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this talk is about first-order rewritability under the

basic decidable classes of existential rules



Ontology-Based Query Answering

Certain-Answers(q, D, Ο) =   { (c1,…,cn) 2 dom(D)n |   D ^ Ο ² q(c1,…,cn) }

D

Ο

hD,Oi

D

S-database (ABox)

ontology (TBox)

q(x1,…,xn)

knowledge base

database query (CQ)



Ontology-Mediated Queries

D

S-database (ABox)

Q = (S, O, q(x1,…,xn))

ontology-mediated query (OMQ)

Q(D) =   Certain-Answers(q, D, Ο)



Scalability in OMQ Evaluation

D

S-database (ABox)

Q = (S, O, q(x1,…,xn))

ontology-mediated query (OMQ)

Exploit standard RDBMSs  - efficient technology for answering queries

?



Query Rewriting

Q = (S, O, q(x1,…,xn))

Qrew(x1,…,xn)

a query that can be executed by a standard DBMS  - first-order query

rewrite

for every S-database D : Q(D)  =  Qrew(D) 

[Calvanese, De Giacomo, Lembo, Lenzerini & Rosati, AAAI 2005, J. Autom. Reasoning 2007]



Query Rewriting: An Example

Q = (S, O, q())

Qrew =  9x Person(x) ^ HasFather(John,x)  _ Person(John)

rewrite

{ Person(¢), HasFather(¢,¢) } 9x Person(x) ^ HasFather(John,x)

{ 8x (Person(x)  9y HasFather(x,y) ^ Person(y))   ≡ Person v 9 HasFather.Person }



First-Order Rewritability (FO-Rewritability)

(OL,QL)

an ontology language

(fragment of first-order logic)

a database query language

(sublanguage of first-order queries)

Definition: An OMQ language O is FO-Rewritable if every Q 2 O is FO-Rewritable



FO-Rewritability: The Main Questions

1. Can we isolate meaningful OMQ languages that are FO-Rewritable?

2. For non-FO-Rewritable languages, can we decide FO-Rewritability?

3. What is the size of the FO rewritings? Can we do better?

...have been extensively studied for DL- and rule-based OMQ languages



Existential Rules

8x8y (' (x,y)  9z Ã(x,z))

(a.k.a. tuple-generating dependencies)

8x (Person(x)  9y HasFather(x,y) ^ Person(y))   ≡ Person v 9 HasFather.Person

8x8y (HasChild(x,y) ^ Human(y)  Human(x))   ≡ 9 HasChild.Human v Human



Existential Rules

' (x,y)  9z Ã(x,z)

(a.k.a. tuple-generating dependencies)

Person(x)  9y HasFather(x,y), Person(y)   ≡ Person v 9 HasFather.Person

HasChild(x,y), Human(y)  Human(x)   ≡ 9 HasChild.Human v Human



Existential Rules

' (x,y)  9z Ã(x,z)

(a.k.a. tuple-generating dependencies)

(9Rules,CQ)



Guardedness

Linear

one body-atom

R(x,y)  9z Ã (x,z)

[Calì, Gottlob & Lukasiewicz, PODS 2009, J. Web Sem. 2012]

R(x,y), ' (x,y)   9z Ã(x,z)
Guarded

one body-atom contains 

all the 8-variables
[Calì, Gottlob & Kifer, KR 2008, J. Artif. Intell. Res. 2013]

Frontier-Guarded

one body-atom contains all 

the 8-variables in the head

R(x), ' (x,y)   9z Ã(x,z)

[Baget, Leclère, Mugnier & Salvat, IJCAI 2009, Artif. Intell. 2011]



Acyclicity

R T

S

P

(…or, non-recursive  - the predicate graph is acyclic)

R(x,y), R(y,z)   9w P(x), S(x,w)

T(x)   P(x)



Stickiness

(…or, do not forget the joins)

R(x,y), P(y,z)  9w T(x,y,w)

T(x,y,z)  9w S(y,w)

 

R(x,y), P(y,z)  9w T(x,y,w)

T(x,y,z)  9w S(x,w)

R(x1,…,xn), P(y1,…,ym)   T(x1,…,xn,y1,…,ym)



[Calì, Gottlob & P., PVLDB 2010, Artif. Intell. 2012]



Classes of Existential Rules

Guarded

Linear

Frontier-Guarded

Acyclic Sticky

Weakly-Frontier-Guarded

Weakly-Acyclic Weakly-Sticky

(a.k.a. Datalog§ languages)



Classes of Existential Rules

Guarded

Linear

Frontier-Guarded

Acyclic Sticky

Weakly-Frontier-Guarded

Weakly-Acyclic Weakly-Sticky

What about FO-Rewritability?

