2  
[13x13x256] NORM2: Normalization layer  
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1  
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1  
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1  
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Full (simplified) AlexNet architecture:  
[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0  
[27x27x96] MAX POOL1: 3x3 filters at stride 2  
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2  
[13x13x256] MAX POOL2: 3x3 filters at stride 2  
[13x13x256] NORM2: Normalization layer  
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1  
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1  
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1  
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 

Details/Retrospectives: 
- first use of ReLU 
- used Norm layers (not common anymore) 
- heavy data augmentation 
- dropout 0.5 
- batch size 128 
- SGD Momentum 0.9 
- Learning rate 1e-2, reduced by 10  
manually when val accuracy plateaus 
- L2 weight decay 5e-4 
- 7 CNN ensemble: 18.2% -> 15.4% 
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