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Standard 
& 

Non-Standard
Reasoning Problems



Standard Reasoning Problems

we all know them: given                             decide/compute

• consistency/satisfiability

• subsumption

• classification

• query answering 

• …all only involve entailment checks:

• …possibly many (classification!) 

O !α

C,D,O, T ,A, . . .



we all know them: given

•    

•    

•    

•    

• …involve finding extreme X such that …

• subset-minimal or 
• maximally/minimally strong 

• …possibly many such Xs

Non-Standard Reasoning Problems

C,D,O, T ,A, . . .

Justsp↵,Oq, PinPointp↵,Oq, . . .
matchpC,P,Oq, unifypP1, P2,Oq, . . .
x-modp⌃,Oq, . . .

mscpa,Oq, lcspC,D,Oq, . . .



we all know them: given

•    

•    

•    

•    

• …involve finding extreme X such that …

• subset-minimal or 
• maximally/minimally strong 

• …possibly many such Xs

Non-Standard Reasoning Problems

C,D,O, T ,A, . . .

Justsp↵,Oq, PinPointp↵,Oq, . . .
matchpC,P,Oq, unifypP1, P2,Oq, . . .
x-modp⌃,Oq, . . .

mscpa,Oq, lcspC,D,Oq, . . .

Are 

• (conservative) rewritability

• (query) inseparability 

also standard reasoning problems? 



(Non-)Standard Reasoning: we know how to  
understand problems: 
• decidability & computational complexity

– worst case
– data
– parametrised
– …

understand solutions: 
• soundness, completeness, termination
• relations between them
• complexity

– see above
• practicability

– worst case complexity ≠ best case complexity
– amenable to optimisation
– empirical evaluation
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Fig. 7: Subsumption tests carried out in relation to a naive N2 upper bound and
an N log(N) upper bound, ordered by N , the number of names in eO (y: log scale).

6.1.6 Discussion

A first answer to Question 1 is that (tableau) subsumption testing does not con-
tribute at all to classification time for a substantial number of ontologies. We have
established a empirical lower bound for BioPortal ontologies that do not involve
subsumption testing at 46%. This lower bound is even slightly naive because (1)
there are most likely a number of ontologies that do not involve tests among the
unsuccessfully classified ones and (2) only 33% of all ontology-reasoner pairs in-
volved tests. The currently secured lower bound for ontologies actually requiring
subsumption testing lies at 14% (i.e. the 47 out of 330 ontologies for which all
four reasoners triggered a test). Note that, while this might seem like a very low
number, these might be the 50 or so ontologies in the world that are hard and
matter, and thus worth optimising for. As a side note, the low numbers of tests for
HermiT and Pellet can perhaps be explained by their internal alternative deter-
ministic engines (for example internal EL-reasoners), see Section 5.1.

It is quite interesting that only 10 out of those 146 ontologies that all rea-
soners processed caused at least one reasoner to fire a test—all of which are pure
OWL 2 EL. Ontologies of the OWL 2 RL or OWL 2 QL family, or less expressive
ontologies, did not cause any reasoner to actually fire a test. This suggests that
for OWL 2 RL and OWL 2 QL ontologies at the very least, the application of
modular techniques must be strictly motivated by a di↵erent argument than test
avoidance or test easyfication. Another potentially interesting observation is that
ontologies involving hard tests generally seem to contain rich role-level modelling,
most prominently inverses and role hierarchies.

Subsumption test hardness rarely has a strong impact on classification perfor-
mance. According to our threshold of “strong impact” at 40% of the overall classi-
fication time, FaCT++ encountered impactful ontologies 7.8% of the time, JFact
9.6% of the time, Pellet 4.2% of the time and HermiT only in 3 out of its 284 suc-

An interesting side note 
from our empirical evaluation:  
how many subsumption does classification involve?    



Not always that straightforward
• Which problem/solution to consider when? 

• e.g.,  
• minimal/top/bottom/semantic/…

• depends on size, signature, application, …

• but we know properties of/relations between solutions

• smallest

• self-contained
• unique

• depleting

• …

• How to measure practicability?

• benchmarks, ORE,..

x-modp⌃,Oq, . . .



Not always that straightforward
• Which problem/solution to consider when? 

• e.g.,  
• minimal/top/bottom/semantic/…

• depends on size, signature, application, …

• but we know properties of/relations between solutions

• smallest

• self-contained
• unique

• depleting
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• How to measure practicability?

• benchmarks, ORE,..
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Extension/variants of DLs

• probabilistic

• non-monotonic 

• rules

• …



Subjective Ontology-Based Problems



are problems that are based on
•                                           plus
• additional parameter(s) 

Subjective Ontology-Based Problems

C, D, O, T , A, |=, . . .
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Subjective Ontology-Based Problems

C, D, O, T , A, |=, . . .

SROIQ : ComSubs(C, D, { C v 8R.(A u C),
D v 8R.(A uD)})

• because objective solution is 
• not feasible/computable 
• or makes little sense
• e.g. in
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are problems that are based on
•                                           plus
• additional parameter(s) 

Subjective Ontology-Based Problems

C, D, O, T , A, |=, . . .

“ t @R.A,
@R.@R.A,
@R.@R.@R.A,
. . .u

• or we want to capture quality criteria
• interestingness
• readability
• relevance …

SROIQ : ComSubs(C, D, { C v 8R.(A u C),
D v 8R.(A uD)})

• because objective solution is 
• not feasible/computable 
• or makes little sense
• e.g. in



A subjective OB problem:
Mining TBox Axioms from KBs

or 
Finding Interesting Correlations



‣ learn (implicit) correlations in our data

‣ get interesting insights into domain 

Mining TBox axioms from KBs 

TBox

ABox

Learner
axiomaxiomaxiomaxiomaxiom

Do not confuse with 
(exact) learning of TBoxes (via probing queries) 



Mining TBox axioms from KBs 

• Correlations in KB = classical machine learning

‣ automatic generation of knowledge from data 
– taking background knowledge in KB into account
– unbiased: let the data speak!
– unsupervised (no positive/negative examples)
– Semantic Data Mining

TBox

ABox

Learner
axiomaxiomaxiomaxiomaxiom

Hypotheses
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Mining TBox axioms from KBs 

• Which kind of hypotheses to capture  
correlations in KB? 
1. expressive: GCIs, role inclusions 
2. readable
3. logically sound
4. statistically sound

axiomaxiomaxiomaxiomaxiom

Hypotheses



2. Readable Hypotheses

• A hypothesis is 
– a small set of short axioms 

• fewer than           axioms
• with concepts shorter than 

– in a suitable DL: 
– free of redundancy 

• no superfluous parts 
✓preferred laconic justifications

n
max

`
max

ALCHI . . .SROIQ

axiomaxiomaxiomaxiomaxiom

Hypotheses



3. Logically Sound Hypotheses

• A hypothesis H should be
✓ informative: 

✓we want to mine new axioms

✓ consistent: 
✓ non-redundant among all hypotheses: 

• there is no  

8↵ 2 H : O 6|= ↵

O [H 6|= > v ?

axiomaxiomaxiomaxiomaxiom

Hypotheses

H 0, H 2 H : H 6= H 0 and H 0 ⌘ H



3. Logically Sound Hypotheses

• A hypothesis H should be
✓ informative: 

✓we want to mine new axioms

✓ consistent: 
✓ non-redundant among all hypotheses: 

• there is no  

• Different hypotheses can be compared wrt. their
✓ logical strength: 
? maximally strong?

