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Motivation: Why polygonal meshes?

The interest for general meshes is recently growing:

Easier/better meshing of domain (and data) features
Automatic inclusion of "hanging nodes”

Adaptivity: more efficient mesh refinement/coarsening

o

o

@ Robustness to mesh distortion

@ Topology optimization, Cracks, Fractures
o

Interface, Multiphysics
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Some literature

Mimetic finite difference (MFD) method

Multipoint flux approximation (MPFA) method
Polygonal DG (Antonietti, Cangiani, Houston, ...)
Hybrid high order (HHO) method (Di Pietro, Ern, ...)

Virtual element method (VEM) (Beirdo Da Veiga, Brezzi,
Cangiani, Manzini, Marini, Russo, ...)

Weak Galerkin (WG) method (Wang, Ve, ...)
Staggered DG method (Zhao and Park, SISC'18)
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Goal: New framework

To develop Staggered DG (SDG) methods of arbitrary polynomial
orders on general polygonal meshes that offer the following
features:

» Easier/better meshing of domain (and data) features
Arbitrary shapes of polygon including small edges
Robust to mesh distortion

Automatic inclusion of hanging nodes

No stabilization or penalty terms

Local and global conservations

Superconvergence and postprocessing

VVvyVvyVvVvVYVvyYy

Unfitted meshes are allowed
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Polygonal SDG

» L. Zhao and E.-J. Park (SISC '18)
- Inspired from triangular SDG method: Chung and Engquist
(SINUM '06,'09)
- The lowest order polygonal SDG for the Poisson equation
- Reliable and efficient error estimators

» L. Zhao, E.-J. Park, and D.-w. Shin (CMAME '19)

- The lowest order polygonal SDG for the Stokes problem
- Guaranteed error estimators via equilibrated stress recon.

» Dohyun Kim, L. Zhao, and E.-J. Park (SISC '20)

- Arbitrary high order polygonal SDG for the Stokes problem
» L. Zhao, E.-J. Park (SISC '20)

- Staggered cell-centered DG for linear elasticity
» L. Zhao, E. Chung, E.-J. Park, and G. Zhou (SINUM '21)

- Darcy-Forchheimer and Stokes coupling
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Polygonal SDG

» L. Zhao, Dohyun Kim, E.-J. Park, and E. Chung (JSC '22)
- Darcy flows in fractured porous media

» Sanghee Lee, Dohyun Kim, and E.-J. Park - Expanded SDG for
anisotropic diffusion: a priori and a posteriori error analysis

» Dohyun Kim, L. Zhao, E. Chung, and E.-J. Park (arXiv'21)
- Pressure-robust SDG for the Navier-Stokes

- Exactly divergence free velocity
- Arbitrary high order polygonal elements

» L. Zhao, E. Chung, and E.-J. Park (arXiv'20)
- Biot’s system of poroelasticity
- Arbitrary high order polygonal elasticity elements
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Outline

Lowest order SDG method (FVM)
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Poisson model: (Joint with Lina Zhao, SIAM J. Sci. Comput. 2018)

Consider the Poisson model problem:

—Au=f in{,
u=0 on9df.

By introducing p = —Vu, we obtain the first order system

p:—Vu’
V-p=f

- Inspired from standard SDG method on triangular meshes by Chung and
Engquist (SINUM 2006,2009)
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Staggered grids

Figure: Initial mesh (left) and the resulting mesh (right).

7., denotes the initial (primal) partition of the domain €,
F.. denotes primal edges, F denotes interior primal edges
and F,, denotes dual edges. 7}, denotes the resulting submeshes
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Typical assumptions

1. Every element S(v) in T, is star-shaped with respect to a ball
of radius > phS(V).

2. For every element S(v) € T, and every edge e € 0S(v), it
satisfies he > phg(,), where h. denotes the length of edge e
and hg,) denotes the diameter of S(v).

