Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz Additive Schwar

DG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Transmission Results Experiments

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Block Jacobi, Schwarz, and Discontinuous Galerkin

Martin J. Gander martin.gander@unige.ch

University of Geneva

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz Additive Schwar

DG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Transmission Results Experiments

Conclusion

Block Jacobi, Schwarz, and Discontinuous Galerkin

Martin J. Gander martin.gander@unige.ch

University of Geneva

Paris, March 30th to April 1st, 2020 June 8th-10th, 2022 joint work with Soheil Hajian

GATIPOR:

Interplay of discretization and algebraic solvers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Block Jacobi Methods

Poisson equation as model problem:

$$\begin{aligned} -\Delta u &= f, & \text{ in } \Omega \subset \mathbb{R}^2 \\ u &= 0, & \text{ on } \partial \Omega. \end{aligned}$$

Discretization leads to a linear system of equations:

Au = f,

where u is the vector of degrees of freedom representing approximations of u and possibly ∇u .

Block Jacobi with two non-overlapping subblocks:

$$Mu^{n+1} = Nu^n + f$$

$$M = \begin{bmatrix} A_1 & O \\ \hline O & A_2 \end{bmatrix}, \ N = -\begin{bmatrix} 0 & A_{12} \\ \hline A_{21} & O \end{bmatrix}.$$

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacob

Model Problem

1D Example Parallel Schwarz Additive Schwarz

DG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Transmission Results Experiments

Conclusion

・ロト・西ト・ヨト ・日・ うへぐ

A simple example in 1D

Discretization of the Possion equation with finite differences:

$$Au = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & & \\ 1 & -2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix} = f$$

Block Jacobi written componentwise:

$$A_1 u_1^{n+1} = f_1 - A_{12} u_2^n, \qquad A_2 u_2^{n+1} = f_2 - A_{21} u_1^n$$

with the transmission matrices

$$A_{12} = \begin{bmatrix} & & \\ & & \\ \frac{1}{h^2} & \end{bmatrix}, \qquad A_{21} = \begin{bmatrix} & \frac{1}{h^2} \\ & & \end{bmatrix}.$$

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacob

Model Problem

1D Example Parallel Schwarz Additive Schwarz

DG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Transmission Results

Experiments

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From Block Jacobi to Schwarz

So for the first subblock, $A_1u_1^{n+1} = f_1 - A_{12}u_2^n$ becomes

$$\frac{1}{h^2} \begin{bmatrix} -2 & 1 & & \\ 1 & -2 & \ddots & \\ & 1 & -2 & \ddots & \\ & & \ddots & \ddots & 1 \\ & & 1 & -2 \end{bmatrix} \begin{bmatrix} u_{1,1}^{n+1} \\ u_{1,2}^{n+1} \\ \vdots \\ u_{1,b-1}^{n+1} \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_{b-1} \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \frac{1}{h^2} u_{2,b}^n \end{bmatrix}$$

and for the second subblock, $A_2u_2^{n+1} = f_2 - A_{21}u_1^n$ becomes

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacob

Model Problem

1D Example Parallel Schwarz Additive Schwarz

DG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Transmission Results Experiments

From Block Jacobi to Schwarz

Result: The non-overlapping block Jacobi method

$$\left[\begin{array}{cc}A_1 & 0\\ 0 & A_2\end{array}\right]\left(\begin{array}{c}u_1^{n+1}\\ u_2^{n+1}\end{array}\right) = \left[\begin{array}{cc}0 & -A_{12}\\ -A_{21} & 0\end{array}\right]\left(\begin{array}{c}u_1^n\\ u_2^n\end{array}\right) + \left(\begin{array}{c}f_1\\ f_2\end{array}\right)$$

is a classical finite difference discretization of Lions' parallel Schwarz method from 1988 with minimal overlap h,

$$\begin{array}{rcl} \Delta u_1^{n+1} &=& f, \text{ in } \Omega_1 \\ u_1^{n+1} &=& u_2^n, \text{ at } x = \beta \end{array} \qquad \begin{array}{rcl} \Delta u_2^{n+1} &=& f, \text{ in } \Omega_2 \\ u_2^{n+1} &=& u_1^n, \text{ at } x = \alpha \end{array}$$

Holds also for classical FEM discretizations

G.: Schwarz Methods Over the Course of Time, ETNA, 2008

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacob

Model Problem

Parallel Schwarz

Additive Schwarz

DG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Transmission Results Experiments

