
Provable convergence rate for
asynchronous Schwarz

Daniel B. Szyld

Temple University, Philadelphia

INRIA Workshop
9 June 2022

Collaborators: Erik Boman (Sandia), Faiçal Chaouqui (Temple),
Edmond Chow (Georgia Tech.), Mireille El Haddad (Université

Laval, Quebec), Andreas Frommer (Wuppertal),
José Garay (Lousiana State), Christian Glusa (Sandia),

Frédéric Magoulès (CentraleSupelec, Paris-Saclay),
Ichitaro Yamazaki (Sandia)

Thanks to DOE DE-SC0016578

Outline of the talk

I Restricted Additive and Optimized Schwarz methods

I Asynchronous methods

I Some numerical experiments (one- and two-level methods)

I Models of asynchronous methods

I Some convergence theorems

I New convergence results

The general problem

Ax = b

{
L(u) = f in Ω

C(u) = g on ∂Ω,

I Domain decomposition (classical Schwarz):
Solve on subdomains with artificial Dirichlet transmission
conditions

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

The general problem

Ax = b

{
L(u) = f in Ω

C(u) = g on ∂Ω,

I Domain decomposition (classical Schwarz):
Solve on subdomains with artificial Dirichlet transmission
conditions

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Alternating Schwarz (aka multiplicative Schwarz)

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

I General idea of alternating Schwarz method: solve on left
domain using as Dirichlet data for red line previous approx. of
soln. in right domain; solve on right domain using as Dirichlet
data for blue line previous approx. of soln. in left domain

I Same idea for q > 2 subdomains. Go through all q
subdomains, then start again, i.e., s = 1, . . . , q

I One sweep is very good as a preconditioner for CG or other
Krylov subspace methods

[Smith, Bjørstad, Gropp, 1996], [Quarteroni, Valli, 1999],

[Toselli, Widlund, 2005], [Mathew, 2008], [Dolean, Jolivet, Nataf, 2015]

More on Schwarz

I Additive/multiplicative Schwarz can be interpreted as
Block Jacobi/Gauss-Seidel with overlap. Thus convergence
depends on spectral radius (or norm) of iteration operator

I Restricted Additive Schwarz (RAS): compute with overlap,
communicate without overlap 1

1[Cai, Sarkis, 1999], [Frommer, S, 2001]

Overlap

For i = 1, . . . , q

Aiix
(k+1)
i = bi −

∑
j 6=i

Aijx
(k)
j

Not convergent as a solver, double count on overlap

RAS: Keep only restriction of x
(k+1)
i to non-overlapping variables

Take-home message 1: Overlap pays off!

Alternating Schwarz as fixed point method

I Can interpret Schwarz iterations as a fixed point map from
boundary values to boundary values v = T v

Optimized Schwarz Methods (OSM)
I For example for elliptic problems:

Robin transmission conditions - say ∂νu(x) + αu(x)
Optimal convergence is obtained by optimizing the value of α
(this is called OO0)

I Second order transmission conditions:
∂u

∂ν
+ αu + β

∂2u

∂τ2
(two parameters, called OO2)

I Algebraic version (no restriction on domain shape or PDE)
(Block Gauss-Seidel with overlap and changing some entries
in overlap)

I Optimized Schwarz (or optimized RAS) can be very fast as a
solver

[Gander, Halpern, Nataf, 2001], [Japhet, Nataf, Rogier, 2001],
[Dolean, Lanteri, Nataf, 2002], [Côté, Gander, Laayouni, Loisel, 2004],
[Gander, 2006], [Chevalier, Nataf, 2007], [Loisel, S., 2010]
[Dubois, Gander, Loisel, St-Cyr, S., 2012], [Maday, Magoulés, 2006, 2007],
[Magoulés, Roux, Salmon, 2004], [Magoulés, Roux, Series, 2005, 2006],

[Nier, 1998/9] [Dolean, Jolivet, Nataf, 2015]

Algebraic Optimized Schwarz Methods (OSM)

0 5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

SAdditiveTwo−domains

iteration

e
rr

o
r

Nonoverlapping

Overlapping

O0

O0s

O2

Optimal

Figure: Square domain, two subdomains, alternating Schwarz
From [Gander, Loisel, S., 2012]

New Architectures, New Paradigms

I Exascale machines, hundreds of thousands of processors

I Communication is usually the bottleneck

I Inner products are prohibitive

I We repeat: For DD, usually outer Krylov, inner RAS / ORAS
(preconditioning)

I One idea: Reverse the order, ORAS (or two-level RAS) as
outer (solver), Krylov inner (for local problems)

I Another idea: Let us do this asynchronously!