(a.k.a. Datalog§ languages)



Classes of Existential Rules

Guarded

Linear

Frontier-Guarded

Acyclic Sticky

Weakly-Frontier-Guarded

Weakly-Acyclic Weakly-Sticky

DATALOG

Dangerous zone!

(a.k.a. Datalog§ languages)



Guardedness and FO-Rewritability

Theorem: (Guarded,CQ) is not FO-Rewritable

Q = ({P, R},  {R(x,y), P(y)  P(x)},  P(cn))

D  ¶ {P(c1)}, and contains no other P-atom

Qrew has to check for the existence of an R-path in D of unbounded length

compute the transitive closure of R  - not possible via a first-order query 

cn #n-1 #n-2 #2
c1

…
R R R R R



Theorem: (L,CQ), where L 2 { Linear, Acyclic, Sticky }, is FO-Rewritable

Via the Bounded Derivation Depth Property (BDDP)

FO-Rewritable OMQ Languages

[Calì, Gottlob & Lukasiewicz, PODS 2009, J. Web Sem. 2012] + [ Calì, Gottlob & P., PVLDB 2010, Artif. Intell. 2012]



Definition: (L,CQ) enjoys the BDDP if: 

for every Q = (S, O, q) 2 (L,CQ), there exists δ ≥ 0 such that,

for every S-database D, Q(D) = q(chaseδ(D,O))

Bounded Derivation Depth Property (BDDP)

[Calì, Gottlob & Lukasiewicz, PODS 2009, J. Web Sem. 2012]

q

D

depth δ

chaseδ(D,O)



Proposition: BDDP  ) FO-Rewritability

Bounded Derivation Depth Property (BDDP)

…

… …

D

each atom is obtained by 

at most β atoms

βδ atoms

depth δ

) to entail a CQ q we need at most |q| ¢ βδ database atoms



Proposition: BDDP  ) FO-Rewritability

Bounded Derivation Depth Property (BDDP)

Given an OMQ (S, O, q):

• Dβ,δ,q be the set of all possible S-databases of size at most |q| ¢ βδ

• C =  { D 2 Dβ,δ,q |  q(chase(D,O)) is non-empty }

• Convert C into a UCQ

…in fact, the other direction also holds  - FO-Rewritability , BDDP



Theorem: (L,CQ), where L 2 { Linear, Acyclic, Sticky }, is FO-Rewritable

Via the Bounded Derivation Depth Property (BDDP)

FO-Rewritable OMQ Languages

but, the BDDP-based algorithm is very expensive

can we do better?

[Calì, Gottlob & Lukasiewicz, PODS 2009, J. Web Sem. 2012] + [ Calì, Gottlob & P., PVLDB 2010, Artif. Intell. 2012]



Perfect Reformulation

[Calvanese, De Giacomo, Lembo, Lenzerini & Rosati, AAAI 2005, J. Autom. Reasoning 2007]

rewriting step

reduction step

Applicability  → Soundness

Reduction  →  Completeness



Perfect Reformulation for Existential Rules

R(y,x), P(y)  9z T(z,x,x)                   9u9v9w T(u,v,w), P(w)

T(z,x,x)

g = {u → z, v → x, w → x}

thus, we can simulate a chase step by applying a backward resolution step

9u9v9w T(u,v,w), P(w)  _ 9x9y R(y,x), P(y), P(x)



