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Vector-valued function spaces

function spaces:

H(curl) = {u € [Ly)*:curlu € [Ly]?}
H(div) = {u€[Ly]’:divu € Ly}

e tangential / normal boundary traces

e tangential / normal continuous finite element spaces (A%, BDAMF)

e exact de Rham sequence:

HY e H (curl) curg H(div) 4% Lo

range A; = ker A;14

e regular decomposition H(curl) = [H']* + VH!, H(div) = [H']? + curl[H']?
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Matrix-valued function spaces

H(dd) := H(divdiv) := {0 & [Ly]>*>¥™ :divdive € H '}
H(cd) := H(curldiv) := {o € [Ly]*** :curldive € [H )%}
H(cc) := H(curlcurl) := {o € [Ly]?*3¥™ : curl’ curlo € [H1]3*35v™m)

finite element spaces for £ > 0, slightly non-conforming

ded = {0 € [Ly]?*3svm . o € P* oo continuous}
Vc"zl = {o€ :LQ:SXS Lo € P* o continuous}
VC’Z = {0 € [Ly]?*3svm . o € P* oy continuous}

e In 2D, ded is the Hellan-Herrmann-Johnson finite element space.
V. is the Regge finite element space [Christiansen '11, Li '18]

e Regular decomposition: H(cc) = [H]?*3:sv™ 4 ¢([H]?), ...

e Shape functions are defined on reference elements, two-sided Piola/covariant transformations preserve
normal/tangential components, mapping on manifolds
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3-step exact sequence

Smooth subspaces form a sequence:

T T . .
H 22 H(curl) ™™ H(ce) % H(ed) PN H(dd) 2% g (div) &% g-?

e 3-step exact sequence: range A; = ker A; 104,11

e includes the Kroner complex (with & = sym-grad and inc = curl” curl).
[H'® =5 H(ce) 2% H(dd) <% H?

e homogeneous boundary conditions on flat boundaries are preserved (t-component for H(curl),
tt-component for H(cc), nt-component for H(cd), ...)

e useful for construction of basis functions and designing bubbles not polluting the range of the next
operators (elasticity, weakly-symmetric formulation for Stokes)
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Distributional derivatives

Let 0 € Vd’z. Then the distributional divergence f :=divo is

(f. @) = —/J:V@:—Z/TO:V@:%:/TdiVG—/aTJngp
— Z/Tdivw—Z/E[an]so=ZLW@-ZL@%
T E T E fE

Jr

f = div o consists of element-terms and facet-terms:

fT == diVTO'
fE = l|on
It can be applied to v, € N C H(curl).
Write duality pairing as
(div o, v)

vector in tangential space

fk)r g & ‘/Zi;, V€& j\/jc
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Second distributional derivatives

Let f as above, and g = div f. Then

(9,p) = —Z/TfTVSO—Z/EfEVtSO
= ;/TdiVTfTSO-FZ/E([fT,n]+divth)g0—|—Z Z (Tnity — Ongts)P

vV T:VET

gr = divy fr

9E 1) +dive fE

Z (Onity = Ongts)

T:verT

gv

g is a measure and can be applied to v, € LFT1 C H'. Due to the arising point functionals, Vg is slightly
non-conforming for H(dd).
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H(dd) and H(cd)-based methods for Elasticity and Stokes

Find stress o € V¥, and displacement u € N'* (the TDNNS method: robust for thin structors)

[Ao:7 + (divr,u) = 0 V1€ Vyg
(div o, v) = f(v) VveN

Astrid Pechstein Phd-thesis and joint work ['11,'12,'18,'21]

Find o € Vc’ﬁi w € BDMPF and p e Pkl (the pressure-robust MCS method for Stokes):

[ Ao T + (div7,u) + (divu, q) 0 V71 €eVy Vqge PP
(divo,v) + (div v, p) = f(v) VYwveBDM*

Philip Lederer Phd-thesis and P. Lederer-J. Gopalakrishnan-JS ['20, "20]
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H (dd) methods for plates

Hellan-Herrmann-Johnson (HHJ) method for the Kirchhoff plate: ['60s and '70s, I. Comodi '89]

Find bending moments o € V., and vertical deflection w € £F1:

[Ao:7 + (divr,Vw) = 0 VreVk
(div o, V) = f(v) Vove k!