• no: overfitting! 

? minimally strong? 
• no: under-fitting

✓ reconciliatory power
• brings together terms so 

far only loosely related

8↵ 2 H : O 6|= ↵

O [H 6|= > v ?

axiomaxiomaxiomaxiomaxiom

Hypotheses

H 0, H 2 H : H 6= H 0 and H 0 ⌘ H



• we need to assess data support of hypothesis

• introduce metrics that capture quality of an axiom
– learn from association rule mining (ARM):

• count individuals that support a GCI
– count instances, neg instances, non-instances

• using standard DL semantics, OWA, TBox, entailments,….
• no ‘artificial closure’ 

– make sure you treat a GCI as an axiom and not as a rule
• contrapositive! 

– coverage, support, …, lift

4. Statistically Sound Hypotheses



Some useful notation:

•   
•   

• relativized: 

• projection tables:  

4. Statistically Sound Hypotheses

C1 C2 C3 C4 …
Ind1 X X X ? …
Ind2 0 X X 0 …
Ind3 ? ? X ? …
Ind4 ? 0 ? ? …
… … … … … …

Inst(C,O) := {a | O |= C(a)}
UnKnpC,Oq :“ InstpJ,OqzpInstpC,Oq Y Instp C,Oqq

P(C,O) := # Inst(C,O)/# Inst(>,O)



some axiom measures easily adapted from ARM:
 for a GCI             define its metrics as follows: 

4. Statistically Sound Hypotheses: Axioms

basic relativized

Coverage
Support

Contradiction
Assumption …

Confidence
Lift
…

# Inst(C,O)

# Inst(C uD,O)
# Inst(C u ¬D,O)

# Inst(C,O) \ UnKn(D,O)

P(C u ¬D,O)
P(C uD,O)

P(C,O)

P(C uD,O)/P (C,O)

P(C uD,O)/P (C,O)P (D,O)

where P(X,O) = # Ind(X,O)/# Ind(>,O)

C v D



4. Statistically Sound Hypotheses: Example

A B C1 C2 …
Ind1 X X X X …
… … … … … …

Ind180 X X X X …
Ind181 X ? X ? …
… … … … … …

Ind200 X ? X ? …
Ind201 ? ? ? ? …
… … … … … …

Ind400 ? ? ? ? …

relativized

Coverage
Support

Assumption …

Confidence
Lift

P(C uD,O)

P(C,O)

P(C uD,O)/P (C,O)

P(C uD,O)/P (C,O)P (D,O)

200/400 180/400 180/400
180/400 180/400 180/400
20/400 0 0
180/200 180/180 180/180
400/200 400/200 400/180

A v B B v C1 B v C2
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4. Statistically Sound Hypotheses: Example

A B C1 C2 …
Ind1 X X X X …
… … … … … …

Ind180 X X X X …
Ind181 X ? X ? …
… … … … … …

Ind200 X ? X ? …
Ind201 ? ? ? ? …
… … … … … …
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Coverage
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Assumption …

Confidence
Lift

P(C uD,O)

P(C,O)

P(C uD,O)/P (C,O)
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0.5 0.45 0.45
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0.45 1 1
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Oooops!  

• make sure we treat GCIs as axioms and not as rules
– contrapositive!

• so: turn each GCI             into equivalent 
      read     below as ‘the resulting LHS’… 
      read     below as ‘the resulting RHS’…  

4. Statistically Sound Hypotheses: Axioms

X t ¬Y v Y t ¬XX v Y
C

main relativized
Coverage
Support

Contradiction
Assumption …

Confidence
Lift
…

# Inst(C,O)

# Inst(C uD,O)
# Inst(C u ¬D,O)

# Inst(C,O) \ UnKn(D,O)

P(C u ¬D,O)
P(C uD,O)

P(C,O)

P(C uD,O)/P (C,O)

P(C uD,O)/P (C,O)P (D,O)

D
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pJ Ñ  A \ B,Oq



 Goal: mine small sets of (short) axioms

• more readable

- close to what people write

• synergy between axioms should lead to better quality

• how to measure their qualities?

4. Stat. Sound Hypotheses: Sets of Axioms



 Goal: learn small sets of (short) axioms

• more readable

- close to what people write

• synergy between axioms should lead to better quality

• how to measure their qualities?
• …easy:

1. rewrite set into single axiom as usual
2. measure resulting axiom

4. Stat. Sound Hypotheses: Sets of Axioms



H1

Coverage 0.5 0.45 0.45 1 always!
Support 0.45 0.45 0.45 0.45 min

Assumption 0.05 0 0 0.55 ?
Confidence 0.45 1 1 0.45 support!

Lift 2 2 2.22 1 always!

A v B B v C1 B v C2

H1
A B C1 C2 …

Ind1 X X X X …
… … … … … …

Ind180 X X X X …
Ind181 X ? X ? …
… … … … … …

Ind200 X ? X ? …
Ind201 ? ? ? ? …
… … … … … …

Ind400 ? ? ? ? …

4. Stat. Sound Hypotheses: Sets of Axioms

= {A v B,B v C1}
⌘ {> v (¬A tB) u (¬B t C1)}
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 Goal: learn small sets of (short) axioms

• more readable

- close to what people write

• synergy between axioms should lead to better quality

• how to measure their qualities?
• sum/average quality of their axioms! 

4. Stat. Sound Hypotheses: Sets of Axioms
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Lift 2 2 2.22 ? ?

A v B B v C1 B v C2
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 Goal: learn small sets of (short) axioms

• more readable

- close to what people write

• synergy between axioms should lead to better quality

• how to measure their qualities?
• observe that a good hypothesis 

• allows us to shrink our ABox since it

• captures recurring patterns

• use this shrinkage factor to measure a hypothesis’ 

• fitness       -  support by data
• braveness -  number of assumptions

4. Stat. Sound Hypotheses: Sets of Axioms
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phew…



Remember: 

TBox 

ABox

Learner
axiomaxiomaxiomaxiomaxiom

Hypotheses

we wanted to mine axioms! 



H ⌘ H 0 ) fitn(O, H,C,R) = fitn(O, H 0,C,R)

• (Sets of) axioms as Hypotheses 

• Loads of measures to capture 
1.  axiom hypothesis’ coverage, support, assumption, lift, …
2.  set of axioms hypothesis fitness, braveness

• with a focus of a concept/role spaces    ,

• What are their properties? 
– semantically faithful:  
 
 
 
 …

• Can we compute these measure?
– easy for (1), tricky for (2):

So, what have we got? 

C R
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So, what have we got? (2)

• If we can compute measure, how feasible is this? 

• If “feasible”, 
– do these measures correlate? 
– how independent are they?

• For which DLs & inputs can we create & evaluate hypotheses?