Perfect Reformulation for Existential Rules

thus, we can simulate a chase step by applying a backward resolution step

9u9v9w T(u,v,w), P(u)  _ 9x9y9u R(x,y), P(x), P(u)



unsound rewriting

R(y,x), P(y)  9z T(z,x,x)                   9u9v9w T(u,v,w), P(u)

T(z,x,x)

g = {u → z, v → x, w → x}



Perfect Reformulation for Existential Rules

Applicability condition: constants, join variables and free variables

in the query do NOT unify with 9-variables

…but, it may destroy completeness

R(y,x), P(y)  9z T(z,x,x)                   9u9v9w T(u,v,w), P(u)

T(z,x,x)

g = {u → z, v → x, w → x}



R(y,x), P(y)  9z T(z,x,x)                   9u9v9w T(u,v,w), P(u)

Perfect Reformulation for Existential Rules

9u9v9w T(u,v,w), P(u)  _

9u9v9w9y9z T(u,v,w), T(u,y,z)  _

(by the reduction step) 9u9v9w T(u,v,w)  _ 

(by the rewriting step)  9x9y R(x,y), P(x)

T(x,y,z)  P(x)



XRewrite

[Gottlob, Orsi & P., ICDE 2011, ACM Trans. Database Syst. 2014]

applicability condition for existential rules

apply only useful reduction steps



Theorem: (L,CQ), where L 2 { Linear, Acyclic, Sticky }, is FO-Rewritable

Via the Bounded Derivation Depth Property (BDDP)

FO-Rewritable OMQ Languages

but, the BDDP-based algorithm is very expensive

can we do better?

use the XRewrite algorithm

Piece-based rewriting  - based on a refined notion of unification

[König, Leclère, Mugnier & Thomazo, RR 2012, Semantic Web 2015]



Recap

Guarded

Linear

Frontier-Guarded

Acyclic Sticky

FO-Rewritable

What about deciding FO-Rewritability?

non-FO-Rewritable



Deciding FO-Rewritability

Q = (S, O, q(x,y))

{ P(¢), R(¢,¢), S(¢) } P(x) ^ R(x,y) ^ S(y)

{ R(x,y), S(y)  S(x),  R(x,y), P(x)  S(y) }

rewrite

P(x) ^ R(x,y)



Deciding FO-Rewritability

Q = (S, O, q(y))

rewrite

{ P(¢), R(¢,¢), S(¢) } S(y)

{ R(x,y), S(y)  S(x),  R(x,y), P(x)  S(y) }





Deciding FO-Rewritability

What is the complexity of FORew(Guarded,CQ) and FORew(Frontier-Guarded,CQ)?

FORew(L,QL)

Input: an OMQ Q 2 (L,QL) 

Question: is Q FO-Rewritable? 



Deciding FO-Rewritability

Theorem: FORew(L,CQ), where L 2 { Guarded, Frontier-Guarded } is in 3EXPTIME, 

and 2EXPTIME-hard even for bounded arity

[Barceló, Berger & P., 2017]

FORew(L,QL)

Input: an OMQ Q 2 (L,QL) 

Question: is Q FO-Rewritable? 



Deciding FO-Rewritability

Theorem: FORew(Guarded,BCQ) is in 3EXPTIME and 2EXPTIME-hard even for

bounded arity

Upper Bound:

• Characterize FO-Rewritability via the finiteness of a set of certain

• “tree-like” databases

• Construct an alternating tree automaton A, with double-exponentially many states, 

such that the OMQ is FO-Rewritable iff the language of A is finite

Lower Bound:

• Inherited from FORew(ELI,CQ)

[Bienvenu, Hansen, Lutz & Wolter, IJCAI 2016]

[Barceló, Berger & P., 2017]



Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}

{a,b,c} {b,c,d} {c,d,a}

{c,e} {d,f}



Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}

{a,b,c} {b,c,d} {c,d,a}

{c,e} {d,f}



Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}

{a,b,c} {b,c,d} {c,d,a}

{c,e} {d,f}



Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}

{a,b,c} {b,c,d} {c,d,a}

{c,e} {d,f}



Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}, { }

{a,b,c}, {R(a,b,c)} {b,c,d}, {R(b,c,d)} {c,d,a}, {S(c,d,a)}

{c,e}, {T(c,e)} {d,f}, {P(d,f),T(f,f)}



C-Tree Databases

(…or, almost “tree-like” databases)

