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Theses

. Modern key technologies require Modeling, Simulation, and
Optimization/control (MSO) of complex dynamical systems.

. Most real world systems are multi-physics systems, combining
components from different physical domains, and with
different accuracies and scales in the components.

. Modeling becomes exceedingly automatized, linking
subsystems or numerical methods in a network fashion.

. Models of real world systems have to adapt to changes in the
system during life time. Digital Twins.

. Modeling, analysis, numerics, control, optimization, data
science techniques should go hand in hand.

. Most real world (industrial) models need model reduction for
data assimilation, optimization and control.
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An MSO Wish list !

. Want representations so that coupling of models works across
different scales and physical domains.

. Want a representation that is close to the real physics for open
and closed systems.

. Model class should have nice algebraic, geometric, and
analytical properties.

. Models should be easy to analyze mathematically (existence,
uniqueness, robustness, stability, uncertainty, errors etc).

. Invariance under local coordinate transformations (in space
and time). Ideally local normal form.

. Model class should allow for easy (space-time) discretization
and modelling error adaptation to user needs.

. Class should be good for simulation, control and optimization.
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Gas transport SFB TRR 154

Collaborative Research Center Transregio
Modelling, simulation and optimization of Gas networks

. HU Berlin

. TU Berlin

. Univ. Duisburg-Essen

. FA University Erlangen-Nürnberg

. TU Darmstadt
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Components of gas flow model

System of partial differential equations with algebraic constraints
. 1D Euler eqs (with temperature) to describe flow in pipes.
. Network model, flow balance equations (Kirchhoff’s laws).
. Network elements: pipes, valves, compressors (controllers,

coolers, heaters).
. Surrogate and reduced order models.

. Erratic demand and nomination of transport capacity.

. Can we use gas network as energy storage for hydrogen or
methane produced from unused renewable energy.
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Large network size
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Gas flow model
Model: Compressible Euler equations.
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∂ρ
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Energy balance

with eq. for real gas p = RρTz(p,T ) init. and bound. cond.
. density ρ, kw heat transfer coefficient,
. temperature T , wall temperature Tw ,
. velocity v , g gravitational force,
. pressure p, λ friction coefficient,
. h height of pipe, D diameter of pipe,
. e internal energy, R gas constant of real gas.
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Model hierarchy in a pipe

Every network element/node/edge modelled via a hierarchy,
FE/FV/FD model, grid hierarchies, reduced, surrogate models.
. P. Domschke and B. Hiller and J. Lang and V. Mehrmann and R. Morandin and C. Tischendorf, Gas Network Modeling: An

Overview, TRR 154 Preprint, 2021, https://opus4.kobv.de/opus4-trr154,
. R. Morandin PhD thesis in final stage 2022
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Distributed heating

German Ministry of Education and Research (BMBF)
Energy efficiency via intelligent district heating networks (EiFer)

Coupling of heat, electric, waste incineration, and gas.

. TU Berlin

. Univ. Trier

. Fraunhofer ITWM Kaiserslautern

. Stadtwerke Ludwigshafen.
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District Heating network

Simulated heat distribution in local district heating network:
Technische Werke Ludwigshafen. Entry forward flow
temperature 84C, backward flow temperature 60C.
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Model equations
Model: Simplified incompressible 1 D Euler equations.

0 =
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+
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(ρv), Mass conservation,
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together with incompressibility condition for water. Terms for
pressure energy and dissipation work have been ignored.
. velocity v , density ρ, kw heat transfer coefficient,
. temperature T , wall temperature Tw , g gravitational force,
. λ friction coefficient, e internal energy, pressure p,
. h height of pipe, D diameter of pipe.
. S.-A. Hauschild, N. Marheineke, V. Mehrmann, J. Mohring, A. Moses Badlyan, M. Rein, and M. Schmidt, Port-Hamiltonian

modeling of disctrict heating networks, DAE Forum, 333-355, Springer Verlag, 2020.
. R. Krug, V. Mehrmann, and M. Schmidt, Nonlinear Optimization of District Heating Networks, Optimization and Engineering,

Vol. 22, 783-819, 2021.
. H. Dänschel, V. M., M. Roland, and M. Schmidt, Adaptive Nonlinear Optimization of District Heating Networks Based on

Model and Discretization Catalogs, In preparation, next week, 2022.
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Energy based network modeling
. Use energy/power as common quantity of different physical

systems connected as network via energy transfer.
. Split components into energy storage, energy dissipation

components, control inputs and outputs, as well as
interconnections and combine via a Dirac structure.

. Allow every submodel to be a model hierarchy of fine or
course, continuous or discretized, full or reduced models.

. A system theoretic way to realize this are (dissipative)
port-Hamiltonian differential-algebraic (pH DAE) systems.

