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Motivation: Why polygonal meshes?

The interest for general meshes is recently growing:

Easier/better meshing of domain (and data) features

Automatic inclusion of ”hanging nodes”

Adaptivity: more efficient mesh refinement/coarsening

Robustness to mesh distortion

Topology optimization, Cracks, Fractures

Interface, Multiphysics

. . . . . .
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Some literature

Mimetic finite difference (MFD) method

Multipoint flux approximation (MPFA) method

Polygonal DG (Antonietti, Cangiani, Houston, . . . )

Hybrid high order (HHO) method (Di Pietro, Ern, . . . )

Virtual element method (VEM) (Beirão Da Veiga, Brezzi,
Cangiani, Manzini, Marini, Russo, . . . )

Weak Galerkin (WG) method (Wang, Ye, . . . )

Staggered DG method (Zhao and Park, SISC’18)

. . . . . .
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Goal: New framework

To develop Staggered DG (SDG) methods of arbitrary polynomial
orders on general polygonal meshes that offer the following
features:

I Easier/better meshing of domain (and data) features

I Arbitrary shapes of polygon including small edges

I Robust to mesh distortion

I Automatic inclusion of hanging nodes

I No stabilization or penalty terms

I Local and global conservations

I Superconvergence and postprocessing

I Unfitted meshes are allowed
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Polygonal SDG

I L. Zhao and E.-J. Park (SISC ’18)

- Inspired from triangular SDG method: Chung and Engquist
(SINUM ’06,’09)
- The lowest order polygonal SDG for the Poisson equation
- Reliable and efficient error estimators

I L. Zhao, E.-J. Park, and D.-w. Shin (CMAME ’19)

- The lowest order polygonal SDG for the Stokes problem
- Guaranteed error estimators via equilibrated stress recon.

I Dohyun Kim, L. Zhao, and E.-J. Park (SISC ’20)

- Arbitrary high order polygonal SDG for the Stokes problem

I L. Zhao, E.-J. Park (SISC ’20)

- Staggered cell-centered DG for linear elasticity

I L. Zhao, E. Chung, E.-J. Park, and G. Zhou (SINUM ’21)

- Darcy-Forchheimer and Stokes coupling
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Polygonal SDG

I L. Zhao, Dohyun Kim, E.-J. Park, and E. Chung (JSC ’22)

- Darcy flows in fractured porous media

I Sanghee Lee, Dohyun Kim, and E.-J. Park - Expanded SDG for
anisotropic diffusion: a priori and a posteriori error analysis

I Dohyun Kim, L. Zhao, E. Chung, and E.-J. Park (arXiv’21)

- Pressure-robust SDG for the Navier-Stokes
- Exactly divergence free velocity
- Arbitrary high order polygonal elements

I L. Zhao, E. Chung, and E.-J. Park (arXiv’20)

- Biot’s system of poroelasticity

- Arbitrary high order polygonal elasticity elements
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Poisson model: (Joint with Lina Zhao, SIAM J. Sci. Comput. 2018)

Consider the Poisson model problem:

−∆u = f in Ω,

u = 0 on ∂Ω.

By introducing p = −∇u, we obtain the first order system

p = −∇u,
∇ · p = f.

- Inspired from standard SDG method on triangular meshes by Chung and
Engquist (SINUM 2006,2009)
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Staggered grids

S(n)

D(e)

Figure: Initial mesh (left) and the resulting mesh (right).

Tu denotes the initial (primal) partition of the domain Ω,
Fu denotes primal edges, F0

u denotes interior primal edges
and Fp denotes dual edges. Th denotes the resulting submeshes
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Typical assumptions

1. Every element S(ν) in Tu is star-shaped with respect to a ball
of radius ≥ ρhS(ν).

2. For every element S(ν) ∈ Tu and every edge e ∈ ∂S(ν), it
satisfies he ≥ ρhS(ν), where he denotes the length of edge e
and hS(ν) denotes the diameter of S(ν).

Figure: Shape regularity of a polygon.
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Staggered finite element spaces

S(n)
D(e)

Figure: Schematic of primal mesh and dual mesh.