Figure: Shape regularity of a polygon.
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Staggered finite element spaces

Figure: Schematic of primal mesh and dual mesh.
Finite element spaces on quadrilateral and polygonal meshes:
Sp:={v:v|.€ Py(r), V7 € Tp; [v] |e=0,e € FO,v |;= 0
if T NN =e,e € F,\F},
Vi:={q:ql|-€ Po(r): V7 € Th;[q-n] |.=0,e € Fpts

where F,, denotes primal edges, 7V denotes interior primal edges
and F,, denotes dual edges.
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Degrees of freedom

D(e) S(v)

Figure: Degrees of freedom for S}, (left) and for V}, (right).

v € S}, is determined by the following degrees of freedom:

Qbe(v) = /’U ds Ve € Fu.

p € V}, is determined by the following degrees of freedom:

we(p):/p-n Ve € Fp.
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Other possible subdivision

Figure: Subdivision into quadrilaterals.

Disadvantage: not robust to mesh distortion
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SDG formulation

Introduce an auxiliary variable p = —Vu, we get the first order
system:
b= _vu7
V-p=f

Multiplying by test function g € V}, and integration by parts over
each S(v) implies

(P, sy = (v, V- @) s0) — (4,4 1)as0)-

Similarly, we obtain

(P-m,)ap(e) — (P, VV)D(e) = (f;0) D(e)-
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SDG formulation

Summing the above equations over all S(v) and D(e), we can get
the discrete formulation: Find (up, pr) € Sy X V}, such that

(Pr,q) — bp(un, @) =0  Vqe WV, (1)
br(pr,v) = (f,v) Vv € S, (2)

where

b (un, @) = — ) (un,[q - n))e,

eeF?

bu(pnsv) = 3 (B -1 o).

ecFp
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Remark
(Mass conservation) Taking v in (2) to be identically one in D(e),
we have

—(Pr-mD,Vape) = (f; ) D(e)s

where np is the outward unit normal vector of D(e).
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Inf-sup condition

Discrete H! norm and H (div, ) semi-norm:

ol = > he IR s

ecFp

lall% = > htlllg -3,
ecF0

We have the inf-sup conditions:

bh(q,’U)

inf sup > i,
veSh qev, vl zllgllo

b*
inf sup M > .

a€Vives,, [vllollgllz

18/86



Lowest order SDG method (FVM)
A priori error estimates
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Error estimates

The L? error estimates with possibly low regularity can be stated
in the next theorem.

Theorem

Assume that (p,u) € (H¢ ()2 N H(div,Q)) x H'T¢(Q),0 < e < 1.
Let (pn,up) be the numerical solution, then there exists a positive
constant C' such that

lu—wunllo < COM™M2 D Jufle + (D B2IFIF)Y),
TET

| — prllo < Ch||u|i4e.
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Postprocessing

Let S} = {v |r€ Pi(7) VT € Tp;v |go= 0}, then we can define the
postprocessing uy € S

(VUZ, VUh)T = (ph, Vvh)T \V/Uh S Pl(T)/P()(T),
(up, 1)e

le]

=uple Vee F,NOrT.
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Lowest order SDG method (FVM)

A posteriori error estimation
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A posteriori error estimator

Let the local error estimator be defined as

= > hellpn-tllie+ D hellpn-nlll. + 1

e€FNOT ecFINOT

Then, the global error estimator can be defined by

=>

TETH
Theorem
Let (p,u) be the weak solution and (pp,,uy) be the numerical

solution, then there exists a positive constant C,..; such that

lp — prllo < Cran.
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Local efficiency

Theorem
Let f;, be a piecewise constant approximation of f. Let (p,u) be
the solution of the weak problem and (py,uy) be the numerical

solution. Then there exists a positive constant C' independent of
the meshsize such that

1 < C(|lp —pn )2

lo,D(e) + ( Z K2\ f — fa

T€D(e)

2
0,7
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Lowest order SDG method (FVM)

Numerical experiments
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Smooth solution on general meshes
Q2 = (0,1)? and the exact solution is given by
u=x(l-z)y(l—y).
Trapezoidal grid:

(1-o)h

(1+a)h

Figure: Partition of Q.
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Error

Convergence history

o llu-upll 2y
- lIPPylli2g)

il‘

10!

1/h

10?

Convergence history

- llu-upll 20
- 1IPPyll 20

102 il‘

104
10° 10'

1/h

Figure: Convergence history for o = 0 (left) and o = 0.4 (right).