 $R_{1} = \begin{bmatrix} & & & \\ & \ddots & \\ & & 1 \end{bmatrix}, \quad R_{2} = \begin{bmatrix} & & & \\ & \ddots & \\ & & \\ \text{and } A_{i} = R_{i}AR_{i}^{T}, \text{ Additive Schwarz is defined as} \end{bmatrix}$

$$u^{n+1} = u^n + (R_1^T A_1^{-1} R_1 + R_2^T A_2^{-1} R_2)(f - Au^n)$$

Theorem (G 2008)

If the R_j do not overlap, Additive Schwarz for a Finite Difference or classical Finite Element discretization gives a consistent discretization of the parallel Schwarz method of Lions.

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz

Additive Schwarz

DG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Transmission Results Experiments

Proof Sketch of this Result

$$u^{n+1} = u^n + (R_1^T A_1^{-1} R_1 + R_2^T A_2^{-1} R_2)(f - Au^n)$$

contains an interesting cancellation:

$$R_{2}(f - Au^{n}) = f_{2} - A_{21}u_{1}^{n} - A_{2}u_{2}^{n}$$

$$A_{2}^{-1}R_{2}(f - Au^{n}) = A_{2}^{-1}(f_{2} - A_{21}u_{1}^{n}) - u_{2}^{n}$$

$$R_{2}^{T}A_{2}^{-1}R_{12}(f - Au^{n}) = \begin{pmatrix} 0 \\ A_{2}^{-1}(f_{2} - A_{21}u_{1}^{n}) - u_{2}^{n} \end{pmatrix}$$

Similarly

$$R_1^T A_1^{-1} R_1(f - Au^n) = \begin{pmatrix} A_1^{-1}(f_1 - A_{12}u_2^n) - u_1^n \\ 0 \end{pmatrix}$$

Hence

$$u^{n+1} = u^{n} + \begin{pmatrix} A_1^{-1}(f_1 - A_{12}u_2^n) - u_1^n \\ A_2^{-1}(f_2 - A_{21}u_1^n) - u_2^n \end{pmatrix}$$

Remark: This does not work with more overlap \implies **RAS** $_{\mathcal{OQC}}$

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz

Additive Schwarz

DG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Transmission Results

Discontinuous Galerkin: SIPG example

$$-\Delta u + rac{1}{arepsilon} u = f$$
 in $\Omega := (0, 1), \qquad u = 0$ on $\partial \Omega$

Variational form a(u, v) = (f, v), and discontinuous approximation space on mesh cells K:

$$V_h := \{ v \in L^2(\Omega) | \forall K, v_K \in \mathbb{P}_p(K) \}.$$

With the jump and average operators

$$[[u]] := u^+ - u^-, \quad \{\{u\}\} := \frac{u^- + u^+}{2},$$

the SIPG bilinear form on $\mathbb T$ the union of K is

$$a_{h}(u,v) := \int_{\mathbb{T}} \nabla u \cdot \nabla v dx + \frac{1}{\varepsilon} \int_{\mathbb{T}} uv dx + \int_{\mathbb{F}} \left(\left[[u] \right] \left\{ \left\{ \frac{\partial v}{\partial n} \right\} \right\} + \left\{ \left\{ \frac{\partial u}{\partial n} \right\} \right\} \left[[v] \right] \right) ds + \int_{\mathbb{F}} \mu \left[[u] \right] \left[[v] \right] ds$$

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz Additive Schwarz

)G

SIPG Example

Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Transmission Results

Experiment

where $\mu_0 := \mu h$. What DD method is Block Jacobi?

000

Many More Discontinuous Galerkin Methods

For example based on the mixed form (flux formulation, Arnold, Brezzi SINUM (2002))

$$\sigma = \nabla u, \quad -\nabla \cdot \sigma = f(x), \quad x \in \Omega.$$

Multiplication with test functions au and v on each element K and integration by parts leads to

$$\begin{aligned} (\boldsymbol{\sigma}_h, \boldsymbol{\tau})_{\mathcal{K}} &= -\left(\boldsymbol{u}_h, \nabla \cdot \boldsymbol{\tau}\right)_{\mathcal{K}} + \langle \hat{\boldsymbol{u}}_h, \boldsymbol{\tau} \cdot \boldsymbol{n}_{\mathcal{K}} \rangle_{\partial \mathcal{K}} & \forall \boldsymbol{\tau} \in \mathbb{P}_p(\mathcal{K})^2 \\ (\boldsymbol{\sigma}_h, \nabla \boldsymbol{v})_{\mathcal{K}} &= (f, \boldsymbol{v})_{\mathcal{K}} + \langle \boldsymbol{v}, \hat{\boldsymbol{\sigma}}_h \cdot \boldsymbol{n}_{\mathcal{K}} \rangle_{\partial \mathcal{K}} & \forall \boldsymbol{v} \in \mathbb{P}_p(\mathcal{K}) \end{aligned}$$