Finite element spaces on quadrilateral and polygonal meshes:

Sh : = {v : v |τ∈ P0(τ), ∀τ ∈ Th; [v] |e= 0, e ∈ F0
u , v |τ= 0

if ∂τ ∩ ∂Ω = e, e ∈ Fu\F0
u},

Vh : = {q : q |τ∈ P0(τ)2,∀τ ∈ Th; [q · n] |e= 0, e ∈ Fp},

where Fu denotes primal edges, F0
u denotes interior primal edges

and Fp denotes dual edges.
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Degrees of freedom

D(e)

ν

S(ν)

Figure: Degrees of freedom for Sh (left) and for Vh (right).

v ∈ Sh is determined by the following degrees of freedom:

φe(v) =

∫
e
v ds ∀e ∈ Fu.

p ∈ Vh is determined by the following degrees of freedom:

ψe(p) =

∫
e
p · n ∀e ∈ Fp.
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Other possible subdivision

Figure: Subdivision into quadrilaterals.

Disadvantage: not robust to mesh distortion
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SDG formulation

Introduce an auxiliary variable p = −∇u, we get the first order
system:

p = −∇u,
∇ · p = f.

Multiplying by test function q ∈ Vh and integration by parts over
each S(ν) implies

(p, q)S(ν) = (u,∇ · q)S(ν) − (u, q · n)∂S(ν).

Similarly, we obtain

(p · n, v)∂D(e) − (p,∇v)D(e) = (f, v)D(e).
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SDG formulation

Summing the above equations over all S(ν) and D(e), we can get
the discrete formulation: Find (uh,ph) ∈ Sh × Vh such that

(ph, q)− b∗h(uh, q) = 0 ∀ q ∈ Vh, (1)

bh(ph, v) = (f, v) ∀ v ∈ Sh, (2)

where

b∗h(uh, q) = −
∑
e∈F0

u

(uh, [q · n])e,

bh(ph, v) =
∑
e∈Fp

(ph · n, [v])e.
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Remark
(Mass conservation) Taking v in (2) to be identically one in D(e),
we have

−(ph · nD, 1)∂D(e) = (f, 1)D(e),

where nD is the outward unit normal vector of D(e).
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Inf-sup condition

Discrete H1 norm and H(div,Ω) semi-norm:

‖v‖2Z =
∑
e∈Fp

h−1
e ‖[v]‖20,e,

‖q‖2Z′ =
∑
e∈F0

u

h−1
e ‖[q · n]‖20,e.

We have the inf-sup conditions:

inf
v∈Sh

sup
q∈Vh

bh(q, v)

‖v‖Z‖q‖0
≥ β1,

inf
q∈Vh

sup
v∈Sh

b∗h(v, q)

‖v‖0‖q‖Z′
≥ β2.
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Error estimates

The L2 error estimates with possibly low regularity can be stated
in the next theorem.

Theorem
Assume that (p, u) ∈ (Hε(Ω)2 ∩H(div,Ω))×H1+ε(Ω), 0 < ε ≤ 1.
Let (ph, uh) be the numerical solution, then there exists a positive
constant C such that

‖u− uh‖0 ≤ C(hmin{1,2ε}‖u‖1+ε + (
∑
τ∈Th

h2
τ‖f‖20,τ )1/2),

‖p− ph‖0 ≤ Chε‖u‖1+ε.
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Postprocessing

Let S∗h = {v |τ∈ P1(τ) ∀τ ∈ Th; v |∂Ω= 0}, then we can define the
postprocessing u∗h ∈ S∗h

(∇u∗h,∇vh)τ = (ph,∇vh)τ ∀vh ∈ P1(τ)/P0(τ),

(u∗h, 1)e
|e|

= uh |e ∀e ∈ Fu ∩ ∂τ.
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A posteriori error estimator

Let the local error estimator be defined as

η2
τ =

∑
e∈F∩∂τ

he‖[ph · t]‖20,e +
∑

e∈F0
u∩∂τ

he‖[ph · n]‖20,e + h2
τ‖f‖20,τ .

Then, the global error estimator can be defined by

η2 =
∑
τ∈Th

η2
τ .

Theorem
Let (p, u) be the weak solution and (ph, uh) be the numerical
solution, then there exists a positive constant Crel such that

‖p− ph‖0 ≤ Crelη.
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Local efficiency

Theorem
Let fh be a piecewise constant approximation of f . Let (p, u) be
the solution of the weak problem and (ph, uh) be the numerical
solution. Then there exists a positive constant C independent of
the meshsize such that

ητ ≤ C(‖p− ph‖0,D(e) + (
∑

τ∈D(e)

h2
τ‖f − fh‖20,τ )1/2).
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Smooth solution on general meshes

Ω = (0, 1)2 and the exact solution is given by

u = x(1− x)y(1− y).

