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Precision medicine

 The ambition:

« “a medical model that proposes the customization of
healthcare, with medical decisions, practices, and/or
products being tailored to the individual patient”

« “an emerging approach for disease treatment and
prevention that takes into account individual variability in
genes, environment, and lifestyle for each person.”

— AKA:

* Personalized medicine, personalized health, precision
health, precision public health, precision oncology

* The present:
— Focus on small, deep, validated cohort *omics studies

— Rapt enthusiasm about expanding to broader genotype/
phenotype studies
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Precision medicine

« Coming soon:
— US Precision Medicine cohort -1,000,000 volunteers
« EMR, genomic, social, biospecimens, outcomes, mobile
* Distributed national centers, recruiting, management
* Apps and marketing

* Anticipated challenges
— Limited evidence of targeted genomics working at scale

— Virtually no standardization of data sources, data ownership
policy, or models of effective patient engagement

— PMI underfunded (130MM$ = ~ $130/patient)

— Multiple competing initiatives (PCORI, NCATS, 1MM
Veterans, EU), no current interoperability

— Academically driven
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Gartners Hype Cycle 2015-2016

Precision medicine
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Consumer mHealth economy

« Vast ecosystem of products generating ~quantified biometrics
« $22+ billion economy by 2017
« 270+ million wireless subscribers in the US

30% of US smartphone users own at least 1 health app

ﬁ{(ﬂ)) '@

UCDAVIS

CLINICAL ano TRANSLATIONAL
SCIENCE CENTER




Worldwide Smartphone OS Market Share S
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Period Android i0sS Windows Phone BlackBerry OS Others

2015Q2 82.8% 13.9% 2.6% 0.3% 0.4%
2014Q2 84.8% 11.6% 2.5% 0.5% 0.7%
2013Q2 79.8% 12.9% 3.4% 2.8% 1.2%
2012Q2 69.3% 16.6% 3.1% 4.9% 6.1%

Source: IDC, Aug 2015
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The trough of consumer mHealth

165,000+ apps in combined IOS and Android stores
mHealth app or device average use 1-3 months

Of active users, 65% use daily

Over 85% use social media for health

Emerging consumer suits against companies that don't
perform as advertised
— Fitbit

» Sleep

* Heart rate

— Nike
» Calories, steps, “nikefuel”
...No one data stream tells the story
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Precision mHealth challenges

* Majority of vendor data measures unvalidated, not
reproducible or persistent

* Range of balkanized silos and aggregators:

— Health maintenance
* Apple HealthKit and now CareKit
» Google Fit

— Research

» Apple ResearchKit
» Research Stack (android)

— Citizen science
» Google Science Journal
* Openhumans.org UCDAVIS
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Small Data

The data an individual generates implicitly, across a myriad of
systems, and encounters

~

Household cable/tv box
+ TV patterns (sleep/hearing)
+ internet mediated patterns
J

(Financial

* Purchases and Transactions
+  Consumption

* Dietary patterns

Household utilities
* Diurnal rhythms
* Appliance use

o
Transportation Social Media and Email
+ Location/commute + Social/communciation
« Physical mode (passive, active) . MOOQS
+ Energy use +  Family structure

» Contextual stress

Mobile Carriers
+ Location/activity
« Call records
+ Call patterns

Games/Music/Video
+ Cognitive state
* Indicator/influence

Search
« State of mind
+ Topic/concern
* Influence
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TYPES OF DATA
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UNSTRUCTURED DATA
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Weber et. al, JAMA 2014
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Precision health in a legal and
commercial world

* Few protections exist to prevent mHealth data from
being shared without consent
— CA bill to expand coverage of "HIPAA" like
requirements to prohibit commercial health monitoring
programs from sharing or selling data without explicit
permission, and that mHealth data cannot be used by
employers for employee discrimination.

» Broad restrictions and on sharing patient data

* Widely varying legal and social norm restrictions on
sharing social media, movement, app usage data, -
though it is for the most part already being shared.

UCDAVIS

L N4 CLINICAL ano TRANSLATIONAL
SCIENCE CENTER




Data generation, ownership access and use

Owners: consumers, caretakers, companies, community
Sources: patients, companies, providers
Users: patients, providers, companies, R&D, payers
Examples: Vitals, fithess, chronic care, history, outcomes

Owners: Academia, companies, gov
Owners: providers, patients, labs \ ’ Sources: Providers, patients, companies
Sources: patients, providers, labs — R Users: Researchers, companies, pharma
Users: R&D, patients, providers Examples: Trials, screening, market
Ex: EMR, Dx, Tx, genetic tests research

Owners: Payers, patients, companies
Sources: providers, patients, companies
Users: payers, providers, regulators, companies, thd
Examples: claims, cost, payment, utilization,
allocation
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Data sharing and ownership challenges