• Which measures indicate interesting hypothesis?

• What is the shape for interesting hypothesis? 
– are longer/bigger hypotheses better?

• What do we do with them? 
– how do we guide users through these?
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Ontology CleanerO

Hypothesis ConstructorL, ⌃

Hypothesis EvaluatorQ

Hypothesis Sorter rf(H)

H

qf(H, q)

DL-Miner

Figure 4.1: Architecture of DL-Miner

• Hypothesis Sorter, given the quality function qf(·),3 orders hypotheses
H according to the binary relation �.4 The result is the ranking function
rf(H) that returns the quality rank of a hypothesis H 2 H.

The output of DL-Miner is a set H of hypotheses, quality function qf(·), and
ranking function rf(·). Domain experts and ontology engineers are supposed to
navigate through the hypotheses using the quality and ranking functions. Thus,
all hypotheses can be methodically examined. Clearly, it is possible to select only
best hypotheses if necessary. As the reader will find in the following, hypotheses
of DL-Miner can, in fact, be used for various purposes and in different scenarios.

In the following, we clarify the parameters and unfold the functionality of each
block. Hypothesis Evaluator is covered in Chapter 5, where we define quality
measures that can be used in Q, and Chapter 6, where we develop techniques
to compute those measures. Hypothesis Constructor is explained in Chapter 7
where we show how to construct suitable concepts C (roles R) given a language
bias L and generate hypotheses H from C (R). Ontology Cleaner and Hypothesis
Sorter are both covered in Chapter 8 where we also integrate all techniques in
DL-Miner. Finally, we empirically evaluate DL-Miner in Chapter 9.

3The symbol “ ·” stands for the arguments of the function if they are clear or irrelevant.
4When O and Q are clear from the context, we denote the binary relation �O,Q by �.

TBox 

ABox

axiom( m1,m2,m3axiom( m1,m2,m3axiom( m1,m2,m3axiom( m1,m2,m3axiom(s) m1,m2,m3,…

parameters
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Easy: 

• construct all concepts C1, C2, …
– finitely many thanks to language bias 

• check for each                whether it’s logically ok: 
–   
–   

if yes, add it to
•  remove redundant hypotheses from H

DL Miner: Hypothesis Constructor

L
Ci v Cj

O [ {Ci v Cj} 6|= > v ?
O 6|= Ci v Cj

H
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Even for EL,  
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Use a refinement operator to build Ci informed by ABox
–   used in concept learning, conceptual blending

• Given a logic   , define a refinement operator as 
– a function                                        such that,  

for each 

• A refinement operator is 

– proper if, for all 

– complete if, for all 

– suitable if, for all  

DL Miner: Hypothesis Constructor

L
⇢ : Conc(L) 7! P(Conc(L))

C 2 L, C 0 2 ⇢(C) : C 0 v C

C 2 L, C 0 2 ⇢(C) : C 0 6⌘ C

C P L there is n,C 1 P ⇢npJq : C 1 ” C and
`pC 1q § `pCq

C,C 1 P L : if C 1 à C
then there is some n,C2 ” C
with C 1 P ⇢npC2q
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• Given a logic   , define a refinement operator as 
– a function                                        such that,  

for each 

• A refinement operator is 

– proper if, for all 

– complete if, for all 

– suitable if, for all  

DL Miner: Hypothesis Constructor

L
⇢ : Conc(L) 7! P(Conc(L))

C 2 L, C 0 2 ⇢(C) : C 0 v C

C 2 L, C 0 2 ⇢(C) : C 0 6⌘ C

C P L there is n,C 1 P ⇢npJq : C 1 ” C and
`pC 1q § `pCq

Great: there are known refinement 

operators (proper,  complete, suitable,…) 

for ALC [LehmHitzler2010]

C,C 1 P L : if C 1 à C
then there is some n,C2 ” C
with C 1 P ⇢npC2q
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Algorithm 8 DL-Apriori (O,⌃,DL, `max, pmin)
1: inputs
2: O := T [A: an ontology
3: ⌃: a finite set of terms such that > 2 ⌃
4: DL: a DL for concepts
5: `max: a maximal length of a concept such that 1  `max <1
6: pmin: a minimal concept support such that 0 < pmin  |in(O)|
7: outputs
8: C: the set of suitable concepts
9: do

10: C  ; % initialise the final set of suitable concepts
11: D  {>} % initialise the set of concepts yet to be specialised
12: ⇢  getOperator(DL) % initialise a suitable operator ⇢ for DL
13: while D 6= ; do
14: C  pick(D) % pick a concept C to be specialised
15: D  D\{C} % remove C from the concepts to be specialised
16: C  C [ {C} % add C to the final set
17: ⇢C  specialise(C, ⇢,⌃, `max) % specialise C using ⇢
18: DC  {D 2 urc(⇢C) | @D0 2 C [ D : D0 ⌘ D} % discard variations
19: D  D [ {D 2 DC | p(D,O) � pmin} % add suitable specialisations
20: end while
21: return C

the respective specialised concept. The construction begins from the root node >.
It repeatedly specialises every leaf node which satisfies the restrictions and is not
a syntactic variation. Once there is no such leaf node, the algorithm terminates.
All nodes, except leaf nodes, of the constructed tree constitute the final set of
suitable concepts. Example 7.4 illustrates the bottom-up concept construction
using DL-Apriori.

Example 7.4. Consider the ontology O used in Example 3.1.

O := {Man v ¬Woman, hasParent v hasChild�,

Man(Arthur), Man(Chris), Man(James),

Woman(Penelope), Woman(V ictoria),

Woman(Charlotte), Woman(Margaret),

hasParent(Charlotte, James), hasParent(Charlotte, V ictoria),

hasParent(V ictoria, Chris), hasParent(V ictoria, Penelope)

hasParent(Arthur, Penelope), hasParent(Arthur, Chris)}.
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max

Don’t even construct  
most of the nk   concepts Ci
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The output of DL-Miner is a set H of hypotheses, quality function qf(·), and
ranking function rf(·). Domain experts and ontology engineers are supposed to
navigate through the hypotheses using the quality and ranking functions. Thus,
all hypotheses can be methodically examined. Clearly, it is possible to select only
best hypotheses if necessary. As the reader will find in the following, hypotheses
of DL-Miner can, in fact, be used for various purposes and in different scenarios.

In the following, we clarify the parameters and unfold the functionality of each
block. Hypothesis Evaluator is covered in Chapter 5, where we define quality
measures that can be used in Q, and Chapter 6, where we develop techniques
to compute those measures. Hypothesis Constructor is explained in Chapter 7
where we show how to construct suitable concepts C (roles R) given a language
bias L and generate hypotheses H from C (R). Ontology Cleaner and Hypothesis
Sorter are both covered in Chapter 8 where we also integrate all techniques in
DL-Miner. Finally, we empirically evaluate DL-Miner in Chapter 9.

