A multilevel algebraic error estimator and the corresponding iterative solver with *p*-robust behavior*

15TH U.S. NATIONAL CONGRESS ON COMPUTATIONAL MECHANICS

Austin, Texas, USA, July 28 - August 1, 2019

ANI MIRAÇI, JAN PAPEŽ, MARTIN VOHRALÍK

Inria Paris & École des Ponts, France

^{*}Miraçi, Papež, and Vohralík. "A multilevel algebraic error estimator and the corresponding iterative solver with p-robust behavior". HAL preprint 02070981, 2019.

CONTEXT

OVERVIEW •0000

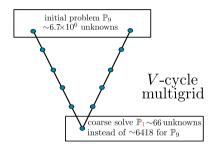
We address the issue of large linear systems of type Ax = b arising from finite element method of *order* p discretizations.

CONTEXT

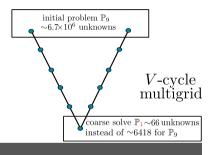
- We address the issue of large linear systems of type Ax = b arising from finite element method of order p discretizations.
- ▶ The approach is of *geometric multigrid-type*: V-cycle $MG(\nu_1, \nu_2)$, where ν_1, ν_2 , are the pre- and post-smoothing steps (ex. Jacobi, Gauss-Seidel, block Jacobi etc.).

CONTEXT

- We address the issue of large linear systems of type Ax = b arising from finite element method of order p discretizations.
- The approach is of *geometric multigrid-type*: V-cycle $MG(\nu_1, \nu_2)$, where ν_1, ν_2 , are the pre- and post-smoothing steps (ex. Jacobi, Gauss-Seidel, block Jacobi etc.).



- ▶ We address the issue of large linear systems of type Ax = b arising from finite element method of order p discretizations
- The approach is of *geometric multigrid-type*: V-cycle $MG(\nu_1, \nu_2)$, where ν_1, ν_2 , are the pre- and post-smoothing steps (ex. Jacobi, Gauss-Seidel, block Jacobi etc.).



References

- Hackbusch, "Multi-grid methods and applications". 1985.
- Payarino, "Additive Schwarz methods for the p-version finite element method". 1994.
- Schöberl et al. "Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements". 2008.
- Kanschat. "Robust smoothers for high-order discontinuous Galerkin discretizations of advection-diffusion problems". 2008.
- Antonietti et al. "A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems", 2017.
- Antonietti and Pennesi. "V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes". 2019.
- Sundar, Stadler, and Biros, "Comparison of multigrid algorithms for high-order continuous finite element discretizations", 2015.

OVERVIEW

▶ Setting: finite element method of *order p* for the Poisson problem.

- ▶ Setting: finite element method of *order* p for the Poisson problem.
- ▶ Multilevel construction of an algebraic residual lifting to define:

- ▶ Setting: finite element method of *order* p for the Poisson problem.
- ▶ Multilevel construction of an *algebraic residual lifting* to define:
 - 1. an a posteriori algebraic error estimator

- ▶ Setting: finite element method of *order* p for the Poisson problem.
- ▶ Multilevel construction of an *algebraic residual lifting* to define:
 - 1. an a posteriori algebraic error estimator
 - 2. an iterative linear solver

- ▶ Setting: finite element method of *order* p for the Poisson problem.
- ▶ Multilevel construction of an *algebraic residual lifting* to define:
 - 1. an a posteriori algebraic error estimator
 - 2. an iterative linear solver
- Main results:

- ▶ Setting: finite element method of *order* p for the Poisson problem.
- ▶ Multilevel construction of an *algebraic residual lifting* to define:
 - 1. an a posteriori algebraic error estimator
 - 2. an iterative linear solver
- Main results:
 - 1. The a posteriori estimator is a **two-sided** *p***-robust bound** on the algebraic error

Overview

- ▶ Setting: finite element method of *order* p for the Poisson problem.
- ▶ Multilevel construction of an *algebraic residual lifting* to define:
 - 1. an a posteriori algebraic error estimator
 - 2. an iterative linear solver
- Main results:
 - 1. The a posteriori estimator is a **two-sided** *p***-robust bound** on the algebraic error
 - 2. The iterative solver **contracts the error** *p***-robustly** on each iteration

- ▶ Setting: finite element method of *order* p for the Poisson problem.
- ▶ Multilevel construction of an *algebraic residual lifting* to define:
 - 1. an a posteriori algebraic error estimator
 - 2. an iterative linear solver
- Main results:
 - 1. The a posteriori estimator is a **two-sided** *p***-robust bound** on the algebraic error
 - 2. The iterative solver **contracts the error** p**-robustly** on each iteration
- Numerical results

FINITE ELEMENT DISCRETIZATION, ALGEBRAIC SYSTEM

Setting: $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, an open bounded polytope, $f \in L^2(\Omega)$ a source term.

Poisson problem: find $u \in H_0^1(\Omega)$ such that $(\nabla u, \nabla v) = (f, v), \forall v \in H_0^1(\Omega)$.

Setting: $\Omega \subset \mathbb{R}^d$, 1 < d < 3, an open bounded polytope, $f \in L^2(\Omega)$ a source term.

Poisson problem: find $u \in H_0^1(\Omega)$ such that $(\nabla u, \nabla v) = (f, v), \forall v \in H_0^1(\Omega)$.

Fix $p \ge 1$ and define

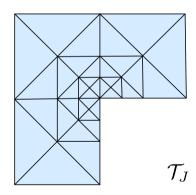
OVERVIEW

$$V_J^p = \mathbb{P}_p(\mathcal{T}_J) \cap H_0^1(\Omega),$$

where $\mathbb{P}_p(\mathcal{T}_J) = \{v_J \in L^2(\Omega), v_J \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_J\}.$

Discrete problem: Find $u_J \in V_J^p$ such that

$$(\nabla u_J, \nabla v_J) = (f, v_J) \quad \forall v_J \in V_J^p.$$
 (FE)



FINITE ELEMENT DISCRETIZATION, ALGEBRAIC SYSTEM

Setting: $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, an open bounded polytope, $f \in L^2(\Omega)$ a source term.

Poisson problem: find $u \in H_0^1(\Omega)$ such that $(\nabla u, \nabla v) = (f, v), \forall v \in H_0^1(\Omega)$.

Fix $p \ge 1$ and define

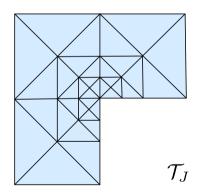
$$V_J^p = \mathbb{P}_p(\mathcal{T}_J) \cap H_0^1(\Omega),$$

where $\mathbb{P}_p(\mathcal{T}_J) = \{ v_J \in L^2(\Omega), v_J \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_J \}.$

Discrete problem: Find $u_J \in V_J^p$ such that

$$(\nabla u_J, \nabla v_J) = (f, v_J) \quad \forall v_J \in V_J^p.$$
 (FE)

Introducing a basis of V_J^p , then the problem can be rewritten as $\mathbb{A}_J U_J = \mathbb{F}_J$.



FINITE ELEMENT DISCRETIZATION, ALGEBRAIC SYSTEM

Setting: $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, an open bounded polytope, $f \in L^2(\Omega)$ a source term.

Poisson problem: find $u \in H_0^1(\Omega)$ such that $(\nabla u, \nabla v) = (f, v), \forall v \in H_0^1(\Omega)$.

Fix $p \ge 1$ and define

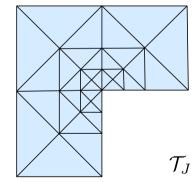
$$V_J^p = \mathbb{P}_p(\mathcal{T}_J) \cap H_0^1(\Omega),$$

where $\mathbb{P}_p(\mathcal{T}_J) = \{v_J \in L^2(\Omega), v_J \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_J\}.$

Discrete problem: Find $u_J \in V_J^p$ such that

$$(\nabla u_J, \nabla v_J) = (f, v_J) \quad \forall v_J \in V_J^p.$$
 (FE)

Introducing a basis of V_J^p , then the problem can be rewritten as $\mathbb{A}_J U_J = F_J$.



We work with the *basis-independent* functional formulation (FE).

A HIERARCHY OF MESHES

Assumptions on $\{\mathcal{T}_i\}_{0 \le i \le J}$

- Shape regularity: The ratio element diameter over the diameter of the largest ball inscribed in the element is bounded for all elements by $\kappa_T > 0$.
- ▶ *Strength of refinement*: For any $j \in \{1, ..., J\}$, and for all $K \in \mathcal{T}_{j-1}$, $K^* \in \mathcal{T}_j$, such that $K^* \subset K$, h_{K^*} and h_K are comparable.

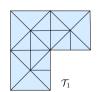
Example: A mesh hierarchy with J = 4

A HIERARCHY OF MESHES AND SPACES

Assumptions on $\{\mathcal{T}_i\}_{0 \le i \le J}$

- Shape regularity: The ratio element diameter over the diameter of the largest ball inscribed in the element is bounded for all elements by $\kappa_T > 0$.
- ▶ *Strength of refinement*: For any $j \in \{1, ..., J\}$, and for all $K \in \mathcal{T}_{i-1}$, $K^* \in \mathcal{T}_i$, such that $K^* \subset K$, h_{K^*} and h_K are comparable.