New Architectures, New Paradigms

I Exascale machines, hundreds of thousands of processors

I Communication is usually the bottleneck

I Inner products are prohibitive

I We repeat: For DD, usually outer Krylov, inner RAS / ORAS
(preconditioning)

I One idea: Reverse the order, ORAS (or two-level RAS) as
outer (solver), Krylov inner (for local problems)

I Another idea: Let us do this asynchronously!

What we do

We do this asynchronously!

For each s, repeat until global convergence test satisfied

L
(
u(s)
)

= 0 in Ω(s),

C(u(s)) = 0 on ∂Ω ∩ ∂Ω(s),(
∂

∂ν
(s)
l

− Λ(s−)
)
u(s) =

(
∂

∂ν
(s)
l

− Λ(s−)
)
u(s−1) on Γ

(s)
l ,(

∂

∂ν
(s)
r

− Λ(s+)
)
u(s) =

(
∂

∂ν
(s)
r

− Λ(s+)
)
u(s+1) on Γ

(s)
r .

Each local processor proceeds with whatever boundary information
it has, even if it may be repeated.
Stopping criterion also asynchronous.

Algebraic view

In process i
- Read xj (j 6= i) (say from shared memory - or from local memory)
- Solve

Aiixi = bi −
∑
j 6=i

Aijxj

- Write restricted values of xi (to shared memory - or other
processors)

I No iteration counts

I Can tag xi with wall clock when writing it

I Take-home message 2: Asynchronous iterations work very
well!

Algebraic view

In process i
- Read xj (j 6= i) (say from shared memory - or from local memory)
- Solve

Aiixi = bi −
∑
j 6=i

Aijxj

- Write restricted values of xi (to shared memory - or other
processors)

I No iteration counts

I Can tag xi with wall clock when writing it

I Take-home message 2: Asynchronous iterations work very
well!

Algebraic view

In process i
- Read xj (j 6= i) (say from shared memory - or from local memory)
- Solve

Aiixi = bi −
∑
j 6=i

Aijxj

- Write restricted values of xi (to shared memory - or other
processors)

I No iteration counts

I Can tag xi with wall clock when writing it

I Take-home message 2: Asynchronous iterations work very
well!

Algebraic view

In process i
- Read xj (j 6= i) (say from shared memory - or from local memory)
- Solve

Aiixi = bi −
∑
j 6=i

Aijxj

- Write restricted values of xi (to shared memory - or other
processors)

I No iteration counts

I Can tag xi with wall clock when writing it

I Take-home message 2: Asynchronous iterations work very
well!

An application. Numerical experiments

Chicxulub Crater, created by a collision of an asteroid approx. 66
million years ago: Cretaceous-Paleogen boundary: extinction of
dinosaurs, approx. diameter 180km (pictures NASA, 2010)

Our experiments

We want to compute the gravitational potential Φ on a
parallelepiped geometric domain of dimensions
250km × 250km × 15km.

Finite element mesh

Equation to solve

∆Φ = −4πGδρ

I G = 6.672× 10−11m3kg−1s−2 gravitational constant

I δρ anomaly density distribution computed from data
acquisition on a salt dome (produced by the impact)

Close up of the salt dome geometry
[Magoules, S., Venet, 2017]

Three discretizations of box
I case I has 2 491 632 DOF (256 subdomains)

I case II has 19 933 056 DOF (512 subdomains)

I case III has 146 707 292 DOF (1024 subdomains)

I 1068 processors - 17,088 cores (half 1.6 Ghz with 2x2MB of
cache, half 2.93 Ghz with 2x4MB of cache)

I (Synchronous) OSM and asynchronous OSM

I Compute optimal parameters using CMA-ES

I In each subdomain solve linear system directly

OO0 – case iter time upt min upt max time (sec)

I (256) 1722 43 1030 1917 40
II (512) 3379 777 2257 4438 591

III (1024) 8331 3888 5251 13274 863

OO2 – case iter time upt min upt max time (sec)
I (256) 575 14 309 1334 13

II (512) 938 214 627 2714 176
III (1024) 1850 863 811 4820 352

Two-level RAS. 3D example. Weak scaling.