3The symbol “ ·” stands for the arguments of the function if they are clear or irrelevant.
4When O and Q are clear from the context, we denote the binary relation �O,Q by �.
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Figure 8.3: Architecture of DL-Miner with subroutines

Another property of Algorithm 11 is that it always terminates. This ensures
that the algorithm returns an output (even though it may take long) for any legal
input parameters, i.e. satisfying the respective constraints of Algorithm 11. The
properties of correctness, completeness, and termination of Algorithm 11 follow
from the same properties of its subroutines, see Theorem 8.1.

Theorem 8.1 (Correctness, completeness, termination). Let O, ⌃, L := (DL,
`max, pmin, GR, n), Q be legal parameters of DL-Miner. Let (i) – (iii) be the
following conditions for a hypothesis H:

(i) H conforms to L;

(ii) H is in NNF;

(iii) eH ✓ ⌃.

Then, all following properties hold for DL-Miner:

• it terminates;

• it is correct: it returns a set H of hypotheses such that H 2 H implies H

satisfies (i) – (iii);
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Another property of Algorithm 11 is that it always terminates. This ensures
that the algorithm returns an output (even though it may take long) for any legal
input parameters, i.e. satisfying the respective constraints of Algorithm 11. The
properties of correctness, completeness, and termination of Algorithm 11 follow
from the same properties of its subroutines, see Theorem 8.1.

Theorem 8.1 (Correctness, completeness, termination). Let O, ⌃, L := (DL,
`max, pmin, GR, n), Q be legal parameters of DL-Miner. Let (i) – (iii) be the
following conditions for a hypothesis H:

(i) H conforms to L;

(ii) H is in NNF;

(iii) eH ✓ ⌃.

Then, all following properties hold for DL-Miner:

• it terminates;

• it is correct: it returns a set H of hypotheses such that H 2 H implies H

satisfies (i) – (iii);

Complete (for the parameters provided).



DL Miner: Hypothesis Evaluator

• Relatively straightforward for axiom measures
– hard test case for instance retrieval 

• Hard for set-of-axiom measures (fitness & braveness)
– due to

– DL Miner implements an approximation that 

• identifies redundant assertions in ABox 
 

• does consider 1-step interactions between individuals 

• ignores ‘longer’  interactions

• underestimates fitness, overestimates braveness     

– great test case for incremental reasoning: Pellet! 

dLen(A,O) = min{`(A0) | A0 [O ⌘ A [O}

dLen⇤(A,O) = `(A)� `(Redundt(A,O))



DL Miner: Hypothesis Sorter

• Last step in DL Miner’s workflow

• Easy: 
– throw away all hypotheses that are dominated by another one
– i.e., compute the Pareto front wrt the measures provided 



DL Miner: Example 
176 CHAPTER 8. DL-MINER: A HYPOTHESIS MINING ALGORITHM

Given these input parameters, DL-Miner mines 536 hypotheses whose con-
fidence exceeds 0.9. The following are some examples of them:

Woman u 9hasChild.> v Mother (H1)

Man u 9hasChild.> v Father (H2)

9hasChild.> v 9marriedTo.> (H3)

9marriedTo.> v 9hasChild.> (H4)

9marriedTo.Woman v Man (H5)

9marriedTo.Mother v Father (H6)

Father v 9marriedTo.(9hasChild.>) (H7)

Mother v 9marriedTo.(9hasChild.>) (H8)

9hasChild.> v Mother t Father (H9)

9hasChild.> v Man tWoman (H10)

9hasChild.> v Father tWoman (H11)

The hypotheses H1 and H2 provide descriptions for Mother and Father.
The hypotheses H3 and H4 indicate interesting correlations in the data: being
married implies having children and vice versa. The hypotheses H1, H2, H3, H4

are already discussed in Chapter 3, as they can be obtained by other approaches.
In addition to these hypotheses, DL-Miner acquires the hypotheses H5, H6,
H7, H8, H9, H10, H11 (and many others) due to the flexible language bias. The
hypothesis H5 provides a description for Man, while the hypotheses H6 – H9

encode additional knowledge about Father and Mother.

The hypotheses H10 and H11 show some issues that can arise while mining hy-
potheses using DL-Miner. More specifically, the hypothesis H10 seems carrying
no useful knowledge in comparison to H9. The reason is that the input onto-
logy Kinship (its TBox) does not capture that everyone is either a man or woman,
i.e. Kinship 6|= > v Man tWoman. If the ontology captured this information, the
hypothesis H9 would be uninformative and would not be mined (as DL-Miner
returns only informative hypotheses by default). On the other hand, the hypo-
thesis H11 seems to be superfluous given H9 since Kinship |= Mother v Woman.
Thus, acquired hypotheses can appear to be superfluous due to a poor input
TBox and due to other hypotheses considered in the context of the given TBox.

Given a Kinship Ontology,1 it mines 536 Hs with  
confidence above 0.9, e.g.

TBox 

ABox

DL Miner

1. adapted from  
UCI Machine Learning Repository 
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TBox 

ABox

DL MinerGreat - it works really well  

on a toy ontology! 

1. adapted from  
UCI Machine Learning Repository 



Still: many open questions

• If we can compute measure, how feasible is this? 

• If  “feasible”, 
– do these measures correlate? 
– how independent are they?

• For which DLs & inputs can we create & evaluate hypotheses?

• Which measures indicate interesting hypothesis?

• What is the shape of interesting hypothesis? 
– are longer/bigger hypotheses better?

• What do we do with them? 
– how do we guide users through these?



Design, run, analyse experiments
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• A corpus - or two:
1.  handpicked corpus from related work:              16 ontologies
2.  principled one: 

• All BioPortal ontologies with >= 100 individuals and  
                                           >= 100 RAs           21  ontologies 



Design, run, analyse experiments

• A corpus - or two:
1.  handpicked corpus from related work:              16 ontologies
2.  principled one: 

• All BioPortal ontologies with >= 100 individuals and  
                                           >= 100 RAs           21  ontologies 

• Settings for hypothesis parameters: 
–     is SHI

– RIAs with inverse, composition

– minsupport = 10
– max concept length in GCIs = 4
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• All BioPortal ontologies with >= 100 individuals and  
                                           >= 100 RAs           21  ontologies 

• Settings for hypothesis parameters: 
–     is SHI

– RIAs with inverse, composition

– minsupport = 10
– max concept length in GCIs = 4

• generate & evaluate up to 500 hypotheses per ontology

L



Design, run, analyse experiments

• What kind of axioms do people write? 
– re. readability of hypotheses:
– what kind of axioms should we roughly aim for? 

9.1. EXPERIMENTAL DATA 185

they constitute ⇡ 25% of the corpus, it is considerably biased towards easy on-
tologies. To make the analysis more rigorous, we exclude all ontologies which do
not use complex concepts from the results. Thus, 248 ontologies are retained.
We gather all axioms of those ontologies, which results in 9,133,219 axioms in
total, and extract their metrics. Table 9.1 shows the proportion of axioms using
a particular DL constructor.