102
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Convergence history

= llu-ugll 2 g
o= lIPPyll 2
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Figure: Convergence history for oo = 0.8.
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Perturbed grid

\\ \\ ,LL

\ \ \

\ \ |

\ | |

\\ \\ \\

| | \
Figure: Grids used for simulations. From left to right: (a): Smooth grid.

(b): Random h2-perturbation of the smooth grid. (c): Random h-
perturbation of the smooth grid.
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Error

Convergence history
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Convergence history
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Figure: Convergence history for h2-perturbation (left) and h-perturbation

(right).

30/86



Polygonal mesh

Convergence history

= llu-upll 20
- 1IPPyll 2

Error

104
10 102 10° 10*

Degrees of freedom

Figure: Partition of Q into polygons (left) and convergence history (right).
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Singular solution on L shaped domain

uw=rs sin(%f)

Convergence history

—o—llu-ugll 2
—o— PPyl 2

107"
G\e\e\e\? 23

ilw

Error

10°
100 10! 102

1/h

Figure: Initial mesh (left) and convergence history on uniform refinement
(right).
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Convergence history

102 10° 10 10°

Degree of freedom

Figure: Convergence history for adaptive refinement (left) and adaptive mesh
pattern (right).
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Strong internal layer on unit square domain

Q2 = (0,1)? and the exact solution is given by
u = 16z(1 — z)y(1 — y) arctan(25z — 100y + 50)

Although wu is smooth, it has a strong internal layer along the line
y=1/24x/4.
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Figure: Initial mesh (left) and adaptive mesh (right).
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10%

10°

Figure: Convergence history for adaptive refinement (left) and adaptive mesh

Convergence histor

y
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Degree of freedom

pattern (right).
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Outline

Fractured porous media
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Fracture Model: (Joint with L. Zhao, D. Kim, and E. Chung, JSC 2022)

'QB,I

nr

'QB,Z

° ar

l:| Np=10p,Up,

Figure: lllustration of bulk and fracture domain.
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Fracture Model
In the bulk domain:
u+KVp=0 inQpg,
V-u=f inQp, (3)
pP=Dpo On OQB.

On the fracture

V- (KrVipr) =lrfr+[u-np] inT,

_ (4)
pr = gr on OI'.

The jump condition:

nr{u - nr} = [p] onT,
arfu-nr]={p} —pr onl.

(5)

V. Martin, J. Jaffré, and J. E. Roberts, Modeling fractures and barriers as
interfaces for flow in porous media, SISC '05
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Polygonal Mesh

Figure: A fitted polygonal mesh to the fractured porous media.
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Polygonal Mesh - Subdivision

Figure: Schematic of staggered mesh. S(v) is a primal element and D(e) is
a dual element. Here, — are primal edges Fp, and --- are dual
edges Fy;.
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Polygonal Mesh - Subdivision

Figure: Schematic of staggered mesh. S(v) is a primal element and D(e) is
a dual element. Here, — are primal edges Fp, and --- are dual
edges Fy;.
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Polygonal Mesh - Subdivision

Figure: Schematic of staggered mesh. S(v) is a primal element and D(e) is
a dual element. Here, — are primal edges Fp, and --- are dual
edges Fy;.
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Polygonal Mesh - Subdivision

Figure: Schematic of staggered mesh. S(v) is a primal element and D(e) is
a dual element. Here, — are primal edges Fp, and --- are dual
edges Fy;.
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Discrete space

We introduce three spaces

up € Vi = [Pe(75)]° N H(div; S(V)),
ph € Sp =Pu(Th) N H (D(Fa)).
pro € Wi, = Po(Fp) N HY(T).
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Discrete space - Velocity

Figure: DOFs of quadratic velocity variable on a primal element.

Vi = {9 € [Pu(Ta)]” : ¥l € H(div; S(v)) Vv € N'}
={¢ € [Pu(T)]* : [ -n] = 0 Ve € Fu}
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Discrete space - Pressure

Figure: DOFs of quadratic pressure variable on a dual element.

Sh={v € P(Th) : vlp(e) € C°(D(e)) Ve € Fpr}
= {v € Py(Th) : [v] =0 Ve € Fp.}
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Discrete Space - Fracture

Figure: DOFs of quadratic pressure variable on a dual element with e C T".
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Discrete Space - Fracture

Figure: DOFs of quadratic pressure variable on a dual element with e C T".