Example: A mesh hierarchy with J = 4, associated spaces with $p' \in \{1, \dots, p\}$



$$V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega$$

$$V_3^{p'} = \mathbb{P}_{p'}(\mathcal{T}_3) \cap H_0^1(\Omega)$$

$$V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega) \quad V_1^{p'} = \mathbb{P}_p(\mathcal{T}_1) \cap H_0^1(\Omega) \quad V_2^{p'} = \mathbb{P}_p(\mathcal{T}_2) \cap H_0^1(\Omega) \quad V_3^{p'} = \mathbb{P}_p(\mathcal{T}_3) \cap H_0^1(\Omega) \quad V_4^p = \mathbb{P}_p(\mathcal{T}_4) \cap H_0^1(\Omega)$$

A HIERARCHY OF MESHES AND SPACES

Assumptions on $\{\mathcal{T}_i\}_{0 \le i \le J}$

- Shape regularity: The ratio element diameter over the diameter of the largest ball inscribed in the element is bounded for all elements by $\kappa_T > 0$.
- ▶ *Strength of refinement*: For any $j \in \{1, ..., J\}$, and for all $K \in \mathcal{T}_{i-1}$, $K^* \in \mathcal{T}_i$, such that $K^* \subset K$, h_{K^*} and h_K are comparable.

Example: A mesh hierarchy with J = 4, associated spaces with $p' \in \{1, \dots, p\}$

 $V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega) \quad V_1^{p'} = \mathbb{P}_p(\mathcal{T}_1) \cap H_0^1(\Omega) \quad V_2^{p'} = \mathbb{P}_p(\mathcal{T}_2) \cap H_0^1(\Omega) \quad V_3^{p'} = \mathbb{P}_p(\mathcal{T}_3) \cap H_0^1(\Omega) \quad V_4^p = \mathbb{P}_p(\mathcal{T}_4) \cap H_0^1(\Omega)$

Note: We can have very general meshes (*highly refined meshes* are also allowed). However, our theoretical results *depend* on the number of refinements *J*.

PATCHES

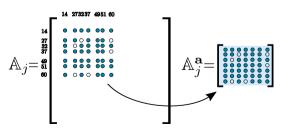
Let V_j be the set of vertices of the mesh T_j , $j \in \{1, ..., J\}$. Given a vertex $\mathbf{a} \in V_j$, we denote

- $ightharpoonup \mathcal{T}_i^{\mathbf{a}}$ the patch of elements sharing vertex \mathbf{a}
- $lackbox{}\omega_i^{\mathbf{a}}$ the corresponding patch subdomain
- $ightharpoonup V_i^a$ the associated local space

Example: Geometric (left) and algebraic (right) representation of localizing the problem for $p' = p = 2, j \in \{1, ..., J - 1\}$ and a patch composed of 6 elements:

patch subdomain
$$\omega_j^{\mathbf{a}}$$
 for a vertex $\mathbf{a} \in \mathcal{V}_j$ 49 37 $\mathcal{T}_j^{\mathbf{a}}$

$$V_i^{\mathbf{a}} = \mathbb{P}_{\mathbf{p}'}(\mathcal{T}_j) \cap H_0^1(\omega_i^{\mathbf{a}})$$



$$j = 0$$
:



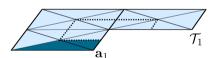
$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$

$$j = 1$$
:

$$j=0:
ho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H^1_0(\Omega)$$

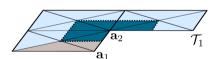
$$j = 1: \underbrace{\rho_{1,\mathbf{a}_1}^i}_{\in V_1^{\mathbf{a}_1}}$$

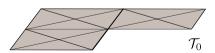
$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$



$$j=1: \begin{array}{c} \rho_{1,\mathbf{a}_1}^i + \underbrace{\rho_{1,\mathbf{a}_2}^i}_{\in V_1^{\mathbf{a}_2}} \end{array}$$

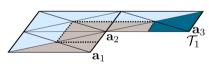
$$j=0: \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$





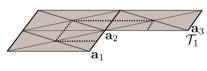
$$j = 1: \begin{array}{c} \rho_{1,\mathbf{a}_1}^i \!\!+\!\! \rho_{1,\mathbf{a}_2}^i \!\!+\!\! \underbrace{\rho_{1,\mathbf{a}_3}^i}_{\mathbf{t}^3} \\ \in \! V_1^{\mathbf{a}_3} \end{array}$$

$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$



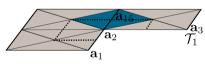
$$j=1:\ \rho_{1,\mathbf{a}_{1}}^{i}\!\!+\!\!\rho_{1,\mathbf{a}_{2}}^{i}\!\!+\!\!\rho_{1,\mathbf{a}_{3}}^{i}\!\!+\!\dots$$

$$j=0: \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$



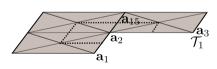
$$\begin{array}{ll} j = 1: & \rho_{1,\mathbf{a}_1}^i \!\!+\! \rho_{1,\mathbf{a}_2}^i \!\!+\! \rho_{1,\mathbf{a}_3}^i \!\!+\! \dots \!\!+\! \underbrace{\rho_{1,\mathbf{a}_{15}}^i}_{\in V_1^{\mathbf{a}_{15}}} \end{array}$$

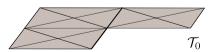
$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$



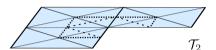
$$j=1: \ \frac{\rho_{1,\mathbf{a}_1}^i\!\!+\!\!\rho_{1,\mathbf{a}_2}^i\!\!+\!\!\rho_{1,\mathbf{a}_3}^i\!\!+\!\!\dots\!\!+\!\!\rho_{1,\mathbf{a}_{15}}^i}{J(d+1)} \ \in V_1^{p'}$$

$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$

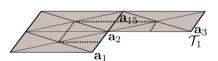




$$j = 2$$
:

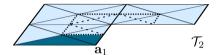


$$j = 1: \frac{\rho_{1,\mathbf{a}_{1}}^{i} + \rho_{1,\mathbf{a}_{2}}^{i} + \rho_{1,\mathbf{a}_{3}}^{i} + \dots + \rho_{1,\mathbf{a}_{15}}^{i}}{J(d+1)} \in V_{1}^{p'}$$

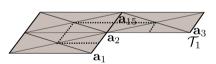


$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$

$$j = 2 : \underbrace{\rho_{2,\mathbf{a}_1}^i}_{\in V_2^{\mathbf{a}_1}}$$

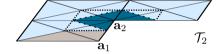


$$j = 1: \frac{\rho_{1,\mathbf{a}_{1}}^{i} + \rho_{1,\mathbf{a}_{2}}^{i} + \rho_{1,\mathbf{a}_{3}}^{i} + \ldots + \rho_{1,\mathbf{a}_{15}}^{i}}{J(d+1)} \in V_{1}^{p'}$$

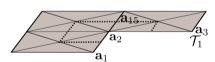


$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$

$$j=2: \rho_{2,\mathbf{a}_1}^i + \underbrace{\rho_{2,\mathbf{a}_2}^i}_{\in V_2^{\mathbf{a}_2}}$$



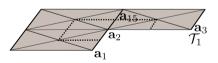
$$j = 1: \frac{\rho_{1,\mathbf{a}_1}^i + \rho_{1,\mathbf{a}_2}^i + \rho_{1,\mathbf{a}_3}^i + \ldots + \rho_{1,\mathbf{a}_{15}}^i}{J(d+1)} \in V_1^{p'}$$



$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$

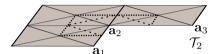
$$j = 2: \rho_{2,\mathbf{a}_1}^i \!\!+\! \rho_{2,\mathbf{a}_2}^i \!\!+\! \underbrace{\rho_{2,\mathbf{a}_3}^i}_{\in V_2^{\mathbf{a}_3}}$$

$$j=1: \frac{\rho_{1,\mathbf{a}_{1}}^{i} + \rho_{1,\mathbf{a}_{2}}^{i} + \rho_{1,\mathbf{a}_{3}}^{i} + \dots + \rho_{1,\mathbf{a}_{15}}^{i}}{J(d+1)} \in V_{1}^{p'}$$

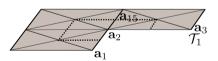


$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$

$$j=2:\rho_{2,{\bf a}_1}^i\!\!+\!\rho_{2,{\bf a}_2}^i\!\!+\!\rho_{2,{\bf a}_3}^i\!\!+\!\dots$$

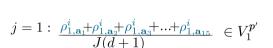


$$j = 1: \frac{\rho_{1,\mathbf{a}_1}^i + \rho_{1,\mathbf{a}_2}^i + \rho_{1,\mathbf{a}_3}^i + \dots + \rho_{1,\mathbf{a}_{15}}^i}{J(d+1)} \in V_1^{p'}$$

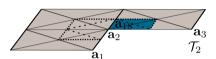


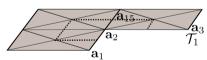
$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$

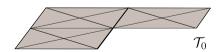
$$j = 2: \rho_{2,\mathbf{a}_{1}}^{i} + \rho_{2,\mathbf{a}_{2}}^{i} + \rho_{2,\mathbf{a}_{3}}^{i} + \dots + \rho_{2,\mathbf{a}_{18}}^{i} \\ \in V_{2}^{\mathbf{a}_{18}}$$



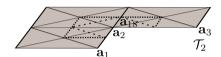
$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$



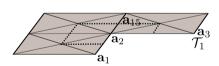




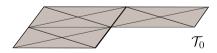
$$j = 2: \frac{\rho_{2,\mathbf{a}_1}^i + \rho_{2,\mathbf{a}_2}^i + \rho_{2,\mathbf{a}_3}^i + \ldots + \rho_{2,\mathbf{a}_{18}}^i}{J(d+1)} \in V_2^p$$



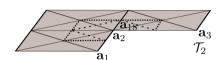
$$j = 1: \frac{\rho_{1,\mathbf{a}_{1}}^{i} + \rho_{1,\mathbf{a}_{2}}^{i} + \rho_{1,\mathbf{a}_{3}}^{i} + \ldots + \rho_{1,\mathbf{a}_{15}}^{i}}{J(d+1)} \in V_{1}^{p'}$$