Definition of the numerical fluxes \hat{u}_h and $\hat{\sigma}_h$ leads to many DG methods.

LDG: Local Discontinuous Galerkin method

$$\hat{u}_h = (u_h)_{\mathcal{K}_1}, \quad \hat{\boldsymbol{\sigma}}_h = (\boldsymbol{\sigma}_h)_{\mathcal{K}_2} - \mu [[u_h]]$$

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz Additive Schwarz

DG

SIPG Example

```
Many DG Methods
BJ-DD Equivalence
Interplay
```

Nodified BJ

Transmission Results Experiments

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Hybridizable Variants of DG

Cockburn, Gopalakrishnan, Lazarov, SINUM (2009):

LDG-H: hybridizable variant of LDG

$$\hat{u}_{h} = \frac{\mu_{1}}{\mu_{1} + \mu_{2}} u_{h,1} + \frac{\mu_{2}}{\mu_{1} + \mu_{2}} u_{h,2} - \frac{1}{\mu_{1} + \mu_{2}} [[\sigma_{h}]]$$
$$\hat{\sigma}_{h} = \frac{\mu_{2}}{\mu_{1} + \mu_{2}} \sigma_{h,1} + \frac{\mu_{1}}{\mu_{1} + \mu_{2}} \sigma_{h,2} - \frac{\mu_{1}\mu_{2}}{\mu_{1} + \mu_{2}} [[u_{h}]]$$

IP-H: a hybridizable variant of Interior Penalty DG

$$\hat{u}_{h} = \frac{\mu_{1}}{\mu_{1} + \mu_{2}} u_{h,1} + \frac{\mu_{2}}{\mu_{1} + \mu_{2}} u_{h,2} - \frac{1}{\mu_{1} + \mu_{2}} [[\nabla u_{h}]]$$
$$\hat{\sigma}_{h} = \frac{\mu_{2}}{\mu_{1} + \mu_{2}} \nabla u_{h,1} + \frac{\mu_{1}}{\mu_{1} + \mu_{2}} \nabla u_{h,2} - \frac{\mu_{1}\mu_{2}}{\mu_{1} + \mu_{2}} [[u_{h}]]$$

What kind of DD method does one obtain if one applied Block Jacobi to any of these discretizations ???

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacob

Model Problem 1D Example Parallel Schwarz Additive Schwarz

CG

SIPG Example Many DG Methods BJ-DD Equivalence

Interplay Experiments

Modified BJ

Transmission Results

Equivalence Results

Theorem (G. Hajian 2014)

Block Jacobi applied to **LDG** is a discretization of the non-overlapping optimized Schwarz method

$$\begin{aligned} -\Delta u_{1}^{(n+1)} &= f & \text{in } \Omega_{1}, & -\Delta u_{2}^{(n+1)} &= f & \text{in } \Omega_{2} \\ \mathcal{B}_{1} u_{1}^{(n+1)} &= \mathcal{B}_{1} u_{2}^{(n)} & \text{on } \Gamma, & \mathcal{B}_{2} u_{2}^{(n+1)} &= \mathcal{B}_{2} u_{1}^{(n)} & \text{on } \Gamma \end{aligned}$$

with transmission conditions $\mathcal{B}_1 = \partial_{n_1} + \mu$ and $\mathcal{B}_2 = I$.

Theorem (G. Hajian 2014)

Block Jacobi applied to **LDG-H** or **IP-H** is a discretization of the non-overlapping optimized Schwarz method with transmission conditions $\mathcal{B}_1 = \partial_{n_1} + \mu_2$ and $\mathcal{B}_2 = \partial_{n_2} + \mu_1$.

Same results also hold with the reaction term.