Definition: An S-database D is a C-tree, where C µ D, if it has the form:

T0, C

T1, A1 T2, A2

T3, A3 T4, A4 T5, A5

for each i > 0, |Ti|  ≤  arity(S)



Characterizing FO-Rewritability

Proposition: Let Q = (S, O, q) 2 (Guarded,BCQ):

Q is FO-Rewritable

m

there exists k ≥ 0 such that, for every C-tree D over S,

with |dom(C)|  ≤ (arity(S,O) ¢ |q|), it holds that: 

D ² Q  ) there exists D’µ D with |D’| ≤ k such that D’ ² Q

Q is UCQ-Rewritableunravelling and compactness



Characterizing FO-Rewritability

Proposition: Let Q = (S, O, q) 2 (Guarded,BCQ):

Q is FO-Rewritable

m

there exist finitely many (non-isomorphic)

C-trees D over S, with |dom(C)|  ≤ (arity(S,O) ¢ |q|), such that: 

(i) D ² Q

(ii) remove an atom from D ) Q is violated 

(iii) D is non-redundant



Well-Colored Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}, { }

{a,b,c}, {R(a,b,c)} {b,c,d}, {R(b,c,d)} {c,d,a}, {S(c,d,a)}

{c,e}, {T(c,e)} {d,f}, {P(d,f),T(f,f)}

node v is red  ) v is the least common ancestor of a non-empty set of blue nodes



Characterizing FO-Rewritability

Proposition: Let Q = (S, O, q) 2 (Guarded,BCQ):

Q is FO-Rewritable

m

there exist finitely many (non-isomorphic) 

C-trees D over S, with |dom(C)|  ≤ (arity(S,O) ¢ |q|), such that: 

(i) D ² Q

(ii) remove an atom from D ) Q is violated 

(iii) D is well-colored

the language of an alternating tree automaton A

with double-exponentially many states



Characterizing FO-Rewritability

Proposition: Let Q = (S, O, q) 2 (Guarded,BCQ):

Q is FO-Rewritable

m

the language of A is finite

(which is feasible in exponential time in the number of states)



Deciding FO-Rewritability

Theorem: FORew(Frontier-Guarded,BCQ) is in 3EXPTIME

[Barceló, Berger & P., 2017]

Q 2 (Frontier-Guarded,BCQ)

Q’ 2 (Frontier-Guarded,BAQ)

a BCQ is a frontier-guarded rule

Q’’ 2 (Guarded,BAQ)

by treeifying the rule-bodies

[Bárány, ten Cate & Segoufin, ICALP 2011, J. ACM 2015]

Q is FO-Rewritable  , Q’’ is FO-Rewritable



Deciding FO-Rewritability: Next Steps

• Practical rewriting algorithms for (Frontier-Guarded,CQ)

• Such a practical algorithm exists for (EL,AQ)

• …and it has been recently extended to (EL,CQ)

[Hansen, Lutz, Seylan & Wolter, IJCAI 2015]

[Hansen & Lutz, DL 2017]



Recap

Guarded

Linear

Frontier-Guarded

Acyclic Sticky

FO-Rewritable

What about the size of the FO rewritings?

can be checked in 3EXPTIME



Height/Size of XRewrite(Q)

Given an OMQ Q = (S, O, q) 2 (L,CQ)

L Height Size

Linear |q| |S||q| . (arity(S) . |q|)arity(S) . |q|

Acyclic |q| . body(O)#pred(O) 2^(|S| . (|q| . body(O)#pred(O) . arity(S))arity(S))

Sticky |S| . (#terms(q) + 1)arity(S) 2^(|S| . (#terms(q) + 1)arity(S))

• Linear: the rewriting step replaces an atom with one atom

• Acyclic: the rewriting can be seen as a tree of depth at most #pred(O)

• Sticky: only variables of q occur more than once in a disjunct

worst-case optimal



Upper/Lower Bound for Frontier-Guarded

• The automata-based approach provides a UCQ-rewriting - disjunction of the 

trees accepted by the automaton (very large - 5EXP)