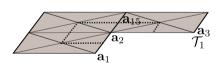
$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$



$$\begin{split} \rho_{2,\mathrm{alg}}^{i} &= \rho_{0}^{i} + \sum\limits_{j=1}^{2} \frac{\sum_{a \in \mathcal{V}_{i}} \rho_{j,a}^{i}}{J(d+1)} \\ j &= 2 : \frac{\rho_{2,\mathbf{a}_{1}}^{i} + \rho_{2,\mathbf{a}_{3}}^{i} + \rho_{2,\mathbf{a}_{3}}^{i} + \ldots + \rho_{2,\mathbf{a}_{18}}^{i}}{J(d+1)} \quad \in V_{2}^{p} \end{split}$$

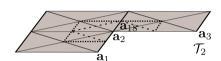


$$j=1: \frac{\rho_{1,\mathbf{a}_1}^i \!\!+\! \rho_{1,\mathbf{a}_2}^i \!\!+\! \rho_{1,\mathbf{a}_3}^i \!\!+\! \dots \!\!+\! \rho_{1,\mathbf{a}_{15}}^i}{J(d+1)} \ \in V_1^{p'}$$

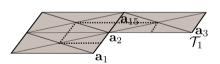


$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$

$$\begin{aligned} \rho_{2,\text{alg}}^{i} &= \rho_{0}^{i} + \sum_{j=1}^{2} \frac{\sum_{a \in \mathcal{V}_{i}} \rho_{j,a}^{i}}{J(d+1)} \in V_{2}^{p} \\ j &= 2 : \frac{\rho_{2,\mathbf{a}_{1}}^{i} + \rho_{2,\mathbf{a}_{3}}^{i} + \rho_{2,\mathbf{a}_{3}}^{i} + \ldots + \rho_{2,\mathbf{a}_{18}}^{i}}{J(d+1)} &\in V_{2}^{p} \end{aligned}$$



$$j = 1: \frac{\rho_{1,\mathbf{a}_{1}}^{i} + \rho_{1,\mathbf{a}_{2}}^{i} + \rho_{1,\mathbf{a}_{3}}^{i} + \ldots + \rho_{1,\mathbf{a}_{15}}^{i}}{J(d+1)} \in V_{1}^{p'}$$



$$j = 0 : \rho_0^i \in V_0 = \mathbb{P}_1(\mathcal{T}_0) \cap H_0^1(\Omega)$$

Let $u_{i}^{i} \in V_{i}^{p}$ be arbitrary. We define its associated algebraic residual lifting.

¹Papež et al. "Sharp algebraic and total a posteriori error bounds for *h* and *p* finite elements via a multilevel approach". HAL preprint 01662944, 2017.

Let $u_J^i \in V_J^p$ be arbitrary. We define its associated algebraic residual lifting.

Coarse solve: Define $\rho_0^i \in V_0$ by: $(\nabla \rho_0^i, \nabla v_0) = (f, v_0) - (\nabla u_0^i, \nabla v_0), \forall v_0 \in V_0.$

¹Papež et al. "Sharp algebraic and total a posteriori error bounds for *h* and *p* finite elements via a multilevel approach". HAL preprint 01662944, 2017.

Let $u_J^i \in V_J^p$ be arbitrary. We define its associated algebraic residual lifting.

Coarse solve: Define
$$\rho_0^i \in V_0$$
 by: $(\nabla \rho_0^i, \nabla v_0) = (f, v_0) - (\nabla u_J^i, \nabla v_0), \quad \forall v_0 \in V_0.$

Construction: Consider $\rho_{J,\mathrm{alg}}^i \in V_J^p$

000

$$\rho_{J,\text{alg}}^i = \rho_0^i + \sum_{j=1}^J \frac{\sum_{\mathbf{a} \in \mathcal{V}_j} \rho_{j,\mathbf{a}}^i}{J(d+1)},$$

¹Papež et al. "Sharp algebraic and total a posteriori error bounds for *h* and *p* finite elements via a multilevel approach". HAL preprint 01662944, 2017.

Let $u_J^i \in V_J^p$ be arbitrary. We define its associated algebraic residual lifting.

Coarse solve: Define $\rho_0^i \in V_0$ by: $(\nabla \rho_0^i, \nabla v_0) = (f, v_0) - (\nabla u_J^i, \nabla v_0), \forall v_0 \in V_0.$

Construction: Consider $ho_{J,\mathrm{alg}}^i \in V_J^p$

$$\rho_{J,\text{alg}}^i = \rho_0^i + \sum_{j=1}^J \frac{\sum_{\mathbf{a} \in \mathcal{V}_j} \rho_{J,\mathbf{a}}^i}{J(d+1)},$$

where for all $j = \{1, \ldots, J\}$, $\rho_{j,a}^i \in V_j^a$:

$$(\nabla \rho_{j,\mathbf{a}}^i, \nabla v_{j,\mathbf{a}})_{\omega_j^{\mathbf{a}}} = (f, v_{j,\mathbf{a}})_{\omega_j^{\mathbf{a}}} - (\nabla u_J^i, \nabla v_{j,\mathbf{a}})_{\omega_j^{\mathbf{a}}} - \sum_{k=0}^{j-1} (\nabla \rho_k^i, \nabla v_{j,\mathbf{a}})_{\omega_j^{\mathbf{a}}}, \quad \forall v_{j,\mathbf{a}} \in V_j^{\mathbf{a}}.$$

¹Papež et al. "Sharp algebraic and total a posteriori error bounds for *h* and *p* finite elements via a multilevel approach". HAL preprint 01662944, 2017.

Let $u_J^i \in V_J^p$ be arbitrary. We define its associated algebraic residual lifting.

Coarse solve: Define $\rho_0^i \in V_0$ by: $(\nabla \rho_0^i, \nabla v_0) = (f, v_0) - (\nabla u_J^i, \nabla v_0), \forall v_0 \in V_0.$

Construction: Consider $\rho_{J,\mathrm{alg}}^i \in V_J^p$

$$\rho_{J,\text{alg}}^{i} = \rho_{0}^{i} + \sum_{j=1}^{J} \frac{\sum_{\mathbf{a} \in \mathcal{V}_{j}} \rho_{j,\mathbf{a}}^{i}}{J(d+1)},$$

where for all $j = \{1, \ldots, J\}$, $\rho_{j, \mathbf{a}}^i \in V_j^{\mathbf{a}}$:

$$(\nabla \rho_{j,\mathbf{a}}^i, \nabla V_{j,\mathbf{a}})_{\omega_j^{\mathbf{a}}} = (f, V_{j,\mathbf{a}})_{\omega_j^{\mathbf{a}}} - (\nabla U_J^i, \nabla V_{j,\mathbf{a}})_{\omega_j^{\mathbf{a}}} - \sum_{k=0}^{j-1} (\nabla \rho_k^i, \nabla V_{j,\mathbf{a}})_{\omega_j^{\mathbf{a}}}, \quad \forall V_{j,\mathbf{a}} \in V_j^{\mathbf{a}}.$$

Remark: $\rho_{J,\text{alg}}^{i}$ approximates the algebraic error $u_{J} - u_{J}^{i}$ by

- ▶ a V-cycle MG(0,1) with piecewise affine coarse solve
- ▶ the smoother is damped additive Schwarz / block Jacobi associated to the patches

¹Papež et al. "Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach". HAL preprint 01662944, 2017.

Let $u_J^i \in V_J^p$ be **arbitrary**, and let $\rho_{J,\text{alg}}^i$ be the associated algebraic residual lifting.

$$\mathsf{Set}\ \eta_{\mathsf{alg}}^i := \frac{(f, \rho_{J,\mathsf{alg}}^i) - (\nabla u_J^i, \nabla \rho_{J,\mathsf{alg}}^i)}{\|\nabla \rho_{J,\mathsf{alg}}^i\|}, \mathsf{or}\ \mathsf{else}\ \eta_{\mathsf{alg}}^i := 0\ \mathsf{if}\ \rho_{J,\mathsf{alg}}^i = 0.$$

Definition 1 (Multilevel a posteriori estimator)

Let $u_J^i \in V_J^p$ be **arbitrary**, and let $\rho_{J,\text{alg}}^i$ be the associated algebraic residual lifting.

Set
$$\eta_{\mathsf{alg}}^i := \frac{(f, \rho_{J,\mathsf{alg}}^i) - (\nabla u_J^i, \nabla \rho_{J,\mathsf{alg}}^i)}{\|\nabla \rho_{J,\mathsf{alg}}^i\|}$$
, or else $\eta_{\mathsf{alg}}^i := 0$ if $\rho_{J,\mathsf{alg}}^i = 0$.

Definition 2 (Multilevel solver)

- 1. Initialize $u_J^0 \in V_0$ as the solution of $(\nabla u_J^0, \nabla v_0) = (f, v_0), \forall v_0 \in V_0$.
- 2. Let $i \ge 0$. Set $u_J^{i+1} := u_J^i + \frac{(f, \rho_{J,\text{alg}}^i) (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|^2} \rho_{J,\text{alg}}^i$, or else $u_J^{i+1} := u_J^i$ if $\rho_{J,\text{alg}}^i = 0$.

Let $u_J^i \in V_J^p$ be **arbitrary**, and let $\rho_{J,\text{alg}}^i$ be the associated algebraic residual lifting.

Set
$$\eta_{\mathsf{alg}}^i := \frac{(f, \rho_{J,\mathsf{alg}}^i) - (\nabla u_J^i, \nabla \rho_{J,\mathsf{alg}}^i)}{\|\nabla \rho_{J,\mathsf{alg}}^i\|}$$
, or else $\eta_{\mathsf{alg}}^i := 0$ if $\rho_{J,\mathsf{alg}}^i = 0$.