45/86



Discrete Space - Fracture

Figure: DOFs of quadratic pressure variable on a dual element with e C T".

Wy, = {qr € Hy(T) : qrle € Pr(F})}
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Discrete Spaces - Norms

The discrete spaces are equipped with norms

lalit = 1Vallzery+ D Do 3 H[[Q]]IILQ(G)

T€TH EEfdlﬂaT
2|T|
1ollgs = 10l 72y + > D I[v - ] 172
TET, eefpmaT

2
larli e = IVarllza
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Assumptions on Mesh

We consider the following assumptions on the polygonal mesh:
Assumption (A) Every S(v) € T, is star-shaped with respect to
a ball of radius > pgshg,).
= Guarantees valid triangulation 7.

Assumption (B) For each S(v) € T, and e € 9S(v), it satisfies
he > thS(u)-
= Guarantees shape-regular triangulation 7.
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Fractured porous media
A priori error estimates
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SDG Interpolation

We introduce the SDG interpolations by
(Ing — q;¥)e =0 Vi € Py(e), e € Fp\Fp,
((Ing — @lap, )e =0 Vo €Pyle), e € Fy, i=1,2,
(Ing—q, )7 =0 Y ePry(7), TETH
and

(Jhv —v) -m,9)e =0 Vo € Pyle), e € Fu,
(Jav —v,0)r =0 VYo €Pr_y(7)?, 7€ Th.
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Discrete Formulation
Find (wp, pr, pr ) satisfying for all (v, q,qr) € Vi, x Sy x W},

(K_luha U)QB + b;kL(pha U) = Oa
_bh(uha Q) + Jh(pha Q) + Ch((phapr,h)ﬂ (q7 0)) = (fa Q)QBv (6)
(KrVepr n, Viar)r + cp((pns prn), (0,qr)) = (rfr,qr)r-

Here,

bn(un,q) = — Y (un-n,[q)e + Y (un, Va)r,

eEFy TETH
b2<ph7v) - Z (ph,[’v-n]}e - Z(phvv"u)’r
eE€FY, TET,
+ 3 Alpn(v-n)] 1)
ee]-'};
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Discrete Formulation

Find (wp, pr, pr ) satisfying for all (v, q,qr) € Vi, x Sy x W,

(K_luhvv)QB + b;kL(pha U) = 07
_bh(uha Q) + Jh(pha Q) + Ch((phapr,h)a (q7 0)) = (fa Q)Qsa (7)
(KrVepr n, Viar)r + cn((phspron), (0,9r)) = (rfr,qr)r-

Here,

A ERS <771r[ph1,[q]>e

eGJ—"}:

enl(ompra). (@ a) = 3 (- () = pra). {a) = an)e

ee]-',l:
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Remark on Discrete Operators
» Discrete adjoint property:

br(v,q) = by (q,v) Vv,q €V} X S,
> For given v € [H'(Q)]?,
bp(v— Jpv,q) =0 Vg€ Sp
and for given ¢ € H}(Q)
by (g — Ipg,v) =0 Yv € V).

» Non-negativity:

Tn(a.0) = Y 0 llalll3e.

eE]—'}:

en((g ar), (g a0) = > ap'{a} — a3,

66.7-'};
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Discrete inf-sup

Lemma (Discrete inf-sup)

bh('U,q) > C

inf sup >
onrllallin

qEeSH veV, Hv
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Stability

Theorem (Stability)

The discrete system (7) admits a unique solution
(Wh, PhyDr,R) € Vi X Sp x Wy, Furthermore, there exists a
positive constant C such that

_1
”K 2uhH(2),QB + KmianhH%,QB

_1 9 1 9
+ > e 2 onllG e + 1 K2 Vipr allgr
66.7'-]1_:

_1
+ > lar*({en} —pra)le

eG]—'F

< C(Kahlf 10y + Kihualr Sl ).
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Convergence

Theorem (Convergence)

There exists a positive constant C such that

) 1
K5 (= wn) oy + 12 VeMTgr = prs) o

1

1 =
+ (3 It = mall)’

eG]—'F

£ (X llap * ({np —pn} — (W — e )IR..)

eE]—'F

1
< C(IK7% (= Jhwllogs + llap * (pr = Tpr) o )

N

where the Ritz projection 11} : H(T') — W), is defined by
(Kr VI pr, Vigrn)r = (KrVepr, Vigrp)r - Varp € Wh.