101

6× 100

2× 101
3× 101

se
co

n
d
s Sync

Async

102 103
subdomains

10−7

10−6

10−5
re

si
d
u
a
l

n
o
rm Sync

Async

107 108

DoFs

0.6

0.8

ρ̂ Sync

Async

Each subdomain about 40K unknowns. 64, 256 and 4096
subdomains. Balanced load.
[Glusa, Boman, Chow, Rajamanickam, S., 2020]

Repeating

I Overlap is worth considering

I Asynchronous Optimized Schwarz and two-level RAS work well

I and they scale well

I No communication bottleneck, no synchronization!

Asynchronous parallel methods for fixed point problems

Long history mostly from the 1980’s and 1990’s
Very selected references:
Papers: [Chazan, Miranker, 1969], [Robert, 1976], [Baudet, 1978],

[El Tarazi, 1982], [Bertsekas, 1983], [El Baz, Miellou, Spiteri, 1996],
[Üresin, Dubois, 1989]

Books: [Bertsekas, Tsitsiklis, 1989], [Bahi, Contassot-Vivier, Couturier,2008]

Surveys: [Frommer, S., 2000], [Spiteri, 2020]

All theory is based on product spaces (subdomains or group of
variables, including the overlap case).
Essentially (linear and nonlinear) block Jacobi. Inherently slow.
Asynchronous BJ faster but still slow.

What is different now?
Now, OSM fast, AOSM fast.

Asynchronous parallel methods for fixed point problems

Long history mostly from the 1980’s and 1990’s
Very selected references:
Papers: [Chazan, Miranker, 1969], [Robert, 1976], [Baudet, 1978],

[El Tarazi, 1982], [Bertsekas, 1983], [El Baz, Miellou, Spiteri, 1996],
[Üresin, Dubois, 1989]

Books: [Bertsekas, Tsitsiklis, 1989], [Bahi, Contassot-Vivier, Couturier,2008]

Surveys: [Frommer, S., 2000], [Spiteri, 2020]

All theory is based on product spaces (subdomains or group of
variables, including the overlap case).
Essentially (linear and nonlinear) block Jacobi. Inherently slow.
Asynchronous BJ faster but still slow.
What is different now?
Now, OSM fast, AOSM fast.

Mathematical Models: Asynchronous iterations for x = T x

For each time stamp k ∈ N,
let I k ⊆ {1, . . . , q} (the set of variables written at time stamp k)
and (s1(k), . . . , sq(k)) ∈ Nq

0

where sj(k) is the tag of variable j available when computation
starts ending in a variable i written at time stamp k, such that
(typical three assumptions)

sj(k) < k for j ∈ {1, . . . , q}, k ∈ N
(only read variables already computed)
limk→∞ sj(k) =∞ for j ∈ {1, . . . , q}
(no information is stale forever)
|{k ∈ N : i ∈ I k}| =∞ for i ∈ {1, . . . , q}
(each variable is eventually updated)

Mathematical Models: Asynchronous iterations for x = T x

Given an initial vector x0 ∈ E = E1 × . . .× Eq, the iteration

xki =

{
Ti (x

s1(k)
1 , . . . , x

sq(k)
q) for i ∈ I k

xk−1i for i 6∈ I k ,

is termed an asynchronous iteration
(with strategy I k , k ∈ N and delays di (k) = k − si (k),
i = 1, . . . q, k ∈ N).

For bounded delays, there exist d such that di (k) ≤ d for all i , k.

Typical convergence theorem

For a fixed point iteration x(k + 1) = T x(k),
if ‖T ‖ < 1, for some operator norm conformal with the product
space, and with the typical assumptions,
asynchronous iteration converges to the unique fixed point.

e.g., [El Tarazi, 1982], [Bertsekas, 1983]

Notes: No convergence rate (and no iteration counts!)
In other theorems, condition is ρ(|T |) < 1.
We used these theorems to show convergence for AOSM in some
settings and for two-level asyncrhonous RAS

Randomized view of Asynchronous Iterations (2002)

