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this talk is about first-order rewritability under the

basic decidable classes of existential rules



Ontology-Based Query Answering

Certain-Answers(q, D, Ο) =   { (c1,…,cn) 2 dom(D)n |   D ^ Ο ² q(c1,…,cn) }

D

Ο

hD,Oi

D

S-database (ABox)

ontology (TBox)

q(x1,…,xn)

knowledge base

database query (CQ)



Ontology-Mediated Queries

D

S-database (ABox)

Q = (S, O, q(x1,…,xn))

ontology-mediated query (OMQ)

Q(D) =   Certain-Answers(q, D, Ο)



Scalability in OMQ Evaluation

D

S-database (ABox)

Q = (S, O, q(x1,…,xn))

ontology-mediated query (OMQ)

Exploit standard RDBMSs  - efficient technology for answering queries

?



Query Rewriting

Q = (S, O, q(x1,…,xn))

Qrew(x1,…,xn)

a query that can be executed by a standard DBMS  - first-order query

rewrite

for every S-database D : Q(D)  =  Qrew(D) 

[Calvanese, De Giacomo, Lembo, Lenzerini & Rosati, AAAI 2005, J. Autom. Reasoning 2007]



Query Rewriting: An Example

Q = (S, O, q())

Qrew =  9x Person(x) ^ HasFather(John,x)  _ Person(John)

rewrite

{ Person(¢), HasFather(¢,¢) } 9x Person(x) ^ HasFather(John,x)

{ 8x (Person(x)  9y HasFather(x,y) ^ Person(y))   ≡ Person v 9 HasFather.Person }



First-Order Rewritability (FO-Rewritability)

(OL,QL)

an ontology language

(fragment of first-order logic)

a database query language

(sublanguage of first-order queries)

Definition: An OMQ language O is FO-Rewritable if every Q 2 O is FO-Rewritable



FO-Rewritability: The Main Questions

1. Can we isolate meaningful OMQ languages that are FO-Rewritable?

2. For non-FO-Rewritable languages, can we decide FO-Rewritability?

3. What is the size of the FO rewritings? Can we do better?

...have been extensively studied for DL- and rule-based OMQ languages



Existential Rules

8x8y (' (x,y)  9z Ã(x,z))

(a.k.a. tuple-generating dependencies)

8x (Person(x)  9y HasFather(x,y) ^ Person(y))   ≡ Person v 9 HasFather.Person

8x8y (HasChild(x,y) ^ Human(y)  Human(x))   ≡ 9 HasChild.Human v Human



Existential Rules

' (x,y)  9z Ã(x,z)

(a.k.a. tuple-generating dependencies)

Person(x)  9y HasFather(x,y), Person(y)   ≡ Person v 9 HasFather.Person

HasChild(x,y), Human(y)  Human(x)   ≡ 9 HasChild.Human v Human



Existential Rules

' (x,y)  9z Ã(x,z)

(a.k.a. tuple-generating dependencies)

(9Rules,CQ)



Guardedness

Linear

one body-atom

R(x,y)  9z Ã (x,z)

[Calì, Gottlob & Lukasiewicz, PODS 2009, J. Web Sem. 2012]

R(x,y), ' (x,y)   9z Ã(x,z)
Guarded

one body-atom contains 

all the 8-variables
[Calì, Gottlob & Kifer, KR 2008, J. Artif. Intell. Res. 2013]

Frontier-Guarded

one body-atom contains all 

the 8-variables in the head

R(x), ' (x,y)   9z Ã(x,z)

[Baget, Leclère, Mugnier & Salvat, IJCAI 2009, Artif. Intell. 2011]



Acyclicity

R T

S

P

(…or, non-recursive  - the predicate graph is acyclic)

R(x,y), R(y,z)   9w P(x), S(x,w)

T(x)   P(x)



Stickiness

(…or, do not forget the joins)

R(x,y), P(y,z)  9w T(x,y,w)

T(x,y,z)  9w S(y,w)

 

R(x,y), P(y,z)  9w T(x,y,w)

T(x,y,z)  9w S(x,w)

R(x1,…,xn), P(y1,…,ym)   T(x1,…,xn,y1,…,ym)



[Calì, Gottlob & P., PVLDB 2010, Artif. Intell. 2012]



Classes of Existential Rules

Guarded

Linear

Frontier-Guarded

Acyclic Sticky

Weakly-Frontier-Guarded

Weakly-Acyclic Weakly-Sticky

(a.k.a. Datalog§ languages)



Classes of Existential Rules

Guarded

Linear

Frontier-Guarded

Acyclic Sticky

Weakly-Frontier-Guarded

Weakly-Acyclic Weakly-Sticky

What about FO-Rewritability?