55/86



Corollary
Assume that (u|,, |-, prle) € H*1(1)2 x H*1(1) x H*1(e) for
TE€ Ty and e € }"};. Then there exists a positive constant C' such

that

1

K2 (w—up)lo0, < CRF,
Ipr — proallor < CRFHL
Ip — phllo.ay < CRFHL

56 /86



Fractured porous media

Numerical experiments
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Example - 1

Figure: Graphs of solutions p and pr for Example 1.

3 .
cos(4x) cos(my) in Qpo, pr =7 cos(my)(cos(2)+sin(2)),

_ {sin(4a:) cos(my) in Qp1,
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Permeable /Impermeable

We consider two different configuration for the physical constants.

n 0.01 for impermeable case,
R =
1 for permeable case.

Other physical parameters are chosen as & = 3/4, /r = 0.01,

Kr=1and
(/) 0
K_< (2r) 0
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Mesh configuration

4 Triangular mesh X Rectangular mesh Polygonal mesh
0.8 08
06 06
0.4 04
02 02
0 0
0 0.2 04 06 08 1 [ 02 0.4 06 08 1

Figure: Uniform triangular (left), rectangular (center), polygonal (right)
meshes with comparable mesh sizes for Example 1. Here, dashed
lines represent dual edges and red lines are the fracture I'.

60 /86



Convergence History - Impermeable

lIp-p,I

0 10®

108

0.5 10'10
10% 10° 10* 10° 108

Degrees of Freedom

Figure: Convergence history for the impermeable case (KT = 0.01) of Ex-
ample 1 with £ = 1,2, 3. Right triangles indicate theoretical conver-
gence rates. Solid lines, dotted lines, and dashed lines are error with
triangular, rectangular, and polygonal meshes, respectively.
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Convergence History - Impermeable

0 10®

108

0.5 10'10
10% 10° 10* 10° 108

Degrees of Freedom

Figure: Convergence history for the impermeable case (KT = 0.01) of Ex-
ample 1 with £ = 1,2, 3. Right triangles indicate theoretical conver-
gence rates. Solid lines, dotted lines, and dashed lines are error with
triangular, rectangular, and polygonal meshes, respectively.
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Convergence History - Impermeable

1P Pyl

0.5 10'10

Degrees of Freedom

Figure: Convergence history for the impermeable case (KT = 0.01) of Ex-
ample 1 with £ = 1,2, 3. Right triangles indicate theoretical conver-
gence rates. Solid lines, dotted lines, and dashed lines are error with
triangular, rectangular, and polygonal meshes, respectively.
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Convergence History - Permeable

Figure:

lIp-p,I

108

05 10'10
s ’ 10% 10° 10* 10° 108
Degrees of Freedom

Convergence history for the permeable case (K = 1) of Example 1
with £k = 1,2,3. Right triangles indicate theoretical convergence
rates. Solid lines, dotted lines, and dashed lines are error with trian-
gular, rectangular, and polygonal meshes, respectively.
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Convergence History - Permeable

0.5 10'8
s 10% 10° 10* 10° 108
Degrees of Freedom

Figure: Convergence history for the permeable case (K1 = 1) of Example 1
with £k = 1,2,3. Right triangles indicate theoretical convergence
rates. Solid lines, dotted lines, and dashed lines are error with trian-
gular, rectangular, and polygonal meshes, respectively.
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Convergence History - Permeable

1P Pyl

-10
05 10
Degrees of Freedom

Figure: Convergence history for the permeable case (K1 = 1) of Example 1
with £k = 1,2,3. Right triangles indicate theoretical convergence
rates. Solid lines, dotted lines, and dashed lines are error with trian-
gular, rectangular, and polygonal meshes, respectively.
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Small Edge - Mesh Configuration

Perturbed mesh with h,=2%, d=0.1 x 2°*

Figure: Schematic of perturbation. 2 X 2 squares (left), two rectangles and
two pentagons after perturbation with d = 0.1 X he (center), and a
resulting mesh from a uniform rectangular mesh with he = 273 and
d = 0.1 X he. The dashed circle is the ball, described in Assumption
(A), of an pentagon.