Definition 2 (Multilevel solver)

- 1. Initialize $u_J^0 \in V_0$ as the solution of $(\nabla u_J^0, \nabla v_0) = (f, v_0), \forall v_0 \in V_0$.
- 2. Let $i \geq 0$. Set $u_J^{i+1} := u_J^i + \frac{(f, \rho_{J,\text{alg}}^i) (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|^2} \rho_{J,\text{alg}}^i$, or else $u_J^{i+1} := u_J^i$ if $\rho_{J,\text{alg}}^i = 0$.

Remark: Note that the *step size* plays a decisive role:

▶ it is determined by a *line search* optimization in the direction of the lifting

Definition 1 (Multilevel a posteriori estimator)

Let $u_J^i \in V_J^p$ be **arbitrary**, and let $\rho_{J,\text{alg}}^i$ be the associated algebraic residual lifting.

$$\mathsf{Set}\ \eta_{\mathsf{alg}}^i := \frac{(f, \rho_{J,\mathsf{alg}}^i) - (\nabla u_J^i, \nabla \rho_{J,\mathsf{alg}}^i)}{\|\nabla \rho_{J,\mathsf{alg}}^i\|}, \, \mathsf{or}\ \mathsf{else}\ \eta_{\mathsf{alg}}^i := 0 \ \mathsf{if}\ \rho_{J,\mathsf{alg}}^i = 0.$$

Definition 2 (Multilevel solver)

- 1. Initialize $u_J^0 \in V_0$ as the solution of $(\nabla u_J^0, \nabla v_0) = (f, v_0), \quad \forall v_0 \in V_0$.
- 2. Let $i \ge 0$. Set $u_J^{i+1} := u_J^i + \frac{(f, \rho_{J,\text{alg}}^i) (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|^2} \rho_{J,\text{alg}}^i$, or else $u_J^{i+1} := u_J^i$ if $\rho_{J,\text{alg}}^i = 0$.

Remark: Note that the *step size* plays a decisive role:

- ▶ it is determined by a *line search* optimization in the direction of the lifting
- ▶ without it, the solver would become to MG(0,1) with block Jacobi smoothing

Theorem 1 (*p*-robust reliable and efficient bound on the algebraic error)

Let $u_J^i \in V_J^p$ be **arbitrary**, let η_{alg}^i be the associated a posteriori estimator. There holds

- reliability: $\|\nabla (\mathbf{u}_{\mathsf{J}} \mathbf{u}_{\mathsf{J}}^i)\| \geq \eta_{\mathsf{alg}}^i$
- efficiency: $\eta_{\mathsf{alg}}^i \geq \beta(\kappa_{\mathcal{T}}, \boldsymbol{d}, \boldsymbol{J}) \|\nabla(\boldsymbol{u}_{\boldsymbol{J}} \boldsymbol{u}_{\boldsymbol{J}}^i)\|, \qquad 0 < \beta(\kappa_{\mathcal{T}}, \boldsymbol{d}, \boldsymbol{J}) < 1$ (E)

Theorem 1 (p-robust reliable and efficient bound on the algebraic error)

Let $u_J^i \in V_J^p$ be **arbitrary**, let η_{alg}^i be the associated a posteriori estimator. There holds

- reliability: $\|\nabla (\mathbf{u}_{\mathsf{J}} \mathbf{u}_{\mathsf{J}}^{i})\| \geq \eta_{\mathsf{alg}}^{i}$
- efficiency: $\eta_{\text{alg}}^i \ge \beta(\kappa_{\mathcal{T}}, d, J) \|\nabla(\mathbf{u}_J \mathbf{u}_J^i)\|, \qquad 0 < \beta(\kappa_{\mathcal{T}}, d, J) < 1$ (E)

Theorem 2 (*p*-robust error contraction of the multilevel solver)

Let $u_J^i \in V_J^p$ be **arbitrary**, let u_J^{i+1} be constructed from u_J^i using one step of the multilevel solver. Then there holds

$$\|\nabla(\mathbf{u}_{J} - \mathbf{u}_{J}^{i+1})\| \le \alpha(\kappa_{\mathcal{T}}, \mathbf{d}, J)\|\nabla(\mathbf{u}_{J} - \mathbf{u}_{J}^{i})\|, \qquad 0 < \alpha(\kappa_{\mathcal{T}}, \mathbf{d}, J) < 1$$
 (C)

Theorem 1 (p-robust reliable and efficient bound on the algebraic error)

Let $u_J^i \in V_J^p$ be **arbitrary**, let η_{alg}^i be the associated a posteriori estimator. There holds

- reliability: $\|\nabla(u_J u_J^i)\| \ge \eta_{\text{alg}}^i$
- efficiency: $\eta_{\text{alg}}^i \geq \beta(\kappa_T, d, J) \|\nabla(\mathbf{u}_J \mathbf{u}_J^i)\|, \qquad 0 < \beta(\kappa_T, d, J) < 1$ (E)

Theorem 2 (p-robust error contraction of the multilevel solver)

Let $u^i_I \in V^p_I$ be arbitrary, let u^{i+1}_I be constructed from u^i_I using one step of the multilevel solver. Then there holds

$$\|\nabla(\mathbf{u}_{J} - \mathbf{u}_{J}^{i+1})\| \le \alpha(\kappa_{\mathcal{T}}, \mathbf{d}, J)\|\nabla(\mathbf{u}_{J} - \mathbf{u}_{J}^{i})\|, \qquad 0 < \alpha(\kappa_{\mathcal{T}}, \mathbf{d}, J) < 1$$
 (C)

Corollary 1 (Equivalence of the two main results)

Under the assumptions of Theorems 1 and 2, (E) holds if and only if (C) holds.

▶ Due to the definition of η_{ala}^{i}

$$\begin{split} &\text{if } \rho_{J,\text{alg}}^i \neq 0: \qquad \eta_{\text{alg}}^i = \frac{(f,\rho_{J,\text{alg}}^i) - (\nabla \textit{u}_J^i,\nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|} \\ &\text{if } \rho_{J,\text{alg}}^i = 0: \qquad \eta_{\text{alg}}^i = 0 \end{split}$$

if
$$ho_{J,\mathrm{alg}}^i = 0$$
 : $\eta_{\mathrm{alg}}^i = 0$

Main results

○
●

SKETCH OF THE PROOF OF THEOREM 1 : $\eta_{\text{alg}}^i \geq \beta \|\nabla (\mathbf{u}_J - \mathbf{u}_J^i)\|$

▶ Due to the definition of η_{alg}^{i} , it is enough to show:

$$\begin{split} &\text{if } \rho_{J,\text{alg}}^i \neq 0: \qquad \eta_{\text{alg}}^i = \frac{(f,\rho_{J,\text{alg}}^i) - (\nabla u_J^i,\nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|} \geq \beta \|\nabla (\underline{u_J} - u_J^i)\|, \\ &\text{if } \rho_{J,\text{alg}}^i = 0: \qquad \eta_{\text{alg}}^i = 0 = \|\nabla (\underline{u_J} - u_J^i)\|. \end{split}$$

SKETCH OF THE PROOF OF THEOREM 1: $\eta_{\mathsf{alg}}^i \geq \beta \|\nabla (\mathbf{u}_{\mathsf{J}} - \mathbf{u}_{\mathsf{J}}^i)\|$

▶ Due to the definition of η_{alg}^{i} , it is enough to show:

$$\begin{split} &\text{if } \rho_{J,\text{alg}}^i \neq 0: \qquad \eta_{\text{alg}}^i = \frac{(f,\rho_{J,\text{alg}}^i) - (\nabla u_J^i,\nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|} \geq \beta \|\nabla (\underline{u_J} - u_J^i)\|, \\ &\text{if } \rho_{J,\text{alg}}^i = 0: \qquad \eta_{\text{alg}}^i = 0 = \|\nabla (\underline{u_J} - u_J^i)\|. \end{split}$$

1 lower bound on
$$(f, \rho_{J,\text{alg}}^i) - (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)$$

Sketch of the proof of Theorem 1 : $\eta_{\text{alg}}^i \ge \beta \|\nabla (\mathbf{u}_J - \mathbf{u}_J^i)\|$

▶ Due to the definition of η_{alg}^{i} , it is enough to show:

$$\begin{split} &\text{if } \rho_{J,\text{alg}}^i \neq 0: \qquad \eta_{\text{alg}}^i = \frac{(f,\rho_{J,\text{alg}}^i) - (\nabla u_J^i,\nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|} \geq \beta \|\nabla (\underline{u_J} - u_J^i)\|, \\ &\text{if } \rho_{J,\text{alg}}^i = 0: \qquad \eta_{\text{alg}}^i = 0 = \|\nabla (\underline{u_J} - u_J^i)\|. \end{split}$$

- lower bound on $(f, \rho_{J,\text{alg}}^i) (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)$
- **2** upper bound on $\|\nabla \rho_{J,\text{alg}}^i\|^2$

SKETCH OF THE PROOF OF THEOREM 1 : $\eta_{\text{alg}}^i \ge \beta \|\nabla (\mathbf{u}_J - \mathbf{u}_J^i)\|$

▶ Due to the definition of η_{alg}^{i} , it is enough to show:

$$\begin{split} &\text{if } \rho_{J,\text{alg}}^i \neq 0: \qquad \eta_{\text{alg}}^i = \frac{(f,\rho_{J,\text{alg}}^i) - (\nabla u_J^i,\nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|} \geq \beta \|\nabla (\underline{u_J} - u_J^i)\|, \\ &\text{if } \rho_{J,\text{alg}}^i = 0: \qquad \eta_{\text{alg}}^i = 0 = \|\nabla (\underline{u_J} - u_J^i)\|. \end{split}$$