(a.k.a. Datalog§ languages)



Classes of Existential Rules

Guarded

Linear

Frontier-Guarded

Acyclic Sticky

Weakly-Frontier-Guarded

Weakly-Acyclic Weakly-Sticky

DATALOG

Dangerous zone!

(a.k.a. Datalog§ languages)



Guardedness and FO-Rewritability

Theorem: (Guarded,CQ) is not FO-Rewritable

Q = ({P, R},  {R(x,y), P(y)  P(x)},  P(cn))

D  ¶ {P(c1)}, and contains no other P-atom

Qrew has to check for the existence of an R-path in D of unbounded length

compute the transitive closure of R  - not possible via a first-order query 

cn #n-1 #n-2 #2
c1

…
R R R R R



Theorem: (L,CQ), where L 2 { Linear, Acyclic, Sticky }, is FO-Rewritable

Via the Bounded Derivation Depth Property (BDDP)

FO-Rewritable OMQ Languages

[Calì, Gottlob & Lukasiewicz, PODS 2009, J. Web Sem. 2012] + [ Calì, Gottlob & P., PVLDB 2010, Artif. Intell. 2012]



Definition: (L,CQ) enjoys the BDDP if: 

for every Q = (S, O, q) 2 (L,CQ), there exists δ ≥ 0 such that,

for every S-database D, Q(D) = q(chaseδ(D,O))

Bounded Derivation Depth Property (BDDP)

[Calì, Gottlob & Lukasiewicz, PODS 2009, J. Web Sem. 2012]

q

D

depth δ

chaseδ(D,O)



Proposition: BDDP  ) FO-Rewritability

Bounded Derivation Depth Property (BDDP)

…

… …

D

each atom is obtained by 

at most β atoms

βδ atoms

depth δ

) to entail a CQ q we need at most |q| ¢ βδ database atoms



Proposition: BDDP  ) FO-Rewritability

Bounded Derivation Depth Property (BDDP)

Given an OMQ (S, O, q):

• Dβ,δ,q be the set of all possible S-databases of size at most |q| ¢ βδ

• C =  { D 2 Dβ,δ,q |  q(chase(D,O)) is non-empty }

• Convert C into a UCQ

…in fact, the other direction also holds  - FO-Rewritability , BDDP



Theorem: (L,CQ), where L 2 { Linear, Acyclic, Sticky }, is FO-Rewritable

Via the Bounded Derivation Depth Property (BDDP)

FO-Rewritable OMQ Languages

but, the BDDP-based algorithm is very expensive

can we do better?

[Calì, Gottlob & Lukasiewicz, PODS 2009, J. Web Sem. 2012] + [ Calì, Gottlob & P., PVLDB 2010, Artif. Intell. 2012]



Perfect Reformulation

[Calvanese, De Giacomo, Lembo, Lenzerini & Rosati, AAAI 2005, J. Autom. Reasoning 2007]

rewriting step

reduction step

Applicability  → Soundness

Reduction  →  Completeness



Perfect Reformulation for Existential Rules

R(y,x), P(y)  9z T(z,x,x)                   9u9v9w T(u,v,w), P(w)

T(z,x,x)

g = {u → z, v → x, w → x}

thus, we can simulate a chase step by applying a backward resolution step

9u9v9w T(u,v,w), P(w)  _ 9x9y R(y,x), P(y), P(x)



Perfect Reformulation for Existential Rules

thus, we can simulate a chase step by applying a backward resolution step

9u9v9w T(u,v,w), P(u)  _ 9x9y9u R(x,y), P(x), P(u)



unsound rewriting

R(y,x), P(y)  9z T(z,x,x)                   9u9v9w T(u,v,w), P(u)