In the following example, we used d = 0.001 X h,.
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Small Edge vs Rectangle

—— lIp-pyll
e ~ . h
7 < 102
~ea__
/ \ A T
~ T
10 o e 2 [
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PN 106 NN
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—© =P, Pert
P2, Rect -
-8
1078 |- 2 -p2 pert Y [
—=—P3, Rect o
P4, Pert
10710
10° 10 10°

Degrees of Freedom

and perturbed meshes with d = 0.001 X h. (dashed lines)

10°

Figure: Convergence history with uniform rectangular meshes (solid lines)
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Small Edge vs Rectangle

Figure: Convergence history with uniform rectangular meshes (solid lines)
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and perturbed meshes with d = 0.001 X h. (dashed lines)
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Small Edge vs Rectangle

Figure: Convergence history with uniform rectangular meshes (solid lines)

1071
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, Rect
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Degrees of Freedom

and perturbed meshes with d = 0.001 X h. (dashed lines)
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Unfitted Mesh

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 02 04 06 08 1 0 02 04 06 08 1 0.4 0.6

Figure: Underlying polygonal mesh (7, left), modified mesh (7s,) (center)
and its magnified view with dual edges (right). The modified mesh
contains both sliver elements and small edges.
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Unfitted Mesh - Convergence

[Ip-py I
10°
102
~—__
104 w. A &,
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. Fitted e S
10° Unfitted Sl
. % -
, Fitted
- .
108 , Unfitted B k
, Fitted o
, Unfitted
10—10
04 06 10° 10° 10 10° 10°

Degrees of Freedom

Figure: Convergence history with fitted (solid lines) and unfitted (dashed
lines).
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Unfitted Mesh - Convergence

10°
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Figure: Convergence history with fitted (solid lines) and unfitted (dashed
lines).

73/86



Unfitted Mesh - Convergence

0.4 0.6

Figure: Convergence history with fitted (solid lines) and unfitted (dashed

lines).
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Numerical Experiments - Curved Fracture

Figure: Fitted mesh using triangles (left) and polygons (right)
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Numerical Experiments - Curved Fracture

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

Figure: Cut mesh from a background mesh
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Numerical Experiments - Curved Fracture

0 0.2 0.4 0.6 0.8 1

Figure: Cut mesh from a background mesh
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Numerical Experiments - Curved Fracture

0.2 0.25 0.3 0.35 0.4

Figure: Cut mesh and its magnified view
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Numerical Experiments - Curved Fracture

1Py |/1IPll

—=—P", Fitted
10710k |=2 ~P", Unfitted T
P2, Fitted
102 — £ -P2, Unfitted .
= P®, Fitted -
M “ ~ P, Unfitted
0o 10 102 10° 10t 10° 10°

Figure: Solution shape (left) and convergence history with respect to degrees
of freedom (right)
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Quarter-Five Spot

Dirichlet

- = =Neumann
— Fracture

Figure: Domain configuration.

We set the boundary condition
u-n=0on N\, p=0ond\I.
We model the injection and production by the source term

f= 10.1(tanh (200(0.2 (4 y2)%))—tanh (200(0.2 (e —12+ (y— 1)2)%)) )
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Quarter-Five Spot

We set

=)

and for (1) permeable fracture:
k=1, kp =100
and for (2) impermeable fracture:
kp=0.01, kp=1.

Background mesh: Uniform rectangular mesh with h, = 275.
Cubic polynomials are used.
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Figure: Pressure profile for the quarter-five spot problem with permeable
(left) and impermeable (right) fracture.
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Figure: Pressure profile along z = y for the quarter-five spot problem.
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Outline

Concluding remarks and Outlook
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Conclusion and outlook

» Lowest order SDG methods on general meshes (FVM) for
Poisson /Stokes/Elasticity problem

» Reliable (and efficient) a posteriori error estimations for
Poisson/Stokes equations

» Locking free error estimates for the elasticity problems

» Generalization to high order polynomial approximations
(Darcy-Forchheimer and Stokes coupled problem)

» Darcy flows in fractured porous media

» Interface problems and unfitted meshes, small/curved edges
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