Jens Markus Melenk^{*}

joint work with

Markus Aurada^{*}, Michael Feischl[†], Thomas Führer^{*}, Michael Karkulik[‡], and Dirk Praetorius^{*}

*Institut für Analysis und Scientific Computing, TU Wien, Austria

[†]School of Mathematics and Statistics, University of New South Wales, Australia

[‡]Departamento de Matemática, University of Santa Maria, Valparaiso, Chile

INVERSE ESTIMATES IN BEM AND THEIR APPLICATION TO ADAPTIVITY

We show polynomial inverse estimates for the classical boundary integral operators associated with the Laplacian on shape-regular meshes \mathcal{T}_h . For example, for the single-layer integral operator V on the boundary Γ of a polygon/polyhedron and \mathcal{T}_h -piecwise polynomials ψ of degree p, this inverse estimates takes the form

$$\|h_{\mathcal{T}}^{1/2} p^{-1} \nabla_{\Gamma} V \phi\|_{L^{2}(\Gamma)} \le C \|\phi\|_{H^{-1/2}(\Gamma)}$$

Such an inverse estimate is a crucial ingredient for the convergence proof of adaptive BEM. Indeed, the work [Carstensen, Feischl, Page, Praetorius '14] identified four "axioms" that ensure rate-optimal adaptive algorithms. This inverse inverse estimate is at the heart of the proof of two of these axioms, namely, the "stability on non-refined elements" and the "reduction on refined elements".