- lower bound on $(f, \rho_{J,\text{alg}}^i) (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)$
- **2** upper bound on $\|\nabla \rho_{J,\text{alg}}^i\|^2$
- **9** upper bound on $\|\nabla(\underline{u_J} u_J^i)\|^2$

SKETCH OF THE PROOF OF THEOREM 1: $\eta_{\text{alg}}^i \geq \beta \|\nabla (\mathbf{u}_J - \mathbf{u}_J^i)\|$

▶ Due to the definition of η_{alg}^{i} , it is enough to show:

$$\begin{split} &\text{if } \rho_{J,\text{alg}}^i \neq 0: \qquad \eta_{\text{alg}}^i = \frac{(f,\rho_{J,\text{alg}}^i) - (\nabla u_J^i,\nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|} \geq \beta \|\nabla (\underline{u_J} - u_J^i)\|, \\ &\text{if } \rho_{J,\text{alg}}^i = 0: \qquad \eta_{\text{alg}}^i = 0 = \|\nabla (\underline{u_J} - u_J^i)\|. \end{split}$$

Our approach consists in giving a:

- **1** lower bound on $(f, \rho_{J,\text{alg}}^i) (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)$
- **2** upper bound on $\|\nabla \rho_{J,\text{alg}}^i\|^2$
- **3** upper bound on $\|\nabla(u_J u_J^i)\|^2$

by the **splitting** $\|\nabla \rho_0^i\|^2 + \sum_{j=1}^J \sum_{\mathbf{a} \in \mathcal{V}_j} \|\nabla \rho_{j,\mathbf{a}}^i\|_{\omega_j^{\mathbf{a}}}^2$.

Sketch of the proof of Theorem 1 : $\eta_{\text{alg}}^i \ge \beta \|\nabla (\mathbf{u}_J - \mathbf{u}_J^i)\|$

▶ Due to the definition of η_{alg}^i , it is enough to show:

$$\begin{split} &\text{if } \rho_{J,\text{alg}}^i \neq 0: \qquad \eta_{\text{alg}}^i = \frac{(f,\rho_{J,\text{alg}}^i) - (\nabla u_J^i,\nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|} \geq \beta \|\nabla (\underline{u_J} - u_J^i)\|, \\ &\text{if } \rho_{J,\text{alg}}^i = 0: \qquad \eta_{\text{alg}}^i = 0 = \|\nabla (\underline{u_J} - u_J^i)\|. \end{split}$$

Our approach consists in giving a:

- lower bound on $(f, \rho_{J,alg}^i) (\nabla u_J^i, \nabla \rho_{J,alg}^i)$: the damping proves to be crucial
- **2** upper bound on $\|\nabla \rho_{J,\text{alg}}^{j}\|^{2}$
- **1** upper bound on $\|\nabla(u_J u_J^i)\|^2$

by the **splitting** $\|\nabla \rho_0^i\|^2 + \sum_{j=1}^J \sum_{\mathbf{a} \in \mathcal{V}_j} \|\nabla \rho_{j,\mathbf{a}}^i\|_{\omega_j^{\mathbf{a}}}^2$.

Sketch of the proof of Theorem 1 : $\eta_{\text{alg}}^i \ge \beta \|\nabla (\mathbf{u}_J - \mathbf{u}_J^i)\|$

▶ Due to the definition of η_{alg}^{i} , it is enough to show:

$$\begin{split} &\text{if } \rho_{J,\text{alg}}^i \neq 0: \qquad \eta_{\text{alg}}^i = \frac{(f,\rho_{J,\text{alg}}^i) - (\nabla u_J^i,\nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|} \geq \beta \|\nabla (\underline{u_J} - u_J^i)\|, \\ &\text{if } \rho_{J,\text{alg}}^i = 0: \qquad \eta_{\text{alg}}^i = 0 = \|\nabla (\underline{u_J} - u_J^i)\|. \end{split}$$

Our approach consists in giving a:

- lower bound on $(f, \rho_{J,alg}^i) (\nabla u_J^i, \nabla \rho_{J,alg}^i)$: the damping proves to be crucial
- **2** upper bound on $\|\nabla \rho_{J,\text{alg}}^i\|^2$: rather straightforward
- **9** upper bound on $\|\nabla(u_J u_J^i)\|^2$

by the **splitting** $\|\nabla \rho_0^i\|^2 + \sum_{j=1}^J \sum_{\mathbf{a} \in \mathcal{V}_j} \|\nabla \rho_{j,\mathbf{a}}^i\|_{\omega_j^{\mathbf{a}}}^2$.

SKETCH OF THE PROOF OF THEOREM 1: $\eta_{\text{alg}}^i \geq \beta \|\nabla (u_J - u_J^i)\|$

▶ Due to the definition of η_{alg}^{i} , it is enough to show:

$$\begin{split} &\text{if } \rho_{J,\text{alg}}^i \neq 0: \qquad \eta_{\text{alg}}^i = \frac{(f,\rho_{J,\text{alg}}^i) - (\nabla u_J^i,\nabla \rho_{J,\text{alg}}^i)}{\|\nabla \rho_{J,\text{alg}}^i\|} \geq \beta \|\nabla (\underline{u_J} - u_J^i)\|, \\ &\text{if } \rho_{J,\text{alg}}^i = 0: \qquad \eta_{\text{alg}}^i = 0 = \|\nabla (\underline{u_J} - u_J^i)\|. \end{split}$$

- lower bound on $(f, \rho_{J,\text{alg}}^i) (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)$: the damping proves to be crucial
- **2** upper bound on $\|\nabla \rho_{J,\text{alg}}^{j}\|^{2}$: rather straightforward

²Schöberl et al. "Additive Schwarz preconditioning for *p*-version triangular and tetrahedral finite elements". 2008.

SKETCH OF THE PROOF OF THEOREM 1: $\eta_{\mathsf{alg}}^i \geq \beta \| \nabla (u_J - u_J^i) \|$

▶ Due to the definition of η_{alg}^{i} , it is enough to show:

$$\begin{split} &\text{if } \rho^{i}_{J,\text{alg}} \neq 0: \qquad \eta^{i}_{\text{alg}} = \frac{(f,\rho^{i}_{J,\text{alg}}) - (\nabla u^{i}_{J},\nabla \rho^{i}_{J,\text{alg}})}{\|\nabla \rho^{i}_{J,\text{alg}}\|} \geq \beta \|\nabla (\textbf{\textit{u}}_{J} - u^{i}_{J})\|, \\ &\text{if } \rho^{i}_{J,\text{alg}} = 0: \qquad \eta^{i}_{\text{alg}} = 0 = \|\nabla (\textbf{\textit{u}}_{J} - u^{i}_{J})\|. \end{split}$$

Our approach consists in giving a:

- lower bound on $(f, \rho_{J,\text{alg}}^i) (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)$: the damping proves to be crucial
- **2** upper bound on $\|\nabla \rho_{J,\text{alg}}^i\|^2$: rather straightforward
- **9** upper bound on $\|\nabla(\mathbf{u}_J \mathbf{u}_J^i)\|^2$: more delicate ² by the **splitting** $\|\nabla \rho_0^i\|^2 + \sum_{j=1}^J \sum_{\mathbf{a} \in \mathcal{V}_j} \|\nabla \rho_{j,\mathbf{a}}^i\|_{\omega_i^{\mathbf{a}}}^2$.

Leading to:

$$(\eta_{\mathsf{alg}}^i)^2 \overset{\bullet}{\gtrsim} \|\nabla \rho_0^i\|^2 + \sum_{j=1}^J \sum_{\mathbf{a} \in \mathcal{V}_j} \|\nabla \rho_{j,\mathbf{a}}^i\|_{\omega_j^{\mathbf{a}}}^2 \overset{\bullet}{\gtrsim} \|\nabla (\mathbf{u}_{\mathsf{U}} - u_{\mathsf{J}}^i)\|^2$$

²Schöberl et al. "Additive Schwarz preconditioning for *p*-version triangular and tetrahedral finite elements". 2008.

Sketch of the proof of Theorem 1 : $\eta_{\mathsf{alg}}^i \geq \beta \|\nabla (\mathbf{u}_{\mathsf{J}} - \mathbf{u}_{\mathsf{J}}^i)\|$

▶ Due to the definition of η_{alg}^{i} , it is enough to show:

$$\begin{split} &\text{if } \rho^{i}_{J,\text{alg}} \neq 0: \qquad \eta^{i}_{\text{alg}} = \frac{(f,\rho^{i}_{J,\text{alg}}) - (\nabla u^{i}_{J},\nabla \rho^{i}_{J,\text{alg}})}{\|\nabla \rho^{i}_{J,\text{alg}}\|} \geq \beta \|\nabla (\textbf{\textit{u}}_{J} - u^{i}_{J})\|, \\ &\text{if } \rho^{i}_{J,\text{alg}} = 0: \qquad \eta^{i}_{\text{alg}} = 0 = \|\nabla (\textbf{\textit{u}}_{J} - u^{i}_{J})\|. \end{split}$$

Our approach consists in giving a:

- lower bound on $(f, \rho_{J,\text{alg}}^i) (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)$: the damping proves to be crucial
- **2** upper bound on $\|\nabla \rho_{J,\text{alg}}^i\|^2$: rather straightforward
- **9** upper bound on $\|\nabla(\mathbf{u}_J \mathbf{u}_J^i)\|^2$: more delicate 2 by the **splitting** $\|\nabla \rho_0^i\|^2 + \sum_{j=1}^{j} \sum_{\mathbf{a} \in \mathcal{V}_j} \|\nabla \rho_{j,\mathbf{a}}^i\|_{\omega_a^{\mathbf{a}}}^2$.