DL constructor C 9R.C C uD 8R.C C tD ¬C
Axioms, % 99.73 67.82 1.15 0.46 0.09 0.01

Table 9.1: Use of DL constructors by axioms in BioPortal (ontologies without
complex concepts are excluded)

According to Table 9.1, 99.73% of axioms are concept inclusions. Hence, all
role inclusions constitute just 0.27% of axioms. GCIs constitute around 69% of
axioms. Interestingly, almost all of them, 98.2%, use existential restrictions that
occur in 67.82% of axioms overall. This is much more than all other construct-
ors (in descending order): conjunctions occur in 1.15%, universal restrictions in
0.46%, disjunctions in 0.09%, negations in 0.01% of all axioms. In addition,
disjointness axioms, which constitute 1.22% of all axioms, augment the fraction
of conjunctions, if interpreted as C u D v ?, or the fraction of negations, if
interpreted as C v ¬D.2

While Table 9.1 shows how frequently common DL constructors are used
in the axioms, it does not show how complex the axioms are. To investigate
this, we measure the length and depth of the axioms using Definition 5.1 and
Definition 5.3, respectively. In particular, we compare the proportions of short
and long axioms, the proportions of shallow and deep axioms, see Table 9.2.

mean mode 5% 25% 50% 75% 95% 99% 99.9%
length 2.63 3 2 2 3 3 3 3 5
depth 0.69 1 0 0 1 1 1 1 3

Table 9.2: Length and role depth of axioms in BioPortal (ontologies without
complex concepts are excluded)

In Table 9.2 mean and mode are the standard statistical notions which are
calculated across all gathered axioms. For length, the mean is 2.63 and mode is

2In the OWL API disjointness axioms are handled not as concept inclusions, but as a separate
type of axioms.

Length & role depth of axioms in Bioportal - Taxonomies 

9.1. EXPERIMENTAL DATA 185

they constitute ⇡ 25% of the corpus, it is considerably biased towards easy on-
tologies. To make the analysis more rigorous, we exclude all ontologies which do
not use complex concepts from the results. Thus, 248 ontologies are retained.
We gather all axioms of those ontologies, which results in 9,133,219 axioms in
total, and extract their metrics. Table 9.1 shows the proportion of axioms using
a particular DL constructor.

DL constructor C 9R.C C uD 8R.C C tD ¬C
Axioms, % 99.73 67.82 1.15 0.46 0.09 0.01

Table 9.1: Use of DL constructors by axioms in BioPortal (ontologies without
complex concepts are excluded)

According to Table 9.1, 99.73% of axioms are concept inclusions. Hence, all
role inclusions constitute just 0.27% of axioms. GCIs constitute around 69% of
axioms. Interestingly, almost all of them, 98.2%, use existential restrictions that
occur in 67.82% of axioms overall. This is much more than all other construct-
ors (in descending order): conjunctions occur in 1.15%, universal restrictions in
0.46%, disjunctions in 0.09%, negations in 0.01% of all axioms. In addition,
disjointness axioms, which constitute 1.22% of all axioms, augment the fraction
of conjunctions, if interpreted as C u D v ?, or the fraction of negations, if
interpreted as C v ¬D.2

While Table 9.1 shows how frequently common DL constructors are used
in the axioms, it does not show how complex the axioms are. To investigate
this, we measure the length and depth of the axioms using Definition 5.1 and
Definition 5.3, respectively. In particular, we compare the proportions of short
and long axioms, the proportions of shallow and deep axioms, see Table 9.2.

mean mode 5% 25% 50% 75% 95% 99% 99.9%
length 2.63 3 2 2 3 3 3 3 5
depth 0.69 1 0 0 1 1 1 1 3

Table 9.2: Length and role depth of axioms in BioPortal (ontologies without
complex concepts are excluded)

In Table 9.2 mean and mode are the standard statistical notions which are
calculated across all gathered axioms. For length, the mean is 2.63 and mode is

2In the OWL API disjointness axioms are handled not as concept inclusions, but as a separate
type of axioms.

Use of DL constructors in Bioportal - Taxonomies 



Design, run, analyse experiments

• What kind of axioms do people write? 
– re. readability of hypotheses:
– what kind of axioms should we roughly aim for? 

9.1. EXPERIMENTAL DATA 185

they constitute ⇡ 25% of the corpus, it is considerably biased towards easy on-
tologies. To make the analysis more rigorous, we exclude all ontologies which do
not use complex concepts from the results. Thus, 248 ontologies are retained.
We gather all axioms of those ontologies, which results in 9,133,219 axioms in
total, and extract their metrics. Table 9.1 shows the proportion of axioms using
a particular DL constructor.

DL constructor C 9R.C C uD 8R.C C tD ¬C
Axioms, % 99.73 67.82 1.15 0.46 0.09 0.01

Table 9.1: Use of DL constructors by axioms in BioPortal (ontologies without
complex concepts are excluded)

According to Table 9.1, 99.73% of axioms are concept inclusions. Hence, all
role inclusions constitute just 0.27% of axioms. GCIs constitute around 69% of
axioms. Interestingly, almost all of them, 98.2%, use existential restrictions that
occur in 67.82% of axioms overall. This is much more than all other construct-
ors (in descending order): conjunctions occur in 1.15%, universal restrictions in
0.46%, disjunctions in 0.09%, negations in 0.01% of all axioms. In addition,
disjointness axioms, which constitute 1.22% of all axioms, augment the fraction
of conjunctions, if interpreted as C u D v ?, or the fraction of negations, if
interpreted as C v ¬D.2

While Table 9.1 shows how frequently common DL constructors are used
in the axioms, it does not show how complex the axioms are. To investigate
this, we measure the length and depth of the axioms using Definition 5.1 and
Definition 5.3, respectively. In particular, we compare the proportions of short
and long axioms, the proportions of shallow and deep axioms, see Table 9.2.

mean mode 5% 25% 50% 75% 95% 99% 99.9%
length 2.63 3 2 2 3 3 3 3 5
depth 0.69 1 0 0 1 1 1 1 3

Table 9.2: Length and role depth of axioms in BioPortal (ontologies without
complex concepts are excluded)

In Table 9.2 mean and mode are the standard statistical notions which are
calculated across all gathered axioms. For length, the mean is 2.63 and mode is

2In the OWL API disjointness axioms are handled not as concept inclusions, but as a separate
type of axioms.

Length & role depth of axioms in Bioportal - Taxonomies 

9.1. EXPERIMENTAL DATA 185

they constitute ⇡ 25% of the corpus, it is considerably biased towards easy on-
tologies. To make the analysis more rigorous, we exclude all ontologies which do
not use complex concepts from the results. Thus, 248 ontologies are retained.
We gather all axioms of those ontologies, which results in 9,133,219 axioms in
total, and extract their metrics. Table 9.1 shows the proportion of axioms using
a particular DL constructor.