Trapezoidal grid:

(1-α)h

h

(1+α)h

Q

Figure: Partition of Ω.
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Figure: Convergence history for α = 0 (left) and α = 0.4 (right).
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Figure: Convergence history for α = 0.8.
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Perturbed grid

Figure: Grids used for simulations. From left to right: (a): Smooth grid.
(b): Random h2-perturbation of the smooth grid. (c): Random h-
perturbation of the smooth grid.
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Figure: Convergence history for h2-perturbation (left) and h-perturbation
(right).
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Polygonal mesh
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Figure: Partition of Ω into polygons (left) and convergence history (right).
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Singular solution on L shaped domain

u = r
2
3 sin(2θ

3 )
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Figure: Initial mesh (left) and convergence history on uniform refinement
(right).
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Figure: Convergence history for adaptive refinement (left) and adaptive mesh
pattern (right).
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Strong internal layer on unit square domain

Ω = (0, 1)2 and the exact solution is given by

u = 16x(1− x)y(1− y) arctan(25x− 100y + 50)

Although u is smooth, it has a strong internal layer along the line
y = 1/2 + x/4.
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Figure: Initial mesh (left) and adaptive mesh (right).
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Figure: Convergence history for adaptive refinement (left) and adaptive mesh
pattern (right).
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Fracture Model: (Joint with L. Zhao, D. Kim, and E. Chung, JSC 2022)

𝛺𝐵,1 𝛺𝐵,2
𝛺𝐵 ≔ 𝛺𝐵,1 ∪ 𝛺𝐵,2

𝜕𝛤

𝛤

𝑛𝛤

Figure: Illustration of bulk and fracture domain.
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Fracture Model

In the bulk domain:

u+K∇p = 0 in ΩB,

∇ · u = f in ΩB,

p = p0 on ∂ΩB.

(3)

On the fracture 1:

−∇t · (KΓ∇tpΓ) = `ΓfΓ + [u · nΓ] in Γ,

pΓ = gΓ on ∂Γ.
(4)

The jump condition:

ηΓ{u · nΓ} = [p] on Γ,

αΓ[u · nΓ] = {p} − pΓ on Γ.
(5)

1V. Martin, J. Jaffré, and J. E. Roberts, Modeling fractures and barriers as
interfaces for flow in porous media, SISC ’05
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Polygonal Mesh

Figure: A fitted polygonal mesh to the fractured porous media.
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Polygonal Mesh - Subdivision

Figure: Schematic of staggered mesh. S(ν) is a primal element and D(e) is
a dual element. Here, are primal edges Fpr and are dual
edges Fdl.
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Polygonal Mesh - Subdivision

S( ) D(e)

Figure: Schematic of staggered mesh. S(ν) is a primal element and D(e) is
a dual element. Here, are primal edges Fpr and are dual
edges Fdl.
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Discrete space

We introduce three spaces

uh ∈ Vh = [Pk(Th)]2 ∩H(div;S(N )),

ph ∈ Sh = Pk(Th) ∩H1(D(Fdl)),
pΓ,h ∈Wh = Pk(FΓ

h ) ∩H1
0 (Γ).
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Discrete space - Velocity

Figure: DOFs of quadratic velocity variable on a primal element.

Vh = {ψ ∈ [Pk(Th)]2 : ψ|S(ν) ∈ H(div;S(ν)) ∀ν ∈ N}
= {ψ ∈ [Pk(Th)]2 : Jψ · nK = 0 ∀e ∈ Fdl}
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Discrete space - Pressure

Figure: DOFs of quadratic pressure variable on a dual element.

Sh = {v ∈ Pk(Th) : v|D(e) ∈ C0(D(e)) ∀e ∈ Fpr}
= {v ∈ Pk(Th) : JvK = 0 ∀e ∈ Fpr}
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Discrete Space - Fracture

Figure: DOFs of quadratic pressure variable on a dual element with e ⊂ Γ.