Leading to:

$$\|\nabla(\mathbf{u}_{J} - \mathbf{u}_{J}^{i})\|^{2} \geq (\eta_{\text{alg}}^{i})^{2} \stackrel{\bullet}{\gtrsim} \|\nabla\rho_{0}^{i}\|^{2} + \sum_{j=1}^{J} \sum_{\mathbf{a} \in \mathcal{V}_{j}} \|\nabla\rho_{j,\mathbf{a}}^{i}\|_{\omega_{\mathbf{a}}^{a}}^{2} \gtrsim \|\nabla(\mathbf{u}_{J} - \mathbf{u}_{J}^{i})\|^{2}$$

²Schöberl et al. "Additive Schwarz preconditioning for *p*-version triangular and tetrahedral finite elements". 2008.

SKETCH OF THE PROOF OF THEOREM 1: $\eta_{\text{alg}}^i \geq \beta \|\nabla (u_{\text{J}} - u_{\text{J}}^i)\|$

▶ Due to the definition of η_{alg}^i , it is enough to show:

$$\begin{split} &\text{if } \rho^{i}_{J,\text{alg}} \neq 0: \qquad \eta^{i}_{\text{alg}} = \frac{(f,\rho^{i}_{J,\text{alg}}) - (\nabla u^{i}_{J},\nabla \rho^{i}_{J,\text{alg}})}{\|\nabla \rho^{i}_{J,\text{alg}}\|} \geq \beta \|\nabla (\textbf{\textit{u}}_{J} - u^{i}_{J})\|, \\ &\text{if } \rho^{i}_{J,\text{alg}} = 0: \qquad \eta^{i}_{\text{alg}} = 0 = \|\nabla (\textbf{\textit{u}}_{J} - u^{i}_{J})\|. \end{split}$$

Our approach consists in giving a:

- lower bound on $(f, \rho_{J,\text{alg}}^i) (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)$: the damping proves to be crucial
- **2** upper bound on $\|\nabla \rho_{J,\text{alg}}^i\|^2$: rather straightforward
- **9** upper bound on $\|\nabla(\mathbf{u}_J \mathbf{u}_J^i)\|^2$: more delicate 2 by the **splitting** $\|\nabla \rho_0^i\|^2 + \sum_{j=1}^{j} \sum_{\mathbf{a} \in \mathcal{V}_j} \|\nabla \rho_{j,\mathbf{a}}^i\|_{\omega_a^{\mathbf{a}}}^2$.

Leading to:

$$\|\nabla(\mathbf{u}_{J} - \mathbf{u}_{J}^{i})\|^{2} \geq (\eta_{\text{alg}}^{i})^{2} \stackrel{\bullet}{\gtrsim} \|\nabla\rho_{0}^{i}\|^{2} + \sum_{j=1}^{J} \sum_{\mathbf{a} \in \mathcal{V}_{j}} \|\nabla\rho_{j,\mathbf{a}}^{i}\|_{\omega_{\mathbf{a}}^{a}}^{2} \stackrel{\bullet}{\gtrsim} \|\nabla(\mathbf{u}_{J} - \mathbf{u}_{J}^{i})\|^{2}$$

²Schöberl et al. "Additive Schwarz preconditioning for *p*-version triangular and tetrahedral finite elements". 2008.

SKETCH OF THE PROOF OF THEOREM 1: $\eta_{\text{alg}}^i \geq \beta \|\nabla (u_J - u_J^i)\|$

▶ Due to the definition of η_{alg}^{i} , it is enough to show:

$$\begin{aligned} &\text{if } \rho^{i}_{J,\text{alg}} \neq 0: \qquad \eta^{i}_{\text{alg}} = \frac{(f,\rho^{i}_{J,\text{alg}}) - (\nabla u^{i}_{J},\nabla \rho^{i}_{J,\text{alg}})}{\|\nabla \rho^{i}_{J,\text{alg}}\|} \geq \beta \|\nabla (\textbf{\textit{u}}_{J} - u^{i}_{J})\|, \\ &\text{if } \rho^{i}_{J,\text{alg}} = 0: \qquad \eta^{i}_{\text{alg}} = 0 = \|\nabla (\textbf{\textit{u}}_{J} - u^{i}_{J})\|. \end{aligned}$$

Our approach consists in giving a:

- lower bound on $(f, \rho_{J,\text{alg}}^i) (\nabla u_J^i, \nabla \rho_{J,\text{alg}}^i)$: the damping proves to be crucial
- **2** upper bound on $\|\nabla \rho_{J,\text{alg}}^i\|^2$: rather straightforward
- **9** upper bound on $\|\nabla(\mathbf{u}_J \mathbf{u}_J^i)\|^2$: more delicate 2 by the **splitting** $\|\nabla \rho_0^i\|^2 + \sum_{j=1}^{j} \sum_{\mathbf{a} \in \mathcal{V}_j} \|\nabla \rho_{j,\mathbf{a}}^i\|_{\omega_a^{\mathbf{a}}}^2$.

Corollary 2 (Equivalence error-splitting)

$$\|\nabla(\mathbf{u}_{J} - \mathbf{u}_{J}^{i})\|^{2} \approx \|\nabla \rho_{0}^{i}\|^{2} + \sum_{j=1}^{J} \sum_{\mathbf{a} \in \mathcal{V}_{i}} \|\nabla \rho_{j,\mathbf{a}}^{i}\|_{\omega_{i}^{a}}^{2}$$

²Schöberl et al. "Additive Schwarz preconditioning for *p*-version triangular and tetrahedral finite elements". 2008.

NUMERICAL RESULTS

Consider the following problem:

L-shape domain problem:
$$u(r,\theta) = r^{2/3} \sin(2\theta/3); \quad \Omega = (-1,1)^2 \setminus ([0,1] \times [-1,0]).$$

Consider the following problem:

L-shape domain problem:
$$u(r, \theta) = r^{2/3} \sin(2\theta/3); \quad \Omega = (-1, 1)^2 \setminus ([0, 1] \times [-1, 0]).$$

We focus on testing numerically the *p*-robust behavior of our solver, a common choice for the **stopping criterion** is

$$\frac{\|F_J - \mathbb{A}_J U_J^{f_{stop}}\|}{\|F_J\|} \leq 10^{-5} \frac{\|F_J - \mathbb{A}_J U_J^0\|}{\|F_J\|}.$$

NUMERICAL RESULTS

Consider the following problem:

L-shape domain problem:
$$u(r, \theta) = r^{2/3} \sin(2\theta/3); \quad \Omega = (-1, 1)^2 \setminus ([0, 1] \times [-1, 0]).$$

We focus on testing numerically the p-robust behavior of our solver, a common choice for the **stopping criterion** is

$$\frac{\|F_J - \mathbb{A}_J U_J^{\text{(stop)}}\|}{\|F_J\|} \leq 10^{-5} \frac{\|F_J - \mathbb{A}_J U_J^0\|}{\|F_J\|}.$$

We expect a p-robust solver

- \triangleright to reach the above stopping criterion in a similar number of iterations i_{stop}
- ▶ to have similar error contraction factors $\|\nabla(u_J u_J^{i+1})\|/\|\nabla(u_J u_J^i)\|$ at all iterations for different polynomial degrees p, given a fixed J number of mesh levels.

0.0

NUMERICAL RESULTS: L-SHAPE PROBLEM

Comparing the number of iterations i_{stop} to reach the stopping criterion for **multigrid** with Jacobi and Gauss-Seidel smoothing.

			II			
					MG(0,1)	
					Jacobi	GS
J	p	DoF			istop	istop
3	1	5057			44	9
	3	46 273			-	49
	6	185 857			-	228
	9	418 753			-	586
4	1	20 481			-	9
	3	185 857			-	42
	6	744 961			-	186
	9	1 677 313			-	454
5	1	82 433			-	8
	3	744 961			-	35
	6	2982913			-	147
	9	6713857			-	333

Comparing the number of iterations i_{stop} to reach the stopping criterion for **multigrid** with *Jacobi* and *Gauss-Seidel* smoothing.

			small" "small"		MG(0,1)	
		dAS		Jacobi G		
			uAS		Jacobi	
J	р	DoF	Istop		Istop	Istop
3	1	5057	76		44	9
	3	46 273	26		-	49
	6	185 857	23		-	228
	9	418 753	21		-	586
4	1	20 481	95		-	9
	3	185 857	29		-	42
	6	744 961	27		-	186
	9	1 677 313	25		-	454
5	1	82 433	112		-	8
	3	744 961	32		-	35
	6	2982913	31		-	147
	9	6713857	28		-	333

Comparing the number of iterations i_{stop} to reach the stopping criterion for **multigrid** with *Jacobi* and *Gauss-Seidel* smoothing.

				mall"		
		patches		MG(0,1)		
			dAS		Jacobi	GS
J	p	DoF	istop		i _{stop}	istop
3	1	5057	76		44	9
	3	46 273	26		-	49
	6	185 857	23		-	228
	9	418 753	21		-	586
4	1	20 481	95		-	9
	3	185 857	29		-	42
	6	744 961	27		-	186
	9	1 677 313	25		-	454
5	1	82 433	112		-	8
	3	744 961	32		-	35
	6	2982913	31		-	147
	9	6713857	28		-	333

$$1 \leq j \leq J:$$

$$\rho_{J,\text{alg}}^{i} = \rho_{0}^{i} + \sum_{j=1}^{J} \frac{\sum_{\mathbf{a} \in \mathcal{V}_{j}} \rho_{j,\mathbf{a}}^{i}}{J(d+1)} \qquad \text{(dAS)}$$

$$\rho_{J,\text{alg}}^{i} = \rho_{0}^{i} + \sum_{j=1}^{J} \sum_{\mathbf{a} \in \mathcal{V}_{j}} \mathcal{I}_{j}^{p}(\psi_{j}^{\mathbf{a}} \rho_{j,\mathbf{a}}^{i}), \qquad \text{(wRAS)}$$