DL constructor C 9R.C C uD 8R.C C tD ¬C
Axioms, % 99.73 67.82 1.15 0.46 0.09 0.01

Table 9.1: Use of DL constructors by axioms in BioPortal (ontologies without
complex concepts are excluded)

According to Table 9.1, 99.73% of axioms are concept inclusions. Hence, all
role inclusions constitute just 0.27% of axioms. GCIs constitute around 69% of
axioms. Interestingly, almost all of them, 98.2%, use existential restrictions that
occur in 67.82% of axioms overall. This is much more than all other construct-
ors (in descending order): conjunctions occur in 1.15%, universal restrictions in
0.46%, disjunctions in 0.09%, negations in 0.01% of all axioms. In addition,
disjointness axioms, which constitute 1.22% of all axioms, augment the fraction
of conjunctions, if interpreted as C u D v ?, or the fraction of negations, if
interpreted as C v ¬D.2

While Table 9.1 shows how frequently common DL constructors are used
in the axioms, it does not show how complex the axioms are. To investigate
this, we measure the length and depth of the axioms using Definition 5.1 and
Definition 5.3, respectively. In particular, we compare the proportions of short
and long axioms, the proportions of shallow and deep axioms, see Table 9.2.

mean mode 5% 25% 50% 75% 95% 99% 99.9%
length 2.63 3 2 2 3 3 3 3 5
depth 0.69 1 0 0 1 1 1 1 3

Table 9.2: Length and role depth of axioms in BioPortal (ontologies without
complex concepts are excluded)

In Table 9.2 mean and mode are the standard statistical notions which are
calculated across all gathered axioms. For length, the mean is 2.63 and mode is

2In the OWL API disjointness axioms are handled not as concept inclusions, but as a separate
type of axioms.

Use of DL constructors in Bioportal - Taxonomies 

Restricting length of  

concepts in axioms to 4 (axioms to 8) 

is fine!



How do the measures correlate? 

Design, run, analyse experiments
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(b) Principled corpus

Figure 9.1: Mutual correlations of quality measures for handpicked (a) and prin-
cipled (b) corpus: positive correlations are in blue, negative correlations are in
red, crosses mark statistically insignificant correlations (significance level 0.05)
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How do the measures correlate? 

Design, run, analyse experiments
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Figure 9.2: Relative performance of hypothesis quality measures (a) and sub-
routines (b) of DL-Miner for principled and handpicked corpus

According to Figure 9.2a, consistency is the most expensive measure which
is rather unexpected. Please recall that consistency tests whether the union
of a hypothesis and the ontology is consistent. Hence, it can be costly if the
ontology is large and/or expressive. Indeed, consistency is considerably more
costly for the principled corpus than for the handpicked one which is likely to be
a consequence of higher expressivity of the former. The higher cost of consistency
for the principled corpus decreases the relative contributions of other measures
for this corpus, i.e. fitness, logical strength, etc.

The relatively high computational cost of logical strength is explained by the
fact that its performance is measured by comparing a given hypothesis to all
others (in the worst case). Hence, it grows with the number of hypotheses to be
evaluated. Therefore, it should be compared with other measures cautiously.

As Figure 9.2a shows, considering negation in the statistical axiom measures
is relatively expensive. Therefore, given the strong correlation between the basic
and main measures, see Figure 9.1, it is sensible to replace the main measures
with their basic counterparts in certain cases, particularly if the ontology does not
contain negative information in the ABox. On the other hand, if other expensive
measures need to be computed, the relative cost of computing all axiom measures
is not so big.

The abbreviations in Figure 9.2b stand for the respective running times as
follows: OC – ontology parsing and classification; HC – hypotheses construction
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of a hypothesis and the ontology is consistent. Hence, it can be costly if the
ontology is large and/or expressive. Indeed, consistency is considerably more
costly for the principled corpus than for the handpicked one which is likely to be
a consequence of higher expressivity of the former. The higher cost of consistency
for the principled corpus decreases the relative contributions of other measures
for this corpus, i.e. fitness, logical strength, etc.

The relatively high computational cost of logical strength is explained by the
fact that its performance is measured by comparing a given hypothesis to all
others (in the worst case). Hence, it grows with the number of hypotheses to be
evaluated. Therefore, it should be compared with other measures cautiously.

As Figure 9.2a shows, considering negation in the statistical axiom measures
is relatively expensive. Therefore, given the strong correlation between the basic
and main measures, see Figure 9.1, it is sensible to replace the main measures
with their basic counterparts in certain cases, particularly if the ontology does not
contain negative information in the ABox. On the other hand, if other expensive
measures need to be computed, the relative cost of computing all axiom measures
is not so big.

The abbreviations in Figure 9.2b stand for the respective running times as
follows: OC – ontology parsing and classification; HC – hypotheses construction

How feasible is hypothesis mining? 

Works fine for classifiable ontologies. 
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According to Figure 9.2a, consistency is the most expensive measure which
is rather unexpected. Please recall that consistency tests whether the union
of a hypothesis and the ontology is consistent. Hence, it can be costly if the
ontology is large and/or expressive. Indeed, consistency is considerably more
costly for the principled corpus than for the handpicked one which is likely to be
a consequence of higher expressivity of the former. The higher cost of consistency
for the principled corpus decreases the relative contributions of other measures
for this corpus, i.e. fitness, logical strength, etc.

The relatively high computational cost of logical strength is explained by the
fact that its performance is measured by comparing a given hypothesis to all
others (in the worst case). Hence, it grows with the number of hypotheses to be
evaluated. Therefore, it should be compared with other measures cautiously.

As Figure 9.2a shows, considering negation in the statistical axiom measures
is relatively expensive. Therefore, given the strong correlation between the basic
and main measures, see Figure 9.1, it is sensible to replace the main measures
with their basic counterparts in certain cases, particularly if the ontology does not
contain negative information in the ABox. On the other hand, if other expensive
measures need to be computed, the relative cost of computing all axiom measures
is not so big.

The abbreviations in Figure 9.2b stand for the respective running times as
follows: OC – ontology parsing and classification; HC – hypotheses construction

How costly are the different measures?
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According to Figure 9.2a, consistency is the most expensive measure which
is rather unexpected. Please recall that consistency tests whether the union
of a hypothesis and the ontology is consistent. Hence, it can be costly if the
ontology is large and/or expressive. Indeed, consistency is considerably more
costly for the principled corpus than for the handpicked one which is likely to be
a consequence of higher expressivity of the former. The higher cost of consistency
for the principled corpus decreases the relative contributions of other measures
for this corpus, i.e. fitness, logical strength, etc.

The relatively high computational cost of logical strength is explained by the
fact that its performance is measured by comparing a given hypothesis to all
others (in the worst case). Hence, it grows with the number of hypotheses to be
evaluated. Therefore, it should be compared with other measures cautiously.

As Figure 9.2a shows, considering negation in the statistical axiom measures
is relatively expensive. Therefore, given the strong correlation between the basic
and main measures, see Figure 9.1, it is sensible to replace the main measures
with their basic counterparts in certain cases, particularly if the ontology does not
contain negative information in the ABox. On the other hand, if other expensive
measures need to be computed, the relative cost of computing all axiom measures
is not so big.

The abbreviations in Figure 9.2b stand for the respective running times as
follows: OC – ontology parsing and classification; HC – hypotheses construction

How costly are the different measures?

Consistency is the most costly measure



But - what about the semantic mining? 

TBox 

ABox

DL Miner

Hypotheses

axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,



So, what have we got? (new version)

✓ Loads of measures to capture aspects of hypotheses 
– mostly independent
– some superfluous on positive data (unsurprisingly)

✓Hypothesis generation & evaluation is feasible 
– provided our ontology is classifiable 
– provided our search space isn’t too massive

• …focus! 