Wh = {qΓ ∈ H1
0 (Γ) : qΓ|e ∈ Pk(FΓ

h )}.
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Discrete Spaces - Norms

The discrete spaces are equipped with norms

‖q‖21,h = ‖∇q‖2L2(Th) +
∑
τ∈Th

∑
e∈Fdl∩∂τ

he
2|τ |
‖JqK‖2L2(e)

‖v‖20,h = ‖v‖2L2(Th) +
∑
τ∈Th

∑
e∈Fpr∩∂τ

2|τ |
he
‖Jv · nK‖2L2(e)

‖qΓ‖21,Γ = ‖∇qΓ‖2L2(Γ) .
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Assumptions on Mesh

We consider the following assumptions on the polygonal mesh:

Assumption (A) Every S(ν) ∈ Tu is star-shaped with respect to
a ball of radius ≥ ρShS(ν).
⇒ Guarantees valid triangulation Th.

Assumption (B) For each S(ν) ∈ Tu and e ∈ ∂S(ν), it satisfies
he ≥ ρEhS(ν).
⇒ Guarantees shape-regular triangulation Th.
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SDG Interpolation

We introduce the SDG interpolations by

〈Ihq − q, ψ〉e = 0 ∀ψ ∈ Pk(e), e ∈ Fpr\FΓ
h ,

〈(Ihq − q)|ΩB,i
, ψ〉e = 0 ∀ψ ∈ Pk(e), e ∈ FΓ

h , i = 1, 2,

(Ihq − q, ψ)τ = 0 ∀ψ ∈ Pk−1(τ), τ ∈ Th

and

〈(Jhv − v) · n, φ〉e = 0 ∀φ ∈ Pk(e), e ∈ Fdl,
(Jhv − v,φ)τ = 0 ∀φ ∈ Pk−1(τ)2, τ ∈ Th.
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Discrete Formulation

Find (uh, ph, pΓ,h) satisfying for all (v, q, qΓ) ∈ Vh × Sh ×Wh

(K−1uh,v)ΩB
+ b∗h(ph,v) = 0,

−bh(uh, q) + Jh(ph, q) + ch((ph, pΓ,h), (q, 0)) = (f, q)ΩB
,

〈KΓ∇tpΓ,h,∇tqΓ〉Γ + ch((ph, pΓ,h), (0, qΓ)) = 〈`ΓfΓ, qΓ〉Γ.
(6)

Here,

bh(uh, q) = −
∑
e∈Fdl

〈uh · n, [q]〉e +
∑
τ∈Th

(uh,∇q)τ ,

b∗h(ph,v) =
∑
e∈F0

pr

〈ph, [v · n]〉e −
∑
τ∈Th

(ph,∇ · v)τ

+
∑
e∈FΓ

h

〈[ph(v · n)], 1〉e.
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Discrete Formulation

Find (uh, ph, pΓ,h) satisfying for all (v, q, qΓ) ∈ Vh × Sh ×Wh

(K−1uh,v)ΩB
+ b∗h(ph,v) = 0,

−bh(uh, q) + Jh(ph, q) + ch((ph, pΓ,h), (q, 0)) = (f, q)ΩB
,

〈KΓ∇tpΓ,h,∇tqΓ〉Γ + ch((ph, pΓ,h), (0, qΓ)) = 〈`ΓfΓ, qΓ〉Γ.
(7)

Here,

Jh(ph, q) =
∑
e∈FΓ

h

〈 1

ηΓ
[ph], [q]〉e

ch((ph, pΓ,h), (q, qΓ)) =
∑
e∈FΓ

h

〈 1

αΓ
({ph} − pΓ,h), {q} − qΓ〉e.
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Remark on Discrete Operators
I Discrete adjoint property:

bh(v, q) = b∗h(q,v) ∀v, q ∈ Vh × Sh.

I For given v ∈ [H1(Ω)]2,

bh(v − Jhv, q) = 0 ∀q ∈ Sh

and for given q ∈ H1
0 (Ω)

b∗h(q − Ihq,v) = 0 ∀v ∈ Vh.