Comparing the number of iterations i_{stop} to reach the stopping criterion for **multigrid** with *Jacobi* and *Gauss-Seidel* smoothing.

				mall"		
			patches		MG(C),1)
			dAS		Jacobi GS	
J	p	DoF	istop		<i>i</i> stop	istop
3	1	5057	76		44	9
	3	46 273	26		-	49
	6	185 857	23		-	228
	9	418 753	21		-	586
4	1	20 481	95		-	9
	3	185 857	29		-	42
	6	744 961	27		-	186
	9	1 677 313	25		-	454
5	1	82 433	112		-	8
	3	744 961	32		-	35
	6	2982913	31		-	147
	9	6713857	28		-	333

$$1 \le j \le J:$$

$$\rho_{J,\text{alg}}^{i} = \rho_{0}^{i} + \sum_{i=1}^{J} \frac{\sum_{\mathbf{a} \in \mathcal{V}_{j}} \rho_{j,\mathbf{a}}^{i}}{J(d+1)}$$
 (dAS)

$$\rho_{J,\text{alg}}^{i} = \rho_{0}^{i} + \sum_{j=1}^{J} \sum_{\mathbf{a} \in \mathcal{V}_{j}} \mathcal{I}_{j}^{p}(\psi_{j}^{\mathbf{a}} \rho_{j,\mathbf{a}}^{i}), \quad \text{(wRAS)}$$

- ▶ \mathcal{I}_{j}^{p} is the \mathbb{P}^{p} Lagrange interpolation operator on mesh level j
- For vertex $\mathbf{a} \in \mathcal{V}_j$, we denote the associated hat function by $\psi_j^{\mathbf{a}}$

Comparing the number of iterations i_{stop} to reach the stopping criterion for **multigrid** with *Jacobi* and *Gauss-Seidel* smoothing.

				mall"	MO(0.1)		
			pat	ches	MG(0,1)		
			dAS	wRAS	Jacobi	GS	
J	p	DoF	istop	istop	istop	istop	
3	1	5057	76	17	44	9	
	3	46 273	26	12	-	49	
	6	185 857	23	10	-	228	
	9	418 753	21	10	-	586	
4	1	20 481	95	18	-	9	
	3	185 857	29	12	-	42	
	6	744 961	27	10	-	186	
	9	1 677 313	25	9	-	454	
5	1	82 433	112	17	-	8	
	3	744 961	32	12	-	35	
	6	2982913	31	9	-	147	
	9	6713857	28	8	-	333	
	6	2982913	31	9		147	

$$1 \le j \le J:$$

$$\rho_{J,\text{alg}}^{i} = \rho_{0}^{i} + \sum_{i=1}^{J} \frac{\sum_{\mathbf{a} \in \mathcal{V}_{j}} \rho_{j,\mathbf{a}}^{i}}{J(d+1)}$$
 (dAS)

$$\rho_{J,\text{alg}}^{i} = \rho_{0}^{i} + \sum_{j=1}^{J} \sum_{\mathbf{a} \in \mathcal{V}_{j}} \mathcal{I}_{j}^{p}(\psi_{j}^{\mathbf{a}} \rho_{j,\mathbf{a}}^{i}), \quad \text{(wRAS)}$$

- ▶ \mathcal{I}_{j}^{p} is the \mathbb{P}^{p} Lagrange interpolation operator on mesh level j
- For vertex $\mathbf{a} \in \mathcal{V}_j$, we denote the associated hat function by $\psi_j^{\mathbf{a}}$

Comparing the number of iterations i_{stop} to reach the stopping criterion for **multigrid** with *Jacobi* and *Gauss-Seidel* smoothing.

				mall"	"big"	MC(0.1)		
				ches	patches	MG(0,1)		
			dAS	wRAS	wRAS	Jacobi	GS	
J	p	DoF	istop	istop	<i>i</i> stop	<i>i</i> stop	istop	
3	1	5057	76	17	8	44	9	
	3	46 273	26	12	5	-	49	
	6	185 857	23	10	5	-	228	
	9	418 753	21	10	5	-	586	
4	1	20 481	95	18	8	-	9	
	3	185 857	29	12	5	-	42	
	6	744 961	27	10	5	-	186	
	9	1 677 313	25	9	5	-	454	
5	1	82 433	112	17	8	-	8	
	3	744 961	32	12	5	-	35	
	6	2982913	31	9	5	-	147	
	9	6713857	28	8	4	-	333	

$$1 \le j \le J:$$

$$\rho_{J,\text{alg}}^{i} = \rho_{0}^{i} + \sum_{i=1}^{J} \frac{\sum_{\mathbf{a} \in \mathcal{V}_{j}} \rho_{j,\mathbf{a}}^{i}}{J(d+1)}$$
 (dAS)

$$\rho_{J,\text{alg}}^{i} = \rho_{0}^{i} + \sum_{j=1}^{J} \sum_{\mathbf{a} \in \mathcal{V}_{j}} \mathcal{I}_{j}^{p}(\psi_{j}^{\mathbf{a}} \rho_{j,\mathbf{a}}^{i}), \quad \text{(wRAS)}$$

- ▶ \mathcal{I}_{j}^{p} is the \mathbb{P}^{p} Lagrange interpolation operator on mesh level j
- For vertex $\mathbf{a} \in \mathcal{V}_j$, we denote the associated hat function by $\psi_j^{\mathbf{a}}$

COMPARISON WITH OTHER MULTILEVEL SOLVERS

³Antonietti and Pennesi. "V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes". 2019.

⁴Botti et al. "h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems". 2017.

Schöberl. "C++11 Implementation of Finite Elements in NGSolve". 2014.

⁶The experiments were run on one **Dell C6220** dual-Xeon E5-2650 node of Inria Sophia Antipolis - Méditerranée "NEF" computation cluster, however, in a sequential Matlab script.

			wRAS				
				$p \to p$			
,	۱	DoF	1 / "				
J	р		l _{stop}	time			
3	1	5057	17	0.0 s			
	3	46 273	12	0.2 s			
	6	185 857	10	1.5 s			
	9	418 753	10	7.2 s			
4	1	20 481	18	0.0 s			
	3	185 857	12	1.0 s			
	6	744 961	10	8.4 s			
	9	1 677 313	9	29.7 s			
5	1	82 433	17	0.2 s			
	3	744 961	12	3.4 s			
	6	2 982 913	9	24.3 s			
	9	6 713 857	8	2.2m			

³Antonietti and Pennesi. "V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes". 2019.

Botti et al. "h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems". 2017.

⁵Schöberl. "C++11 Implementation of Finite Elements in NGSolve". 2014.

⁶The experiments were run on one **Dell C6220** dual-Xeon E5-2650 node of Inria Sophia Antipolis - Méditerranée "NEF" computation cluster, however, in a sequential Matlab script.

			wRAS		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	RAS₁		
				$p \to p$		$\rightarrow 1, p$		
J	p	DoF	i_{stop} time		i _{stop} time			
3	1	5057	17	0.0 s	17	0.0 s		
	3	46 273	12	0.2 s	18	0.2 s		
	6	185 857	10	1.5 s	15	1.7 s		
	9	418 753	10	7.2 s	14	7.7 s		
4	1	20 481	18	0.0 s	18	0.0 s		
	3	185 857	12	1.0 s	18	1.0 s		
	6	744 961	10	8.4 s	15	7.5 s		
	9	1 677 313	9	29.7 s	13	36.1 s		
5	1	82 433	17	0.2 s	17	0.2 s		
	3	744 961	12	3.4 s	17	3.6 s		
	6	2 982 913	9	24.3 s	14	26.8 s		
	9	6 713 857	8	2.2m	12	2.2m		

³Antonietti and Pennesi. "V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes". 2019.

Botti et al. "h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems". 2017.

⁵Schöberl. "C++11 Implementation of Finite Elements in NGSolve". 2014.

⁶The experiments were run on one **Dell C6220** dual-Xeon E5-2650 node of Inria Sophia Antipolis - Méditerranée "NEF" computation cluster, however, in a sequential Matlab script.

								G(MG		
			W	RAS	wRAS ₁		(3,3)-bJ)			
			1,	$1, p \rightarrow p$		$1 \rightarrow 1, p$		$\rightarrow p$		
J	p	DoF	istop	time	istop	time	istop	time		
3	1	5057	17	0.0 s	17	0.0 s	7	0.0 s		
	3	46 273	12	0.2 s	18	0.2 s	3	0.2 s		
	6	185 857	10	1.5 s	15	1.7 s	2	2.0 s		
	9	418 753	10	7.2 s	14	7.7 s	2	10.5 s		
4	1	20 481	18	0.0 s	18	0.0 s	8	0.1 s		
	3	185 857	12	1.0 s	18	1.0 s	3	0.8 s		
	6	744 961	10	8.4 s	15	7.5 s	3	11.4 s		
	9	1 677 313	9	29.7 s	13	36.1 s	2	30.3 s		
5	1	82 433	17	0.2 s	17	0.2 s	8	0.3 s		
	3	744 961	12	3.4 s	17	3.6 s	3	3.6 s		
	6	2 982 913	9	24.3 s	14	26.8 s	3	38.9 s		
	9	6 713 857	8	2.2m	12	2.2m	2	3.5m		

³Antonietti and Pennesi. "V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes". 2019.