. C. Beattie, V. M., H. Xu, and H. Zwart, Linear port-Hamiltonian descriptor systems. Math. Control Signals and Systems,
30:17, 2018.

. P. C. Breedveld. Modeling and Simulation of Dynamic Systems using Bond Graphs, pages 128–173. EOLSS Publishers Co.
Ltd./UNESCO, Oxford, UK, 2008.

. B. Jacob and H. Zwart. Linear port-Hamiltonian systems on infinite-dimensional spaces. Operator Theory: Advances and
Applications, 223. Birkhäuser/Springer Basel CH, 2012.

. V. M. and R. Morandin, Structure-preserving discretization for port-Hamiltonian descriptor systems. Proceedings of the 58th
IEEE Conference on Decision and Control (CDC), 9.-12.12.19, Nice, 2019. https://arxiv.org/abs/1903.10451

. A. J. van der Schaft, D. Jeltsema, Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In
Advanced Dynamics and Control of Structures and Machines, CISM Courses and Lectures, Vol. 444. Springer Verlag, New
York, N.Y., 2014.
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Nonlinear pH DAEs
Definition (M./Morandin 2019)
Let X ⊆ Rm (state space), I ⊆ R time interval, and S = I×X . Consider

E(t , x)ẋ + r(t , x) = (J(t , x)− R(r , x))e(t , x) + (B(t , x)− P(t , x))u,
y = (B(t , x) + P(t , x))T e(t , x) + (S(t , x)− N(t , x))u,

Hamiltonian H ∈ C1(S,R), where E ∈ C(S,R`,n), J,R ∈ C(S,Rn,n),
B,P ∈ C(S,R`,m), S = ST ,N = −NT ∈ C(S,Rm,m) and
e, r ∈ C(S,R`). The system is called port-Hamiltonian DAE if

Γ(t , x) = −ΓT =

[
J B
−BT N

]
, W (t , x) = W T =

[
R P

PT S

]
≥ 0,

∂H
∂x

(t , x) = ET (t , x)e(t , x),
∂H
∂t

(t , x) = eT (t , x)r(t , x).

Definition extends to weak solutions and infinite dimension.
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Why should this be the right approach?
. PH DAEs generalize Hamiltonian/gradient flow systems.
. Conservation of energy replaced by dissipation inequality

H(x(t1))−H(x(t0)) ≤
∫ t1

t0
y(t)T u(t) dt ,

. PH DAE systems are closed under power-conserving
interconnection. Modularized network based modeling.

. Stability and passivity analysis easy.

. PH DAE structure allows to preserve physical properties in
Galerkin projection, model reduction.

. Physical properties encoded in algebraic structure of
coefficients and in geometric structure associated with flow.

. Invariance under local/global diffeomorphisms.
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Further properties

. Structure preserving time-discretization, so that time discrete
system has dissipation inequality and power balance equation.

. Use non-uniqueness of representation to obtain robustness
under perturbations.

. Local and global normal forms.

. Perturbation analysis, distance to instability, non-passivity,
non-regularity.

. Different port-Hamiltonian PDE formulations, including terms
that have been dropped due to model simplifications.
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pH PDE, gas flow

Port-Hamiltonian formulation of compressible Euler including
pressure energy and dissipation work, as well as entropy (s)
balance. A. Moses Badlyan 2019
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∂t
+

∂

∂x
(ρv), mass conservation

0 =
∂

∂t
(ρv) +

∂

∂x
(p + ρv2) +

λ

2D
ρv |v |+ gρ

∂

∂x
h, momentum balance

0 =
∂e
∂t

+
∂

∂x
(ev)) + p

∂v
∂x
− λ

2D
ρv2 |v |+ 4kw

D
(T − Tw ) , energy bal.

0 =
∂s
∂t

+
∂

∂x
(sv))− λ ρ

2D T
v2 |v |+ 4kw

D
(T − Tw )

T
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We have to add node conditions and boundary conditions.
Kirchhoff’s laws.
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pH PDE, hot water flow

Port-Hamiltonian formulation of incompressible Euler including
pressure energy and dissipation work, and entropy balance.
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∂x
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T
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We have to add node conditions, mixing conditions etc.
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Space discretization

Structure preserving space discretization as in unstructured
PDEs, typically easier than time discretization.
Use pH DAE weak formulations for finite element/finite volume
approaches.
Galerkin preserves structure.
. A. M. Badlyan, B. Maschke, C. Beattie, and V. Mehrmann, Open physical systems: from GENERIC to port-Hamiltonian

systems, Proceedings MTNS 2018. arxiv:1804.04064

. A. M. Badlyan, and C. Zimmer, Operator GENERIC formulation of thermodynamics of irreversible processes. Preprint TU
Berlin, arxiv: 1807.09822, 2018.