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz Additive Schwarz

DG

- SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments
- Transmission
- Experiment

Conclusion

▲ロト ▲帰下 ▲ヨト ▲ヨト ヨー のくで

Interplay of discretization and algebraic solver Theorem (G. 2006)

With $\mu = \frac{C}{\sqrt{h}}$, the optimized Schwarz method converges with convergence factor estimate

 $ho = 1 - O(\sqrt{h})$ (like SOR with ω^*)

With
$$\mu_1=rac{\mathcal{C}_1}{h^{1/4}}$$
 and $\mu_2=rac{\mathcal{C}_2}{h^{3/4}}$, we get

 $\rho = 1 - O(h^{1/4})$ (much faster than SOR!).

For LDG-H, we can choose $\mu = \frac{C}{\sqrt{h}}$, but for IP-H and LDG we must choose $\mu_j = \frac{C_j}{h}$ for convergence of DG. Corollary (G. Hajian (2014)) With $\mu_j = \frac{C_j}{h}$, the optimized Schwarz method converges like $\rho = 1 - O(h)$ (like classical Schwarz).

・ロト・(部・・モト・モー・)の()

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz Additive Schwarz

DG

SIPG Example Many DG Methods BJ-DD Equivalence

Interplay Experiments

Modified BJ

Transmission Results Experiments

Numerical Experients: LDG-H

Left: asymptotic number of iterations required by the block Jacobi using LDG-H.

Right: unstructured mesh with the interface $\Gamma = \{0.5\} \times (0, 1)$.

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz Additive Schwarz

CG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Experiments

- Modified B.
- Transmission Results
- Experiments

LDG-H, LDG and IP-H comparison

Block Jacobi method for LDG-H, LDG, IP-H and LDG-H with μ^* for \mathbb{P}_1 and \mathbb{P}_2 DG elements.

Is it possible to improve the convergence of block Jacobi applied to LDG and IP-H?

Block Jacobi, Schwarz and DG

Martin J. Gander

- Experiments

・ロト (語) () () () () -

Modified Block Jacobi for IP-H

The continuity condition between K_i and K_i in IP-H states

$$\lambda_h = \frac{1}{2\mu} \Big(\mu u_i - \frac{\partial u_i}{\partial n_i} \Big) + \frac{1}{2\mu} \Big(\mu u_j - \frac{\partial u_j}{\partial n_j} \Big), \quad \text{on } K_i \cap K_j.$$

On subdomain interfaces Γ_{ij} we introduce the double trace

$$\begin{split} \gamma \lambda_i + (1 - \gamma) \lambda_j &= \frac{1}{2\mu} \left(\mu u_i - \frac{\partial u_i}{\partial \mathsf{n}_i} \right) + \frac{1}{2\mu} \left(\mu u_j - \frac{\partial u_j}{\partial \mathsf{n}_j} \right) \\ (1 - \gamma) \lambda_i + \gamma \lambda_j &= \frac{1}{2\mu} \left(\mu u_i - \frac{\partial u_i}{\partial \mathsf{n}_i} \right) + \frac{1}{2\mu} \left(\mu u_j - \frac{\partial u_j}{\mathsf{n}_j} \right) \end{split}$$

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz Additive Schwarz

CG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Transmission Results Experiments

At the Linear Algebra Level

For a two subdomain example

$$\begin{bmatrix} A_1 & A_{1\Gamma} \\ & A_2 & A_{2\Gamma} \\ A_{1\Gamma}^{\top} & A_{2\Gamma}^{\top} & A_{\Gamma} \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \lambda \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ 0 \end{pmatrix},$$

imposing double valued traces $\lambda_1 = \lambda_2 = \lambda$,

$$\begin{array}{rcl} \gamma \mathcal{A}_{\Gamma} \lambda_{1} &+ & (1-\gamma) \mathcal{A}_{\Gamma} \lambda_{2} &+ & \mathcal{A}_{1\Gamma}^{\top} \mathsf{u}_{1} &+ & \mathcal{A}_{2\Gamma}^{\top} \mathsf{u}_{2} &= & \mathbf{0}, \\ (1-\gamma) \mathcal{A}_{\Gamma} \lambda_{1} &+ & & \gamma \mathcal{A}_{\Gamma} \lambda_{2} &+ & \mathcal{A}_{1\Gamma}^{\top} \mathsf{u}_{1} &+ & \mathcal{A}_{2\Gamma}^{\top} \mathsf{u}_{2} &= & \mathbf{0}, \end{array}$$

leads to the augmented system

$$\begin{bmatrix} A_1 & A_{1\Gamma} & & \\ A_{1\Gamma}^{\top} & \gamma A_{\Gamma} & A_{2\Gamma}^{\top} & (1-\gamma)A_{\Gamma} \\ \hline & & A_2 & A_{2\Gamma} \\ A_{1\Gamma}^{\top} & (1-\gamma)A_{\Gamma} & A_{2\Gamma}^{\top} & \gamma A_{\Gamma} \end{bmatrix} \begin{pmatrix} u_1 \\ \lambda_1 \\ u_2 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ 0 \\ f_2 \\ 0 \end{pmatrix}$$

Can do block Jacobi on this augmented system!