T(z,x,x)

g = {u → z, v → x, w → x}



Perfect Reformulation for Existential Rules

Applicability condition: constants, join variables and free variables

in the query do NOT unify with 9-variables

…but, it may destroy completeness

R(y,x), P(y)  9z T(z,x,x)                   9u9v9w T(u,v,w), P(u)

T(z,x,x)

g = {u → z, v → x, w → x}



R(y,x), P(y)  9z T(z,x,x)                   9u9v9w T(u,v,w), P(u)

Perfect Reformulation for Existential Rules

9u9v9w T(u,v,w), P(u)  _

9u9v9w9y9z T(u,v,w), T(u,y,z)  _

(by the reduction step) 9u9v9w T(u,v,w)  _ 

(by the rewriting step)  9x9y R(x,y), P(x)

T(x,y,z)  P(x)



XRewrite

[Gottlob, Orsi & P., ICDE 2011, ACM Trans. Database Syst. 2014]

applicability condition for existential rules

apply only useful reduction steps



Theorem: (L,CQ), where L 2 { Linear, Acyclic, Sticky }, is FO-Rewritable

Via the Bounded Derivation Depth Property (BDDP)

FO-Rewritable OMQ Languages

but, the BDDP-based algorithm is very expensive

can we do better?

use the XRewrite algorithm

Piece-based rewriting  - based on a refined notion of unification

[König, Leclère, Mugnier & Thomazo, RR 2012, Semantic Web 2015]



Recap

Guarded

Linear

Frontier-Guarded

Acyclic Sticky

FO-Rewritable

What about deciding FO-Rewritability?

non-FO-Rewritable



Deciding FO-Rewritability

Q = (S, O, q(x,y))

{ P(¢), R(¢,¢), S(¢) } P(x) ^ R(x,y) ^ S(y)

{ R(x,y), S(y)  S(x),  R(x,y), P(x)  S(y) }

rewrite

P(x) ^ R(x,y)



Deciding FO-Rewritability

Q = (S, O, q(y))

rewrite

{ P(¢), R(¢,¢), S(¢) } S(y)

{ R(x,y), S(y)  S(x),  R(x,y), P(x)  S(y) }





Deciding FO-Rewritability

What is the complexity of FORew(Guarded,CQ) and FORew(Frontier-Guarded,CQ)?

FORew(L,QL)

Input: an OMQ Q 2 (L,QL) 

Question: is Q FO-Rewritable? 



Deciding FO-Rewritability

Theorem: FORew(L,CQ), where L 2 { Guarded, Frontier-Guarded } is in 3EXPTIME, 

and 2EXPTIME-hard even for bounded arity

[Barceló, Berger & P., 2017]

FORew(L,QL)

Input: an OMQ Q 2 (L,QL) 

Question: is Q FO-Rewritable? 



Deciding FO-Rewritability

Theorem: FORew(Guarded,BCQ) is in 3EXPTIME and 2EXPTIME-hard even for

bounded arity

Upper Bound:

• Characterize FO-Rewritability via the finiteness of a set of certain

• “tree-like” databases

• Construct an alternating tree automaton A, with double-exponentially many states, 

such that the OMQ is FO-Rewritable iff the language of A is finite

Lower Bound:

• Inherited from FORew(ELI,CQ)

[Bienvenu, Hansen, Lutz & Wolter, IJCAI 2016]

[Barceló, Berger & P., 2017]



Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}

{a,b,c} {b,c,d} {c,d,a}

{c,e} {d,f}



Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}

{a,b,c} {b,c,d} {c,d,a}

{c,e} {d,f}



Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}

{a,b,c} {b,c,d} {c,d,a}

{c,e} {d,f}



Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}

{a,b,c} {b,c,d} {c,d,a}

{c,e} {d,f}



Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}, { }

{a,b,c}, {R(a,b,c)} {b,c,d}, {R(b,c,d)} {c,d,a}, {S(c,d,a)}

{c,e}, {T(c,e)} {d,f}, {P(d,f),T(f,f)}



C-Tree Databases

(…or, almost “tree-like” databases)

Definition: An S-database D is a C-tree, where C µ D, if it has the form:

T0, C

T1, A1 T2, A2

T3, A3 T4, A4 T5, A5

for each i > 0, |Ti|  ≤  arity(S)