At each time stamp k ,

xki =

{
Ti (x

s1(k)
1 , . . . , x

sq(k)
q) with probability pi

xk−1i with probability 1− pi

[Strikwerda, LAA, 2002] where he also had si (k) as random variables
Of course

∑q
i=1 pi = 1

Strikwerda proved that E(‖xk − x∗||)→ 0
for T = B, ρ(B) < 1

and in fact E(‖xk − x∗||) = O(R−k) for some real number R
(radius of analiticity of a matrix M(z) = I − z [I − P + s(z)PB] ,
P = diag(pi), s(z) related to randomized si (k))
Note: This is analysis of “classical” asynchronous iterations, not a
new randomized method

Randomized view of Asynchronous Iterations (2014)

[Avron, Druinsky, Gupta, J ACM, 2014, 2015] consider Ax = b, A SPD
They do propose a new algorithm where probabilities are used.
Essentially Asynchronous Randomized (point) Jacobi (≡
Randomized Gauss-Seidel). Let A = D − B, D = diag(A),
H = D−1A, c = D−1b

for m = 1, 2, . . . do
choose index i with probability pi
xm+1
i =

∑n
j=1 hijx

m
j + ci , xm+1

` = xm` for ` 6= i
end for

Note: m here counts relaxations, not iterations.

[Avron, Druinsky, Gupta, J ACM, 2014, 2015]

Computational model here: 1. Bounded delays k − si (k) ≤ d .
2. Atomic write: only one component is updated for every time
stamp.
Theorem. If ‖H‖∞ small enough so that ‖H‖∞ < n/2d (or given
A, the delay d small enough), and if the probabilities are uniform,
then

E(‖xm − x∗‖2A) ≤ βαm/(d0+d)‖x0 − x∗‖2A
where β, α functions of λmax(H), d , n, ‖H‖∞, and κ(H), and

d0 = d log(1/2)

log(1− λmax/n)
e

Challenge

[Avron, Druinsky, Gupta, 2015] show provable linear convergence rate
for A SPD, using A-norm, uniform distribution.

We want to do the same for blocks and for A nonsymmetric.
What conditions on A? What norm to use?

Note: [Coleman, Jensen, Sosonkina, 2019, 2020] experiment with blocks
and with non-uniform distributions (asynchronous).
[Griebel, Oswald, 2012] show provable linear convergence rate in the
expected value sense for A SPD, using A-norm, for Schwarz
methods (randomized but not asynchronous).

Definition

Given a permutation and partition π into q sets of {1, 2, . . . , n}.
We define the n × ni matrix Si with the columns of I
corresponding to the set πi . Let S = [S1, . . . ,Sq], it is a complete
sketching. Let Aij = ST

i ASj . Assume that Aii is nonsingular,
i = 1, . . . , n. A is called (strictly) block (column) diagonally
dominant (BDD) in the sense of Robert [1969] if

q∑
i=1

‖A−1ii Aij‖ < 1, for j = 1, . . . , q

That is, if D = diag(Aii), H = D−1A, A BDD, then

max
j

q∑
i=1

‖Hij‖ < 1

New Definitions

Let u > 0, u ∈ Rq. A is called generalized (strictly) block
(column) diagonally dominant (GBDD) if

1

uj

q∑
i=1

‖A−1ii Aij‖ui < 1, for j = 1, . . . , q

That is, if D = diag(Aii), H = D−1A, A GBDD iff

‖H‖S ,u := max
j

1

uj

q∑
i=1

‖Hij‖ui < 1

This matrix norm is induced from the (block weighted `1) vector
norm

‖v‖S ,u =

q∑
i=1

ui‖ST
i v‖

Provable linear convergence rate

Theorem. [Frommer, S., 2022] Fix a permutation and partition π into
q sets, and corresponding matrix S . Let u > 0, u ∈ Rq. Let A be
generalized BDD w.r.t. π, u. Let A = D − B, D = blockdiag(A),
H = D−1A, c = D−1b, r̂k = c − Hxk . Assume that
‖H‖S,u = maxqj=1 ρj < 1, where ρj denotes the weighted block
column sum

ρj =
1

uj

q∑
i=1

ui‖Hij‖, j = 1, . . . , q.

Let α = minj pj(1− ρj). Then,

E(‖r̂k‖S,u) ≤ (1− α)bk/dc‖r̂0‖S ,u.

k here are block relaxations - time stamps. d the bound on the
delay. Asynchronous iterations.

Conclusions

I Asynchronous iterations work. They can work very fast,
especially with overlap.

I After 40 years, we have now provable linear convergence rate
for large classes of matrices.

Papers and reports can be found at: math.temple.edu/szyld