Combination of HHJ and TDNNS for Reissner Mindlin [A. Pechstein-JS '17]:

Find o € ded and w € LKL B3 e NF:

fAO':T + <diV7’,6> = 0 \V/TEded
(dive,d) — t%(Vw—B,VU—(S) = f(v) VYve Lkl VéecNF,

Free of locking, and for £ — 0 the discrete RM solution converges to the Kirchhoff solution.
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The TD-NNS mixed method for elasticity

The elasticity problem is equivalent to the mixed problem: Find o € H(divdiv) and u € H(curl) such
that for tangentially continuous v and normal-normal continuous 7:

[Ao T + ZT{deiVT-u—faTTnTUT} = 0 VT
ZT{deiVU'v_faTUnTUT} — —ff°’U Yo

Proof: The second line is equilibrium, plus tangential continuity of the normal stress vector:

Z/T(diva+f)v+Z/E[am]vT:0 Vo

Since the space requires continuity of o,,,, the normal stress vector is continuous.
Element-wise integration by parts in the first line gives

> [(o—cw)ir+ Y [runlwl =0 v

This is the constitutive relation, plus normal-continuity of the displacement. Tangential continuity of the
displacement is implied by the space H(curl).
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Equilibrated residuals for Kirchhoff Plates

Plate problem: Find vertical deflection w € H p:
/V2w:V2’U=/fv V’UEH&D

e Discretize by some method, e.g. CY-IPDG to compute wy,.
e Local interpolation to some w} € H?.
e Local postprocessing of of & V3w, with divdive; = f for o7 € Vyq.

e Prager-Synge:
IV, — VAul[z, + [log, — VAuwllZ, = Vi), — o} 111,

[D. Braess-A. Pechstein-J.S, "20]

Equilibrated residuals for Stokes: P. Lederer + C. Merdon 21
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Curved elements

fixed left top, pull right top Mapped elements by two-sided Piola:

Elements of order 5 1

o(x) = - F5(@)F"

Mapping preserves nn-continuity, but not nt-
continuity

div o is not an algebraic transformation of divdg, but

1 —~
dive = jF div 6 4+ something(VF) : &
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Reissner Mindlin Plates and Thin 3D Elements

Mixed method with 0 = A~ 1¢(B) € H(divdiv), 8 € H(curl), and w € H':

L(o; B,w) = ||lo|% + (dive, B) — t%||Vw — 8|

Reissner Mindlin element: 3D prism element:

T jcnn ﬁ \HUT

Hierarchical modeling: 3D discretization contains 2D reduced model
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Geometric nonlinear Elasticity

[M. Neunteufel + A. Pechstein 4+ J.S to appear in CMAME, 2021, Phd-thesis M. Neunteufel 2021]

Hu-Washizu three-field mixed formulation

min /W(C)dm—/fudx
wl Q Q

<C(u)—C,2>=0
with

e u € H(curl) T s I
e ¥ € H(divdiv) ... 2" Piola-Kirchhoff

o C c Ly(R4Xdsym)  Cauchy-Green streain

e W(.,) ... hyperelastic energy functional

e pressure-robust nearly incompressible (det F' = 1)
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Checkerboarding for Valentine’s day

e

A
,@%@@\%3@
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Riemann curvature and Incompatibility

The Kroner complex [Kroner 85, Int. J. Solid Structures]:

linear elasticity:

HP Y H(ee) 25 H(dd)

nonlinear elasticity: Cauchy-Green strain and Riemann curvature:

=P Y Hee) Y H(dd)
with

Cle) = Ve'Vgp
qujk(g) — ajrikq - akrijq + Ffjrkqp - kaqup

with Christoffel symbols I'.
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