Characterizing FO-Rewritability

Proposition: Let Q = (S, O, q) 2 (Guarded,BCQ):

Q is FO-Rewritable

m

there exists k ≥ 0 such that, for every C-tree D over S,

with |dom(C)|  ≤ (arity(S,O) ¢ |q|), it holds that: 

D ² Q  ) there exists D’µ D with |D’| ≤ k such that D’ ² Q

Q is UCQ-Rewritableunravelling and compactness



Characterizing FO-Rewritability

Proposition: Let Q = (S, O, q) 2 (Guarded,BCQ):

Q is FO-Rewritable

m

there exist finitely many (non-isomorphic)

C-trees D over S, with |dom(C)|  ≤ (arity(S,O) ¢ |q|), such that: 

(i) D ² Q

(ii) remove an atom from D ) Q is violated 

(iii) D is non-redundant



Well-Colored Tree Decomposition

D  = { R(a,b,c), T(c,e), R(b,c,d), S(c,d,a), P(d,f), T(f,f) }

{a,b,c,d}, { }

{a,b,c}, {R(a,b,c)} {b,c,d}, {R(b,c,d)} {c,d,a}, {S(c,d,a)}

{c,e}, {T(c,e)} {d,f}, {P(d,f),T(f,f)}

node v is red  ) v is the least common ancestor of a non-empty set of blue nodes



Characterizing FO-Rewritability

Proposition: Let Q = (S, O, q) 2 (Guarded,BCQ):

Q is FO-Rewritable

m

there exist finitely many (non-isomorphic) 

C-trees D over S, with |dom(C)|  ≤ (arity(S,O) ¢ |q|), such that: 

(i) D ² Q

(ii) remove an atom from D ) Q is violated 

(iii) D is well-colored

the language of an alternating tree automaton A

with double-exponentially many states



Characterizing FO-Rewritability

Proposition: Let Q = (S, O, q) 2 (Guarded,BCQ):

Q is FO-Rewritable

m

the language of A is finite

(which is feasible in exponential time in the number of states)



Deciding FO-Rewritability

Theorem: FORew(Frontier-Guarded,BCQ) is in 3EXPTIME

[Barceló, Berger & P., 2017]

Q 2 (Frontier-Guarded,BCQ)

Q’ 2 (Frontier-Guarded,BAQ)

a BCQ is a frontier-guarded rule

Q’’ 2 (Guarded,BAQ)

by treeifying the rule-bodies

[Bárány, ten Cate & Segoufin, ICALP 2011, J. ACM 2015]

Q is FO-Rewritable  , Q’’ is FO-Rewritable



Deciding FO-Rewritability: Next Steps

• Practical rewriting algorithms for (Frontier-Guarded,CQ)

• Such a practical algorithm exists for (EL,AQ)

• …and it has been recently extended to (EL,CQ)

[Hansen, Lutz, Seylan & Wolter, IJCAI 2015]

[Hansen & Lutz, DL 2017]



Recap

Guarded

Linear

Frontier-Guarded

Acyclic Sticky

FO-Rewritable

What about the size of the FO rewritings?

can be checked in 3EXPTIME



Height/Size of XRewrite(Q)

Given an OMQ Q = (S, O, q) 2 (L,CQ)

L Height Size

Linear |q| |S||q| . (arity(S) . |q|)arity(S) . |q|

Acyclic |q| . body(O)#pred(O) 2^(|S| . (|q| . body(O)#pred(O) . arity(S))arity(S))

Sticky |S| . (#terms(q) + 1)arity(S) 2^(|S| . (#terms(q) + 1)arity(S))

• Linear: the rewriting step replaces an atom with one atom

• Acyclic: the rewriting can be seen as a tree of depth at most #pred(O)

• Sticky: only variables of q occur more than once in a disjunct

worst-case optimal



Upper/Lower Bound for Frontier-Guarded

• The automata-based approach provides a UCQ-rewriting - disjunction of the 

trees accepted by the automaton (very large - 5EXP)

• Triple-exponential lower bound for the size of UCQ-rewritings for (EL,CQ)

[Bienvenu, Lutz & Wolter, IJCAI 2013]



[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014]