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacob

Model Problem 1D Example Parallel Schwarz Additive Schwarz

DG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Transmission Results Experiments

Conclusion

.

Convergence Estimates

Theorem (G. Hajian 2018)

For the reaction diffusion equation

$$\Delta u - \frac{1}{\varepsilon}u = f,$$

we get the contraction factor estimate

$$\rho_{opt} \leq \begin{cases} 1 - O(\frac{\sqrt{hH}}{p}) & \text{for } \varepsilon = O(1), & \text{if } \gamma_{opt} = \frac{1}{2}(1 + \frac{\sqrt{hH}}{p}), \\ 1 - O(\frac{\sqrt{h}}{p}) & \text{for } \varepsilon = O(H), & \text{if } \gamma_{opt} = \frac{1}{2}(1 + \frac{\sqrt{h}}{p}), \\ 1 - O(\sqrt{\frac{h}{H}\frac{1}{p}}) & \text{for } \varepsilon = O(H^2), & \text{if } \gamma_{opt} = \frac{1}{2}(1 + \sqrt{\frac{h}{H}\frac{1}{p}}). \end{cases}$$

Additive Schwarz applied to the primal formulation of IPH gives

$$\rho \le 1 - O\left(\frac{hH}{p^2}\right).$$

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz Additive Schwarz

DG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ Transmission Results Experiments

Conclusion

Classical and New Block Jacobi

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacob

Model Problem 1D Example Parallel Schwarz Additive Schwar

DG

٦.

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Fransmissi

Results

Experiments

Conclusion

・ロト・日本・日本・日本・日本・日本

Classical and New Block Jacobi for IP-H

Convergence of classical Block Jacobi (Additive Schwarz, algo. 1) and new Block Jacobi (Optimized Schwarz, algo. 2)

 \mathbb{P}^1 elements, $\mu_0 = c(p+1)(p+2)$, c > 0 a constant independent of h and p = 1 (polynomial degree).

・ロト・西ト・西ト・西ト・日 のくの

Block Jacobi, Schwarz and DG

The many subdomain case

▲ 御 ▶ ▲ 臣

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz Additive Schwarz

CG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified BJ

Danular

Experiments

Scalability Without Coarse Space

Two Subdomains	h_0	$h_0/2$	$h_0/4$	$h_0/8$
$case\ \varepsilon = O(1)$	103	214	405	820
case $\varepsilon = O(h)$	41	60	83	115
case $\varepsilon = O(h^2)$	16	16	15	14

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacob

Model Problem 1D Example Parallel Schwarz Additive Schwarz

CG

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified B. Transmission

Experiments

Conclusions

- Block Jacobi for Finite Difference and FEM discretizations are parallel Schwarz methods with minimal overlap of one mesh size.
- Block Jacobi for DG discretizations are optimized Schwarz methods with the penalization parameter as Robin parameter.
- If penalization must be O(1/h), a minor modificatin of the Block Jacobi matrices still permits fast convergence of the corresponding iteration.

Analysis of Schwarz methods for a hybridizable discontinuous Galerkin discretization: the many subdomain case, M.J. Gander, S. Hajian, Math. of Comp., 2018.

Analysis of Schwarz methods for a hybridizable discontinuous Galerkin discretization, M.J. Gander, S. Hajian, SINUM, 2015.

Block Jacobi for discontinuous Galerkin discretizations: no ordinary Schwarz methods, M.J. Gander and S. Hajian, DD21, 2014.

Block Jacobi, Schwarz and DG

Martin J. Gander

Block Jacobi

Model Problem 1D Example Parallel Schwarz Additive Schwarz

)G

SIPG Example Many DG Methods BJ-DD Equivalence Interplay Experiments

Modified B.

Transmission Results Experiments