Botti et al. "h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems". 2017.

⁵Schöberl. "C++11 Implementation of Finite Elements in NGSolve". 2014.

⁶The experiments were run on one **Dell C6220** dual-Xeon E5-2650 node of Inria Sophia Antipolis - Méditerranée "NEF" computation cluster, however, in a sequential Matlab script.

			,,,	RAS		RAS₁		G(MG	MG(1,1)- PCG(iChol)		
							· · ·	(3,3)-bJ)		(iCrioi)	
			1, μ	$p \to p$	$1 \rightarrow 1, p$		$ p \rightarrow p $		1 > p		II.
J	p	DoF	i _{stop}	time	istop	time	i _{stop}	time	istop	time	
3	1	5057	17	0.0 s	17	0.0 s	7	0.0 s	4	0.1 s	
	3	46 273	12	0.2 s	18	0.2 s	3	0.2 s	14	0.5 s	
	6	185 857	10	1.5 s	15	1.7 s	2	2.0 s	21	7.6 s	
	9	418 753	10	7.2 s	14	7.7 s	2	10.5 s	63	1.2m	
4	1	20 481	18	0.0 s	18	0.0 s	8	0.1 s	7	0.1 s	
	3	185 857	12	1.0 s	18	1.0 s	3	0.8 s	29	4.1 s	
	6	744 961	10	8.4 s	15	7.5 s	3	11.4 s	49	58.9 s	
	9	1 677 313	9	29.7 s	13	36.1 s	2	30.3 s	167	12.5m	
5	1	82 433	17	0.2 s	17	0.2 s	8	0.3 s	19	0.8 s	
	3	744 961	12	3.4 s	17	3.6 s	3	3.6 s	77	57.7 s	
	6	2 982 913	9	24.3 s	14	26.8 s	3	38.9 s	129	11.6m	
	9	6 713 857	8	2.2m	12	2.2m	2	3.5m	+200	+1.0 h	

Antonietti and Pennesi. "V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes". 2019.

⁴Botti et al. "h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems". 2017.

⁵Schöberl. "C++11 Implementation of Finite Elements in NGSolve". 2014.

⁶The experiments were run on one **Dell C6220** dual-Xeon E5-2650 node of Inria Sophia Antipolis - Méditerranée "NEF" computation cluster, however, in a sequential Matlab script.

COMPARISON WITH OTHER MULTILEVEL SOLVERS

	ll l				PCG(MG		MG	MG(1,1)-		G(0,1)-			
	wRAS		wRAS ₁		(3,	(3)-bJ)	PCG(iChol)		bGS				
			1, μ	p o p	$1 \rightarrow 1, p$		$p \rightarrow p$		1 / p		$ 1 \rightarrow 1, p$		
J	p	DoF	istop	time	istop	time	istop	time	i _{stop}	time	istop	time	
3	1	5057	17	0.0 s	17	0.0 s	7	0.0 s	4	0.1 s	9	0.0 s	
	3	46 273	12	0.2 s	18	0.2 s	3	0.2 s	14	0.5 s	8	1.0 s	
	6	185 857	10	1.5 s	15	1.7 s	2	2.0 s	21	7.6 s	7	2.4 s	
	9	418 753	10	7.2 s	14	7.7 s	2	10.5 s	63	1.2m	6	7.4 s	
4	1	20 481	18	0.0 s	18	0.0 s	8	0.1 s	7	0.1 s	9	0.0 s	
	3	185 857	12	1.0 s	18	1.0 s	3	0.8 s	29	4.1 s	8	4.3 s	
	6	744 961	10	8.4 s	15	7.5 s	3	11.4 s	49	58.9 s	7	11.9 s	
	9	1 677 313	9	29.7 s	13	36.1 s	2	30.3 s	167	12.5m	6	29.2 s	
5	1	82 433	17	0.2 s	17	0.2 s	8	0.3 s	19	0.8 s	8	0.1 s	
	3	744 961	12	3.4 s	17	3.6 s	3	3.6 s	77	57.7 s	8	16.1 s	
	6	2 982 913	9	24.3 s	14	26.8 s	3	38.9 s	129	11.6m	7	44.5 s	ıl
	9	6 713 857	8	2.2m	12	2.2m	2	3.5m	+200	+1.0 h	6	2.1m	ıl

³Antonietti and Pennesi. "V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes". 2019.

⁴Botti et al. "h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems". 2017.

⁵Schöberl. "C++11 Implementation of Finite Elements in NGSolve". 2014.

⁶The experiments were run on one **Dell C6220** dual-Xeon E5-2650 node of Inria Sophia Antipolis - Méditerranée "NEF" computation cluster, however, in a sequential Matlab script.

			wRAS $1, p \rightarrow p$		wRAS ₁ $1 \rightarrow 1, p$		PCG(MG (3,3)-bJ) $p \rightarrow p$		MG(1,1)- PCG(iChol) 1 <i>≯ p</i>		$ \begin{array}{c c} MG(0,1)-\\ bGS\\ 1 \to 1, p \end{array} $			3(3,3)- GS <i></i> ∕ <i>p</i>
J	p	DoF	i _{stop}	time	i _{stop}	time	i _{stop}	time	i _{stop}	time	i _{stop}	time	i _{stop}	time
3	1	5057	17	0.0 s	17	0.0 s	7	0.0 s	4	0.1 s	9	0.0 s	3	0.0 s
	3	46 273	12	0.2 s	18	0.2 s	3	0.2 s	14	0.5 s	8	1.0 s	4	0.1 s
	6	185 857	10	1.5 s	15	1.7 s	2	2.0 s	21	7.6 s	7	2.4 s	9	1.6 s
	9	418 753	10	7.2 s	14	7.7 s	2	10.5 s	63	1.2m	6	7.4 s	9	4.3 s
4	1	20 481	18	0.0 s	18	0.0 s	8	0.1 s	7	0.1 s	9	0.0 s	3	0.0 s
	3	185 857	12	1.0 s	18	1.0 s	3	0.8 s	29	4.1 s	8	4.3 s	4	0.3 s
	6	744 961	10	8.4 s	15	7.5 s	3	11.4 s	49	58.9 s	7	11.9 s	5	2.9 s
	9	1 677 313	9	29.7 s	13	36.1 s	2	30.3 s	167	12.5m	6	29.2 s	8	16.0 s
5	1	82 433	17	0.2 s	17	0.2 s	8	0.3 s	19	0.8 s	8	0.1 s	3	0.1 s
	3	744 961	12	3.4 s	17	3.6 s	3	3.6 s	77	57.7 s	8	16.1 s	4	1.5 s
	6	2 982 913	9	24.3 s	14	26.8 s	3	38.9 s	129	11.6m	7	44.5 s	4	10.0 s
	9	6 713 857	8	2.2m	12	2.2m	2	3.5m	+200	+1.0 h	6	2.1m	8	1.2m

³Antonietti and Pennesi. "V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes". 2019.

⁴Botti et al. "h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems". 2017.

⁵Schöberl. "C++11 Implementation of Finite Elements in NGSolve". 2014.

⁶The experiments were run on one **Dell C6220** dual-Xeon E5-2650 node of Inria Sophia Antipolis - Méditerranée "NEF" computation cluster, however, in a sequential Matlab script.

▶ a multilevel construction of the algebraic residual lifting

- ▶ a multilevel construction of the algebraic residual lifting
- ▶ an a posteriori estimator on the algebraic error and a linear iterative solver

- ▶ a multilevel construction of the algebraic residual lifting
- ▶ an a posteriori estimator on the algebraic error and a linear iterative solver
- ▶ the proof of *p-robust efficiency* of the a posteriori estimator and *p-robust error* contraction of the solver

- a multilevel construction of the algebraic residual lifting
- ▶ an a posteriori estimator on the algebraic error and a linear iterative solver
- the proof of p-robust efficiency of the a posteriori estimator and p-robust error contraction of the solver
- numerical tests which agree with these theoretical findings

- ▶ a multilevel construction of the algebraic residual lifting
- ▶ an a posteriori estimator on the algebraic error and a linear iterative solver
- the proof of p-robust efficiency of the a posteriori estimator and p-robust error contraction of the solver
- numerical tests which agree with these theoretical findings

OUTLOOK: In future work, we aim to

- a multilevel construction of the algebraic residual lifting
- an a posteriori estimator on the algebraic error and a linear iterative solver
- the proof of p-robust efficiency of the a posteriori estimator and p-robust error contraction of the solver
- numerical tests which agree with these theoretical findings

OUTLOOK: In future work, we aim to

better understand the role of the mesh levels *J*.

- ▶ a multilevel construction of the algebraic residual lifting
- an a posteriori estimator on the algebraic error and a linear iterative solver
- the proof of p-robust efficiency of the a posteriori estimator and p-robust error contraction of the solver
- numerical tests which agree with these theoretical findings

OUTLOOK: In future work, we aim to

- better understand the role of the mesh levels J.
- ▶ use *adaptivity* based on the derived splitting (equivalent to algebraic error estimator).

- ▶ a multilevel construction of the algebraic residual lifting
- ▶ an a posteriori estimator on the algebraic error and a linear iterative solver
- ▶ the proof of *p-robust efficiency* of the a posteriori estimator and *p-robust error* contraction of the solver
- numerical tests which agree with these theoretical findings

OUTLOOK: In future work, we aim to

- better understand the role of the mesh levels J.
- ▶ use *adaptivity* based on the derived splitting (equivalent to algebraic error estimator).
- apply our method to more involved problems.

THANK YOU FOR YOUR ATTENTION!