. Egger, Energy stable Galerkin approximation of Hamiltonian and gradient systems, Numerische Mathematik, 2019.

. H. Egger and T. Kugler, Damped wave systems on networks: Exponential stability and uniform approximations. Numerische
Mathematik, 138:839–867, 2018.

. H. Egger, T. Kugler, B. Liljegren-Sailer, N. Marheineke, and V.M., On structure preserving model reduction for damped wave
propagation in transport networks, SIAM J. Scientific Computing, 40:A331–A365, 2018.

. A. Serhani, D. Matignon, and G. Haine. A partitioned finite element method for the structure-preserving discretization of
damped infinite-dimensional port-Hamiltonian systems with boundary control. In F. Nielsen and F. Barbaresco, editors,
Geometric Science of Information, pages 549–558. Springer, Cham, 2019.

23 / 42



Time integrators

. Most classical ODE/DAE methods do not preserve the energy
or dissipation inequality.

. We need classes of integrators that do.

. Want integrators that lead to discrete-time pH systems.

. Preservation of constraints.
Idea: Use Dirac Structure and structure preserving methods
Gauss-Legrendre collocation methods (like implicit midpoint rule)
are methods of choice and preserve quadratic Hamiltonians.
. E. Celedoni and E.H. Høiseth, Energy-Preserving and Passivity-Consistent Numerical Discretization of Port-Hamiltonian

Systems, arXiv:1706.08621v1

. Kotyczka, Lefèvre, Discrete-Time Port-Hamiltonian Systems Based on Gauss-Legendre Collocation, IFAC-PapersOnLine 51,
no. 3 (2018): 125–30.

. V. M. and R. Morandin, Structure-preserving discretization for port-Hamiltonian descriptor systems. Proceedings of the 58th
IEEE Conference on Decision and Control (CDC), 9.-12.12.19, Nice, 2019. https://arxiv.org/abs/1903.10451
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Solvers
. The ’ideal methods’ are implicit methods and require the

solution of (non)linear system.
. This is a large scale problem when the problem is a space

discretized PDE.
. Does the pHD AE structure help?
Example: Discretize Eẋ = (J − R)x with implicit midpoint rule.

E(xi+1 − xi) = τ(J − R)(xi+1 + xi)/2,

or equivalently

(E + τ/2R − τ/2J)xi+1 = (I + τ/2(J − R))xi

Matrix E + τ/2R − τ/2J has pos. (semi)-def. symmetric part.
Locally the pHDAE structure leads to such linear systems.
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Iterative solvers
For linear systems of the form (M + N)x = b with M = MT > 0
N = −NT Widlund’s method uses the symmetric part as
preconditioner, and solves equivalent system

(I − K )x = b̂, where K = M−1N, b̂ = M−1b.

HereK is M-normal i.e., M−1K T M = −K . This is necessary and
sufficient for K to admit an optimal 3-term recurrence for
generating an M-orthogonal basis of the Krylov subspace
Kk(K , v) for each k and initial vector v .
Oblique projection method with Galerkin projection property:

xk ∈ Kk(K , b̂) s.t. rk = b − (M + N)xk ⊥ Kk(K , b̂).

. C. Güdücü, J. Liesen, V. M., and D. Szyld, On non-Hermitian positive (semi)definite linear algebraic systems arising from
dissipative Hamiltonian DAEs, http://arxiv.org/abs/2111.05616, SIAM J. Scientific Computing, 2022.

. M. Manguoğlu and V. M., A two-level iterative scheme for general sparse linear systems based on approximate
skew-symmetrizers. Electronic Transactions Numerical Analysis, Vol. 54, 370–391, 2021.

. O. Widlund. A Lanczos method for a class of nonsymmetric systems of linear equations. SIAM J. Numer. Anal.,
15(4):801–812, 1978.
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Example: Stokes flow

Method Time ‖Rel .Res.‖ #Iter .
Widlund 10.273 6.794e − 09 10
GMRES 1672.294 4.727e − 02 500

Stokes equation. Running times, relative residual norms at the final
step, and total number of iterations for τ = 0.0001.
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Numerical example, convergence
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Stokes flow. Relative residual norms with τ = 0.001 and
τ = 0.0001 (left and right).
Run times differences drastic if step-size is decreased.
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Model hierarchy and adaptivity

Use model hierarchy for adaptivity in space-time discretization,
solver and model adaptivity for simulation and optimization.
Find compromise between error tolerance/ computational speed.
. Determine sensitivities when moving in model hierarchy.
. Determine error estimates for time and space discretization.
. Choose cost functions or adaptation strategies.
. Use adaptivity to drive method for simulation and optimization.
System theoretic approach allows to jump between models
in the hierarchy without changing the simulation, control, and
optimization framework.
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Example: 4-level-hierarchy gas transport

. Full model M0 (truth (expensive)): isothermal Euler equations

0 =
∂ρ

∂t
+

∂

∂x
(ρv),

0 =
∂

∂t
(ρv) +

∂

∂x
(p + ρv2) +

λ

2D
ρv |v |+ gρ

∂h
∂x
,

p = RρTz(p,T )

together with boundary cond. and Kirchhoff’s laws at nodes.
. M1: ∂h

∂x = 0 .
. M2: Model M1 and ∂

∂x (ρv
2) = 0.