• Triple-exponential lower bound for the size of UCQ-rewritings for (EL,CQ)

[Bienvenu, Lutz & Wolter, IJCAI 2013]



[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014]

Target More Succinct Query Languages

In particular, what about 

• Positive existential queries (PE)

• Non-recursive Datalog queries (NDL)

• First-order queries (FO)

Even for (DL-LiteR,CQ)

• No PE/NDL-rewriting of polynomial size

• No FO-rewriting of polynomial size (unless the PH collapses)

…it holds even for (Acyclic,CQ)



FO-Rewritability: Pure Approach

Two crucial limitations:

• No small rewritings - even for lightweight languages like Linear or DL-LiteR

• Simple OMQs are immediately excluded, e.g.,

( {HasChild, Human},  {HasChild(x,y), Human(y)  Human(x)}, Human(x) )

a more refined approach is needed



FO-Rewritability: Combined Approach

for every S-database D : Q(D)  =  Qrew(DO) 

[Lutz, Toman & Wolter, IJCAI 2009]

Q = (S, O, q(x1,…,xn))

Qrew(x1,…,xn)

D

DO

database rewriting query rewriting

both steps in polynomial time!!!



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

[] - assuming PSPACE ≠ NEXPTIME

[[]] - assuming PSPACE ≠ EXPTIME



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

via the Polynomial Witness Property

[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014] + [Gottlob, Manna & P., KR 2014]



Definition: (L,CQ) enjoys the PWP if there exists a polynomial pol(¢) such that

for every Q = (S, O, q(x)) 2 (L,CQ), S-database D, and t 2 dom(D)|x|

t 2  Q(D) ) q(t) can be entailed after pol(|O|,|q|) chase steps

Polynomial Witness Property (PWP)

q

D

obtained after pol(|O|,|q|) chase steps

[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014]



Proposition: PWP  ) PE/NDL-rewritings constructible in polynomial time, 

assuming databases with at least two constants

Polynomial Witness Property (PWP)

[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014]

obtained after pol(|O|,|q|) chase steps

q

D



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

via the Polynomial Witness Property

[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014] + [Gottlob, Manna & P., KR 2014]



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014] + [Gottlob, Manna & P., KR 2014]

via the Polynomial Witness Property?



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

via proof generators

a compact representation of an exponentially-sized witness

[Gottlob, Manna & P., IJCAI 2015]



Proof Generator

q = 9x9y9z9w P(x,a,y) ^ P(z,y,b) ^ P(w,c,b)

P(z2,a,z1)

P(z3,z1,b)

P(b,z4,c)

chase forest

α = (…z1…)

β = (…z2…)

δ = (…z3…)

γ = (…z4…)

D

h

h, {α,β,γ,δ}, 
α

β δ

γ



k = (|q| + 1) ¢ (2 ¢ arity)arity

Proof Generator

q = 9x9y9z9w P(x,a,y) ^ P(z,y,b) ^ P(w,c,b)

P(z2,a,z1)

P(z3,z1,b)

P(b,z4,c)

chase forest

α = (…z1…)

β = (…z2…)

δ = (…z3…)

γ = (…z4…)

D

h

check via a FO/NDL query

whether a proof generator exists



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

a unique positive case without polynomially-sized witnesses

[Gottlob, Manna & P., IJCAI 2015]



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

via linearization

encode the type of the guard-atom in a single predicate

[Gottlob, Manna & P., KR 2014]



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

[Thomazo, Personal Communication 2017]

fixing the schema is not enough

we should fix the ontology, and then adapt the linearization technique



Some Final Remarks

• FO-Rewritable languages

o Practical resolution-based algorithms exist (XRewrite, Piece-based rewriting)

o Prototype systems exist (Nyaya, Graal)

• Far from practical algorithms for checking FO rewritability

o Notable exception the algorithm for (EL,CQ)

o Prototype system Grind

• Polynomial combined FO rewriting algorithms are of theoretical nature

o Can we construct compact UCQs?



Thank you!