Target More Succinct Query Languages

In particular, what about 

• Positive existential queries (PE)

• Non-recursive Datalog queries (NDL)

• First-order queries (FO)

Even for (DL-LiteR,CQ)

• No PE/NDL-rewriting of polynomial size

• No FO-rewriting of polynomial size (unless the PH collapses)

…it holds even for (Acyclic,CQ)



FO-Rewritability: Pure Approach

Two crucial limitations:

• No small rewritings - even for lightweight languages like Linear or DL-LiteR

• Simple OMQs are immediately excluded, e.g.,

( {HasChild, Human},  {HasChild(x,y), Human(y)  Human(x)}, Human(x) )

a more refined approach is needed



FO-Rewritability: Combined Approach

for every S-database D : Q(D)  =  Qrew(DO) 

[Lutz, Toman & Wolter, IJCAI 2009]

Q = (S, O, q(x1,…,xn))

Qrew(x1,…,xn)

D

DO

database rewriting query rewriting

both steps in polynomial time!!!



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

[] - assuming PSPACE ≠ NEXPTIME

[[]] - assuming PSPACE ≠ EXPTIME



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

via the Polynomial Witness Property

[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014] + [Gottlob, Manna & P., KR 2014]



Definition: (L,CQ) enjoys the PWP if there exists a polynomial pol(¢) such that

for every Q = (S, O, q(x)) 2 (L,CQ), S-database D, and t 2 dom(D)|x|

t 2  Q(D) ) q(t) can be entailed after pol(|O|,|q|) chase steps

Polynomial Witness Property (PWP)

q

D

obtained after pol(|O|,|q|) chase steps

[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014]



Proposition: PWP  ) PE/NDL-rewritings constructible in polynomial time, 

assuming databases with at least two constants

Polynomial Witness Property (PWP)

[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014]

obtained after pol(|O|,|q|) chase steps

q

D



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

via the Polynomial Witness Property

[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014] + [Gottlob, Manna & P., KR 2014]



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

[Gottlob, Kikot, Kontchakov, Podolskii, Schwentick & Zakharyaschev, Artif. Intell. 2014] + [Gottlob, Manna & P., KR 2014]

via the Polynomial Witness Property?



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

via proof generators

a compact representation of an exponentially-sized witness

[Gottlob, Manna & P., IJCAI 2015]



Proof Generator

q = 9x9y9z9w P(x,a,y) ^ P(z,y,b) ^ P(w,c,b)

P(z2,a,z1)

P(z3,z1,b)

P(b,z4,c)

chase forest

α = (…z1…)

β = (…z2…)

δ = (…z3…)

γ = (…z4…)

D

h

h, {α,β,γ,δ}, 
α

β δ

γ



k = (|q| + 1) ¢ (2 ¢ arity)arity

Proof Generator

q = 9x9y9z9w P(x,a,y) ^ P(z,y,b) ^ P(w,c,b)

P(z2,a,z1)

P(z3,z1,b)

P(b,z4,c)

chase forest

α = (…z1…)

β = (…z2…)

δ = (…z3…)

γ = (…z4…)

D

h

check via a FO/NDL query

whether a proof generator exists



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

a unique positive case without polynomially-sized witnesses

[Gottlob, Manna & P., IJCAI 2015]



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

via linearization

encode the type of the guard-atom in a single predicate

[Gottlob, Manna & P., KR 2014]



FO-Rewritability: Combined Approach

Size Arity Linear Acyclic Sticky Guarded Fr-Guarded

1 1  [] [[]]  

1 ≤ k  []  [[]] 

≤ k 1   [[]]  

≤ k ≤ k     ?

schema assumptions

[Thomazo, Personal Communication 2017]

fixing the schema is not enough

we should fix the ontology, and then adapt the linearization technique



Some Final Remarks

• FO-Rewritable languages

o Practical resolution-based algorithms exist (XRewrite, Piece-based rewriting)

o Prototype systems exist (Nyaya, Graal)

• Far from practical algorithms for checking FO rewritability

o Notable exception the algorithm for (EL,CQ)

o Prototype system Grind

• Polynomial combined FO rewriting algorithms are of theoretical nature

o Can we construct compact UCQs?



Thank you!