• Which measures indicate interesting hypothesis?
• What is the shape for interesting hypothesis? 

– are longer/bigger hypotheses better?

• What do we do with them? 
– how do we guide users through these?



Design, run, analyse survey

Can we learn hypotheses are  
• usefull/interesting? 

…and how does this correlate with measures?

TBox 
SROIQ 
sig = 522  

ABox 
169K CAs 
405K RAs

DL Miner

S1: 60 Hypos unfocused 
S2: 60 Hypos focused

axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,

SHI 
|Ci| <= 4 
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Valid? 
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Design, run, analyse survey

9.4. CASE STUDIES 221

Validity Interestingness
0 1 2 3 4

Wrong 6 11 30 - -
Survey 1 Don’t know - 1 - 2 4

(unfocused) Correct - - - 6 -
Wrong 1 - 1 - 5

Survey 2 Don’t know - - - - 49
(focused) Correct - - - - 4

Table 9.10: Assessment of hypotheses acquired by DL-Miner for ntds: distribu-
tion of answers in Survey 1 and Survey 2 (“-” denotes zero)

As Table 9.10 shows, Survey 1 contains 47 hypotheses deemed to be wrong,
7 hypotheses unknown, and 6 hypotheses correct. The majority of wrong hypo-
theses are of average interestingness (marked by 2) and the rest of wrong hypo-
theses are less interesting (marked by 0 or 1). As the domain expert points out
in her feedback, wrong hypotheses which are marked by the interestingness of 2
indicate data bias, i.e. those are incorrect but strongly supported by the data.
According to the results, unknown and correct hypotheses appear to be much
more interesting than wrong ones: all of them, except one, have high values of
interestingness (marked by 3 and 4). Amongst those, unknown hypotheses are
marked to be the most interesting and, according to the expert’s response, re-
quire further analysis. Overall, 12 out of 60 hypotheses (20%) are found to be
interesting.

The results of Survey 2 are much different from the results of Survey 1, see
Table 9.10. While most hypotheses in Survey 1 are deemed to be wrong, most
hypotheses (49 out of 60) in Survey 2 are marked as unknown. Another noticeable
difference is that all hypotheses, except two, in Survey 2 are marked by the highest
value of interestingness, i.e. 58 out of 60 hypotheses (⇡ 96.7%), including wrong
ones, are very interesting in expert’s opinion. Moreover, the expert informed
us in her response that one of the wrong hypotheses, besides indicating data
bias, revealed an error in the ontology. Thus, if focus terms are specified by the
domain expert, the resulting focused hypotheses appear to be significantly more
interesting than unfocused ones. This is not surprising because, by providing
focus terms, the expert expresses her interest in exploring hypotheses about those
terms. In addition, the expert is likely to inquire into the domain area which she
knows less about. As a result, the majority of focused hypotheses are deemed to

How good/valid are the mined hypotheses? 
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in her feedback, wrong hypotheses which are marked by the interestingness of 2
indicate data bias, i.e. those are incorrect but strongly supported by the data.
According to the results, unknown and correct hypotheses appear to be much
more interesting than wrong ones: all of them, except one, have high values of
interestingness (marked by 3 and 4). Amongst those, unknown hypotheses are
marked to be the most interesting and, according to the expert’s response, re-
quire further analysis. Overall, 12 out of 60 hypotheses (20%) are found to be
interesting.

The results of Survey 2 are much different from the results of Survey 1, see
Table 9.10. While most hypotheses in Survey 1 are deemed to be wrong, most
hypotheses (49 out of 60) in Survey 2 are marked as unknown. Another noticeable
difference is that all hypotheses, except two, in Survey 2 are marked by the highest
value of interestingness, i.e. 58 out of 60 hypotheses (⇡ 96.7%), including wrong
ones, are very interesting in expert’s opinion. Moreover, the expert informed
us in her response that one of the wrong hypotheses, besides indicating data
bias, revealed an error in the ontology. Thus, if focus terms are specified by the
domain expert, the resulting focused hypotheses appear to be significantly more
interesting than unfocused ones. This is not surprising because, by providing
focus terms, the expert expresses her interest in exploring hypotheses about those
terms. In addition, the expert is likely to inquire into the domain area which she
knows less about. As a result, the majority of focused hypotheses are deemed to

How good/valid are the mined hypotheses? 
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(a) Survey 1: Validity
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(b) Survey 1: Interestingness
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(c) Survey 2: Validity
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(d) Survey 2: Interestingness

Figure 9.8: Correlations (in descending order) between hypothesis quality meas-
ures and expert’s judgements (4 measures are not shown for Survey 2 because
their deviations equal zero and correlation coefficients cannot be calculated)

likely to be “general”, i.e. reflecting known, easily seen patterns of the data.
Those hypotheses are not as surprising as “specific” ones which, on the contrary,
are likely to reflect uncommon, hardly seen patterns of the data.

The results in Figure 9.8c are similar to the results in Figure 9.8a: the correla-
tions for validity look almost equally distributed. The main difference is that lift
turns from a non-indicator in Survey 1 to a strong positive indicator in Survey
2. One possible reason is that Survey 2 consists of “specific” hypotheses. Such
hypotheses are likely to have a higher lift than “general” hypotheses in Survey 1
(since the denominator decreases faster than the numerator, see Definition 5.16).

In comparison to Figure 9.8b for Survey 1, Figure 9.8d for Survey 2 shows
considerably stronger correlations for interestingness. This may be caused by
the much higher fraction of interesting hypotheses in Survey 2 in comparison to
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(a) Survey 1: Validity
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(b) Survey 1: Interestingness
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(c) Survey 2: Validity
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(d) Survey 2: Interestingness

Figure 9.8: Correlations (in descending order) between hypothesis quality meas-
ures and expert’s judgements (4 measures are not shown for Survey 2 because
their deviations equal zero and correlation coefficients cannot be calculated)

likely to be “general”, i.e. reflecting known, easily seen patterns of the data.
Those hypotheses are not as surprising as “specific” ones which, on the contrary,
are likely to reflect uncommon, hardly seen patterns of the data.

The results in Figure 9.8c are similar to the results in Figure 9.8a: the correla-
tions for validity look almost equally distributed. The main difference is that lift
turns from a non-indicator in Survey 1 to a strong positive indicator in Survey
2. One possible reason is that Survey 2 consists of “specific” hypotheses. Such
hypotheses are likely to have a higher lift than “general” hypotheses in Survey 1
(since the denominator decreases faster than the numerator, see Definition 5.16).

In comparison to Figure 9.8b for Survey 1, Figure 9.8d for Survey 2 shows
considerably stronger correlations for interestingness. This may be caused by
the much higher fraction of interesting hypotheses in Survey 2 in comparison to
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(a) Survey 1: Validity
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(b) Survey 1: Interestingness
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(c) Survey 2: Validity
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(d) Survey 2: Interestingness

Figure 9.8: Correlations (in descending order) between hypothesis quality meas-
ures and expert’s judgements (4 measures are not shown for Survey 2 because
their deviations equal zero and correlation coefficients cannot be calculated)

likely to be “general”, i.e. reflecting known, easily seen patterns of the data.
Those hypotheses are not as surprising as “specific” ones which, on the contrary,
are likely to reflect uncommon, hardly seen patterns of the data.