. M3: Model M2 and stationary state.
. J.J. Stolwijk and V. M. Error analysis and model adaptivity for flows in gas networks. ANALELE STIINTIFICE ALE

UNIVERSITATII OVIDIUS CONSTANTA. SERIA MATEMATICA, 2018.

. P. Domschke, A. Dua, J.J. Stolwijk, J. Lang, and V. Mehrmann, Adaptive Refinement Strategies for the Simulation of Gas
Flow in Networks using a Model Hierarchy, Electronic Transactions Numerical Analysis, Vol. 48, 97–113, 2018.
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Test
For given tolerance tol , minimize computational cost.∑

j∈Jp
(ηm,j + ηx ,j + ηt ,j)

|Jp|
≤ tol

S01

S02

C01

C02

C03

C04

P01 P02 P03

P
04

P05

P06
P07

P08 P09

P10

P11

P12

C
V

01

Comp01 Comp02 Comp03

Non-adaptive simulation time is 4 hours using ANACONDA code.
Adapative method: computing time reduction of 80%.
. P. Domschke, A. Dua, J.J. Stolwijk, J. Lang, and V. M., Adaptive Refinement Strategies for the Simulation of Gas Flow in

Networks using a Model Hierarchy, Electronic Transactions Numerical Analysis, 2018.
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Adaptivity in nonlinear optimization

Optimize compressor costs in stationary model of gas network.
Use hierarchy to get feasible sol. via space-model adaptivity.

Pipe model hierarchy based on the isothermal Euler equations.
Left: space contin. models, right: space discrete models.
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Compressor cost optimization

Discretization, model, total error (y -axis) over course of
optimization (x-axis). Left: GasLib-40, right: GasLib-135.
. V. M., M. Schmidt, and J. Stolwijk, Model and Discretization Error Adaptivity within Stationary Gas Transport Optimization,

http://arxiv.org/abs/1712.02745, Vietnam J. Math. 2018.
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Optimization district heating network

Optimization of energy cost while satisfying the heat demand of
all consumers. Four level model hierarchy, stationary models,
discretized with implicit midpoint rule.
. Construction of error measures.
. Adaptive algorithm applied to realistic networks.
. Convergence proof of adaptive algorithm to feasible solution.
. Can solve problems that no other solver could manage.
. R. Krug, V. M., M. Schmidt, Nonlinear Optimization of District Heating Networks, Optimization and Engineering, 1-37, 2020.

. H. Dänschel, V. Mehrmann, M. Roland, and M. Schmidt, Adaptive Nonlinear Optimization of District Heating Networks Based
on Model and Discretization Catalogs, http://arxiv.org/abs/2201.11993, 2022.
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Optim. power consum. heat network

Aggregated power consumption of households (dashed curve)
without bound on power generated by waste incineration (solid
curve) for district heating network.
. R. Krug, V. M., M. Schmidt, Nonlinear Optimization of District Heating Networks, Optimization and Engineering, 1-37, 2020.
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Optimization of power consumption

Aggregated power consumption of households (dashed curve)
with bound on power generated by waste incineration (solid
curve) for distinct heating network.
. R. Krug, V. M., M. Schmidt, Nonlinear Optimization of District Heating Networks, Optimization and Engineering, 1-37, 2020.
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What about our wish list?
. Want representations so that coupling of models works across

different scales and physical domains.
. Want a representation that is close to the real physics for open

and closed systems.
. Model class should have nice algebraic, geometric, and

analytical properties.
. Models should be easy to analyze mathematically (existence,

uniqueness, robustness, stability, uncertainty, errors etc).
. Invariance under local coordinate transformations (in space

and time). Ideally local normal form.
. Model class should allow for easy (space-time) discretization

and model reduction.
. Class should be good for simulation, control and optimization,
pH DAE systems are ideal, almost all wishes are fulfilled.
. Survey: V. M. and B. Unger, Control of port-Hamiltonian differential-algebraic systems and applications,

http://arxiv.org/abs/2201.06590, 2022. Acta Numerica submitted.
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Outlook

But there are many things to do
. Real time control, optimization.
. Other physical domains.
. Incorporate stochastics in models.
. Stability analysis.
. More error estimates.
. Preconditioning.
. Data based realization.
. Software.
. . . .
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