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Monotone Courant finite element methods for the transport
equation

In this talk we consider the transport equation with a given incompressible vector field
β and a constant α ≥ 0

αu+
∂u

∂β
= f in Ω, β−n (u− uD) = 0 on ∂Ω, (

∂u

∂β
= β · ∇u), (1)

where f and uD represent (smooth) data. This equation is prototypical for many prob-
lems in continuum mechanics, since, with the zero-order term replaced by the time-
derivative, it described the material derivative.

For a Lipschitz-continuous transport field, (1) can be formally solved by the method
of characteristics, which reveals the maximum principle: positive data give positive
solutions. This property is of fundamental importance in many applications, the most
prominant being mass conservation, where u represents the density function. A notorious
difficulty in the context of finite element methods, which has attracted a lot of attention
in the litterature, is to respect the maximum principle on the discrete level. The first
positive result by Brurman and Ern [1] is based on the shock-capturing SUPG-method
of Johnson, Szepessy and Hansbo [2]. However, an important remaining diificulty is
the solution nonlinear equations. Recently, several other methods have been developped
[3, 4, 5].
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