I Non-negativity:

Jh(q, q) =
∑
e∈FΓ

h

η−1
Γ ‖[q]‖

2
0,e,

ch((q, qΓ), (q, qΓ)) =
∑
e∈FΓ

h

α−1
Γ ‖{q} − qΓ‖20,e.
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Discrete inf-sup

Lemma (Discrete inf-sup)

inf
q∈Sh

sup
v∈Vh

bh(v, q)

‖v‖0,h‖q‖1,h
≥ C.
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Stability

Theorem (Stability)

The discrete system (7) admits a unique solution
(uh, ph, pΓ,h) ∈ Vh × Sh ×Wh. Furthermore, there exists a
positive constant C such that

‖K−
1
2uh‖20,ΩB

+Kmin‖ph‖20,ΩB

+
∑
e∈FΓ

h

‖η−
1
2

Γ [ph]‖20,e + ‖K
1
2
Γ∇tpΓ,h‖20,Γ

+
∑
e∈FΓ

h

‖α−
1
2

Γ ({ph} − pΓ,h)‖20,e

≤ C
(
K−1

min‖f‖
2
0,ΩB

+K−1
Γ,min‖`ΓfΓ‖20,Γ

)
.

(8)
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Convergence

Theorem (Convergence)

There exists a positive constant C such that

‖K−
1
2 (Jhu− uh)‖0,ΩB

+ ‖K
1
2
Γ∇t(Π

p
hpΓ − pΓ,h)‖0,Γ

+
( ∑
e∈FΓ

h

‖η−
1
2

Γ [Ihp− ph]‖20,e
) 1

2

+
( ∑
e∈FΓ

h

‖α−
1
2

Γ ({Ihp− ph} − (Πp
hpΓ − pΓ,h))‖20,e

) 1
2

≤ C
(
‖K−

1
2 (u− Jhu)‖0,ΩB

+ ‖α−
1
2

Γ (pΓ −Πp
hpΓ)‖0,Γ

)
where the Ritz projection Πp

h : H1
0 (Γ)→Wh is defined by

〈KΓ∇tΠp
hpΓ,∇tqΓ,h〉Γ = 〈KΓ∇tpΓ,∇tqΓ,h〉Γ ∀qΓ,h ∈Wh.
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Corollary

Assume that (u|τ , p|τ , pΓ|e) ∈ Hk+1(τ)2 ×Hk+1(τ)×Hk+1(e) for
τ ∈ Th and e ∈ FΓ

h . Then there exists a positive constant C such
that

‖K−
1
2 (u− uh)‖0,ΩB

≤ Chk+1,

‖pΓ − pΓ,h‖0,Γ ≤ Chk+1,

‖p− ph‖0,ΩB
≤ Chk+1.
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Example - 1

-1
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p

Figure: Graphs of solutions p and pΓ for Example 1.

p =

{
sin(4x) cos(πy) in ΩB,1,

cos(4x) cos(πy) in ΩB,2,
pΓ =

3

4
cos(πy)(cos(2)+sin(2)),
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Permeable/Impermeable

We consider two different configuration for the physical constants.

κnΓ =

{
0.01 for impermeable case,

1 for permeable case.

Other physical parameters are chosen as ξ = 3/4, `Γ = 0.01,
KΓ = 1 and

K =

(
κnΓ/(2`Γ) 0

0 1

)
.
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Mesh configuration
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Figure: Uniform triangular (left), rectangular (center), polygonal (right)
meshes with comparable mesh sizes for Example 1. Here, dashed
lines represent dual edges and red lines are the fracture Γ.
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Convergence History - Impermeable
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Figure: Convergence history for the impermeable case (KΓ = 0.01) of Ex-
ample 1 with k = 1, 2, 3. Right triangles indicate theoretical conver-
gence rates. Solid lines, dotted lines, and dashed lines are error with
triangular, rectangular, and polygonal meshes, respectively.
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Convergence History - Impermeable
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Figure: Convergence history for the impermeable case (KΓ = 0.01) of Ex-
ample 1 with k = 1, 2, 3. Right triangles indicate theoretical conver-
gence rates. Solid lines, dotted lines, and dashed lines are error with
triangular, rectangular, and polygonal meshes, respectively.
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Convergence History - Impermeable
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Figure: Convergence history for the impermeable case (KΓ = 0.01) of Ex-
ample 1 with k = 1, 2, 3. Right triangles indicate theoretical conver-
gence rates. Solid lines, dotted lines, and dashed lines are error with
triangular, rectangular, and polygonal meshes, respectively.
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Convergence History - Permeable
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Figure: Convergence history for the permeable case (KΓ = 1) of Example 1
with k = 1, 2, 3. Right triangles indicate theoretical convergence
rates. Solid lines, dotted lines, and dashed lines are error with trian-
gular, rectangular, and polygonal meshes, respectively.
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Convergence History - Permeable
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Figure: Convergence history for the permeable case (KΓ = 1) of Example 1
with k = 1, 2, 3. Right triangles indicate theoretical convergence
rates. Solid lines, dotted lines, and dashed lines are error with trian-
gular, rectangular, and polygonal meshes, respectively.
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Convergence History - Permeable
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Figure: Convergence history for the permeable case (KΓ = 1) of Example 1
with k = 1, 2, 3. Right triangles indicate theoretical convergence
rates. Solid lines, dotted lines, and dashed lines are error with trian-
gular, rectangular, and polygonal meshes, respectively.
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Small Edge - Mesh Configuration

h
e d
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Perturbed mesh with h
e
=2