The results in Figure 9.8c are similar to the results in Figure 9.8a: the correla-
tions for validity look almost equally distributed. The main difference is that lift
turns from a non-indicator in Survey 1 to a strong positive indicator in Survey
2. One possible reason is that Survey 2 consists of “specific” hypotheses. Such
hypotheses are likely to have a higher lift than “general” hypotheses in Survey 1
(since the denominator decreases faster than the numerator, see Definition 5.16).

In comparison to Figure 9.8b for Survey 1, Figure 9.8d for Survey 2 shows
considerably stronger correlations for interestingness. This may be caused by
the much higher fraction of interesting hypotheses in Survey 2 in comparison to
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(a) Survey 1: Validity
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(b) Survey 1: Interestingness
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(c) Survey 2: Validity
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(d) Survey 2: Interestingness

Figure 9.8: Correlations (in descending order) between hypothesis quality meas-
ures and expert’s judgements (4 measures are not shown for Survey 2 because
their deviations equal zero and correlation coefficients cannot be calculated)

likely to be “general”, i.e. reflecting known, easily seen patterns of the data.
Those hypotheses are not as surprising as “specific” ones which, on the contrary,
are likely to reflect uncommon, hardly seen patterns of the data.

The results in Figure 9.8c are similar to the results in Figure 9.8a: the correla-
tions for validity look almost equally distributed. The main difference is that lift
turns from a non-indicator in Survey 1 to a strong positive indicator in Survey
2. One possible reason is that Survey 2 consists of “specific” hypotheses. Such
hypotheses are likely to have a higher lift than “general” hypotheses in Survey 1
(since the denominator decreases faster than the numerator, see Definition 5.16).

In comparison to Figure 9.8b for Survey 1, Figure 9.8d for Survey 2 shows
considerably stronger correlations for interestingness. This may be caused by
the much higher fraction of interesting hypotheses in Survey 2 in comparison to
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(a) Survey 1: Validity
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(b) Survey 1: Interestingness
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(c) Survey 2: Validity
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(d) Survey 2: Interestingness

Figure 9.8: Correlations (in descending order) between hypothesis quality meas-
ures and expert’s judgements (4 measures are not shown for Survey 2 because
their deviations equal zero and correlation coefficients cannot be calculated)

likely to be “general”, i.e. reflecting known, easily seen patterns of the data.
Those hypotheses are not as surprising as “specific” ones which, on the contrary,
are likely to reflect uncommon, hardly seen patterns of the data.

The results in Figure 9.8c are similar to the results in Figure 9.8a: the correla-
tions for validity look almost equally distributed. The main difference is that lift
turns from a non-indicator in Survey 1 to a strong positive indicator in Survey
2. One possible reason is that Survey 2 consists of “specific” hypotheses. Such
hypotheses are likely to have a higher lift than “general” hypotheses in Survey 1
(since the denominator decreases faster than the numerator, see Definition 5.16).

In comparison to Figure 9.8b for Survey 1, Figure 9.8d for Survey 2 shows
considerably stronger correlations for interestingness. This may be caused by
the much higher fraction of interesting hypotheses in Survey 2 in comparison to
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(a) Survey 1: Validity
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(b) Survey 1: Interestingness
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(c) Survey 2: Validity
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(d) Survey 2: Interestingness

Figure 9.8: Correlations (in descending order) between hypothesis quality meas-
ures and expert’s judgements (4 measures are not shown for Survey 2 because
their deviations equal zero and correlation coefficients cannot be calculated)

likely to be “general”, i.e. reflecting known, easily seen patterns of the data.
Those hypotheses are not as surprising as “specific” ones which, on the contrary,
are likely to reflect uncommon, hardly seen patterns of the data.

The results in Figure 9.8c are similar to the results in Figure 9.8a: the correla-
tions for validity look almost equally distributed. The main difference is that lift
turns from a non-indicator in Survey 1 to a strong positive indicator in Survey
2. One possible reason is that Survey 2 consists of “specific” hypotheses. Such
hypotheses are likely to have a higher lift than “general” hypotheses in Survey 1
(since the denominator decreases faster than the numerator, see Definition 5.16).

In comparison to Figure 9.8b for Survey 1, Figure 9.8d for Survey 2 shows
considerably stronger correlations for interestingness. This may be caused by
the much higher fraction of interesting hypotheses in Survey 2 in comparison to
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(a) Survey 1: Validity
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(b) Survey 1: Interestingness
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(c) Survey 2: Validity
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(d) Survey 2: Interestingness

Figure 9.8: Correlations (in descending order) between hypothesis quality meas-
ures and expert’s judgements (4 measures are not shown for Survey 2 because
their deviations equal zero and correlation coefficients cannot be calculated)

likely to be “general”, i.e. reflecting known, easily seen patterns of the data.
Those hypotheses are not as surprising as “specific” ones which, on the contrary,
are likely to reflect uncommon, hardly seen patterns of the data.

The results in Figure 9.8c are similar to the results in Figure 9.8a: the correla-
tions for validity look almost equally distributed. The main difference is that lift
turns from a non-indicator in Survey 1 to a strong positive indicator in Survey
2. One possible reason is that Survey 2 consists of “specific” hypotheses. Such
hypotheses are likely to have a higher lift than “general” hypotheses in Survey 1
(since the denominator decreases faster than the numerator, see Definition 5.16).

In comparison to Figure 9.8b for Survey 1, Figure 9.8d for Survey 2 shows
considerably stronger correlations for interestingness. This may be caused by
the much higher fraction of interesting hypotheses in Survey 2 in comparison to
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TBox completion
ontology learning from data
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Semantic Data Analysis 
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3 kinds of hypotheses - can we predict? 

TBox 

ABox

DL Miner

Hypotheses

axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,axiom(s) m1,m2,m3,

high confidence/lift/… 
low assumptions/braveness

No - they look alike
Perhaps - with different ABoxes/other sources



Summary & Outlook
• Mining rich axioms from ontologies is possible

– gives us more than we thought 
– expressive axioms are better! 

• Fine test case for incremental/ABox reasoning

• More surveys
– to better understand relevance of metrics
– but we’ve got the shape now

• Redundancy in general is tricky & costly
– stripping superfluous parts from concepts, (sets of) axioms

• We need even better refinement operators: 
– for more expressive DLs
– redundancy-free
– ontology-aware



Subjective ontology-based problems

• are great fun
– design of experiments & surveys
– but also rather complex: sooo many design choices 

• specifying & implementing good parameters is tricky
– metrics make “ontology mining” subjective
– requires understanding of logic & reasoners & …

• are plentiful/numerous
– abduction
– similarity 
– good explanations/proofs for entailments justifications
– good counter-models for non-entailments
– good repair of inconsistent/incoherent ontologies
– …



Special Thanks 
to

Slava Sazonau 
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