Data Seekers

' !

personal, private, and highly sensitive;
protected by national and jurisdictional
laws, strict institutional policies;

Obscured by operational obstacles that
maintain distance between researchers and
potential data subjects

6ata ;-Ioldeis

(

“Data Seekers ” = Entities, people,
tools, or applications that need to
find and access sensitive personal
health information

2 2

“Subjects of the Data ” = People
with varying contribution, opinion,

—>» engagement —many of whom are
quite willing to contribute to the

discovery of new medical knowledge

“Data Holders ” = Entities or people
like hospitals, doctors offices, labs,
pharmacies, insurers, medical
specialists, devices, and apps with
strict privacy obligations
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“The design of systems
determines the kinds of
politics that can take place
in them, and designing a
system is itself a political
act”. Mitch Kapor —
Electronic Frontier

Foundation
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Behavioral Biomarkers

Specific behavioral traits to measure progress of disease and treatment

(state classification A
esedentary/ambulatory
eat home/work
eapp analytics (games, media...)
__*communication )
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Behavioral Biomarkers

Specific behavioral traits to measure progress of disease and treatment

(summarization

eambulatory/sedentary cumulative and
durations,walking speed
esleep times, meal times
etime spent key locations, diameter of day
L esocial interaction

[Today

OrAB®

[17.4h

55 min 0 min 0 min

y,
A
P N

state classification

esedentary/ambulatory

eat home/work

eapp analytics (games, media...)

ecommunication )

Deborah Estrin 2015
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Behavioral Biomarkers

Specific behavioral traits to measure progress of disease and treatment

behavioral biomarker Hours at home per day Walking periods

eindividual’s patterns; relevance is ll > 6 min per day
symptom and condition dependent I I III I
e ‘function, fatigue, pain, depression, I

insomnia, cognition, self-medication... I_II_II_.I

|

(summarization

eambulatory/sedentary cumulative and
durations,walking speed

esleep times, meal times @

etime spent key locations, diameter of day 17.4h  55min Omin 0 min

o . - .
L social interaction )

[Today

state classification
esedentary/ambulatory
eat home/work
eapp analytics (games, media...)
ecommunication
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Predictive biomarkers via search

* Microsoft Finds Cancer Clues in Search Queries - New
York times June 7, 2016

« “If we heard the whispers of people online, would it provide
strong evidence or a clue that something’'s going on”

 Found that signals deduced from patterns of queries in search
logs can predict the future appearance of queries that are
highly suggestive of a diagnosis of pancreatic
adenocarcinoma —

« - which could inform when screening and assessment could
Improve subsequent symptom development health states

« Used Bing
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Link mHealth and small data
to clinical care

-

Participant self Care
How is this
medication working
for me?

_

~

Clinical history and

context
Care plans

-
Clinical care:
How is patient
responding to new
care plan?
g

e R

Passive recorded
data, location, activity
x Y,

Mobile data
outcomes, usage

kReaI-time sensor dataj
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Prescriptive data and digital

Unknown
root cause

Patient
Not at Goal

* High cost
patient

* Disease
R management
S&ON candidate

biomarkers

Prescriptive data for 4 weeks

Differentiate patterns of adherence from non-adherence
Characterize behavioral reasons for non-adherence

Enable providers to make informed treatment decisions

4 week cycles capture robust data in typical Rx cycle

Yearly

Alternative monitoring data to see if patient is on track check-in

Root cause determined to be

treatable non-adherence

Patient
Sustain plan for 12 weeks At Goal
Designed for 12 week cycles to allow for habit formation
Treat non-adherence by supporting logistical, educational
and motivational needs
Increase patient engagement through interaction with Requires
interfaces and enhanced communication with care team on-going
support
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Building models

4 )\ ( N\
Personal Public

) ( )

-
T Availability:

Permission to share and access Aggregate data sets

to data

o J & J
( )\ (" N

Standardization:

harmonization and filtering
- J

4 )\
State classification:

Ambulatory/mobile
Home/work
Application analytics
\Communication

Reference terminologies and
data translations

& J
4 )

Classification models

(Summarization:

Cumulative durations, speeds
sleep times, meal times

key locations, balance of activity
(social interactions/support

11111

J G /
4 N 4 N
Patterns:
Symptom and condition
causality Population health conditions
function: fatigue, pain,
depression, insomnia, cognition

\\ )) \\ ))
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Challenges to digital biomarkers
for precision medicine

* Quantity is not always better

* Potential biases require alternative validation
approaches

* Critical:
— Context and reproducibility critical
— Patient trust and engagement
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Prescriptive Digital health:
Changing the patient/ data relationship




Questions?

* nranderson@ucdavis.edu
e @nick r _anderson
 www.ucdmc.ucdavis.edu/ctsc/
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