-3
, d=0.1 x 2

-3

Figure: Schematic of perturbation. 2× 2 squares (left), two rectangles and
two pentagons after perturbation with d = 0.1× he (center), and a
resulting mesh from a uniform rectangular mesh with he = 2−3 and
d = 0.1×he. The dashed circle is the ball, described in Assumption
(A), of an pentagon.

In the following example, we used d = 0.001× he.
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Small Edge vs Rectangle
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Figure: Convergence history with uniform rectangular meshes (solid lines)
and perturbed meshes with d = 0.001× he (dashed lines)
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Small Edge vs Rectangle
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Figure: Convergence history with uniform rectangular meshes (solid lines)
and perturbed meshes with d = 0.001× he (dashed lines)

69 / 86



Small Edge vs Rectangle
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Figure: Convergence history with uniform rectangular meshes (solid lines)
and perturbed meshes with d = 0.001× he (dashed lines)
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Unfitted Mesh
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Figure: Underlying polygonal mesh (Tpr, left), modified mesh (T̃u) (center)
and its magnified view with dual edges (right). The modified mesh
contains both sliver elements and small edges.
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Unfitted Mesh - Convergence
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Figure: Convergence history with fitted (solid lines) and unfitted (dashed
lines).
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Unfitted Mesh - Convergence
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Figure: Convergence history with fitted (solid lines) and unfitted (dashed
lines).
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Unfitted Mesh - Convergence
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Figure: Convergence history with fitted (solid lines) and unfitted (dashed
lines).
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Numerical Experiments - Curved Fracture
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Figure: Fitted mesh using triangles (left) and polygons (right)
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Numerical Experiments - Curved Fracture
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Figure: Cut mesh from a background mesh
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Numerical Experiments - Curved Fracture
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Figure: Cut mesh from a background mesh
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Numerical Experiments - Curved Fracture
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Figure: Cut mesh and its magnified view
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Numerical Experiments - Curved Fracture
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Figure: Solution shape (left) and convergence history with respect to degrees
of freedom (right)

78 / 86



Quarter-Five Spot

Dirichlet

Neumann

Fracture

2

1

p=0u  n=0

Figure: Domain configuration.

We set the boundary condition

u · n = 0 on ∂Ω1\Γ, p = 0 on ∂Ω2\Γ.

We model the injection and production by the source term

f = 10.1
(
tanh

(
200(0.2− (x2 + y2)

1
2 )
)
−tanh

(
200(0.2− ((x− 1)2 + (y − 1)2)

1
2 )
))

.
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Quarter-Five Spot

We set

K =

(
1 0
0 1

)
and for (1) permeable fracture:

κnΓ = 1, κ∗Γ = 100

and for (2) impermeable fracture:

κnΓ = 0.01, κ∗Γ = 1.

Background mesh: Uniform rectangular mesh with he = 2−6.
Cubic polynomials are used.
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Figure: Pressure profile for the quarter-five spot problem with permeable
(left) and impermeable (right) fracture.
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Permeable

Impermeable

Figure: Pressure profile along x = y for the quarter-five spot problem.
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Outline

Lowest order SDG method (FVM)
A priori error estimates
A posteriori error estimation
Numerical experiments

Fractured porous media
A priori error estimates
Numerical experiments

Concluding remarks and Outlook
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Conclusion and outlook

I Lowest order SDG methods on general meshes (FVM) for
Poisson/Stokes/Elasticity problem

I Reliable (and efficient) a posteriori error estimations for
Poisson/Stokes equations

I Locking free error estimates for the elasticity problems

I Generalization to high order polynomial approximations
(Darcy-Forchheimer and Stokes coupled problem)

I Darcy flows in fractured porous media

I Interface problems and unfitted meshes, small/curved edges
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