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Talking points

▶ Interplay between....

▶ How preconditioning provides efficient and reliable a
posteriori error indicators for discretized PDEs.

▶ How a posteriori error indicators on graphs provide
multilevel hierarchies for AMG.
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Operator preconditioning

Setup:

▶ Hilbert space H equipped with inner product (·, ·)H and norm ∥ · ∥H
▶ Operator A : H 7→ H′

Linear problem: given f ∈ H′, find u ∈ H such that Au = f

Well-posedness (is A an isomorphism?):

Continuity of A: sup
0 ̸=x∈H

sup
0 ̸=y∈H

⟨Ax, y⟩
∥x∥H∥y∥H

≤ β

Continuity of A−1 (inf-sup condition): inf
0 ̸=x∈H

sup
0 ̸=y∈H

⟨Ax, y⟩
∥x∥H∥y∥H

≥ γ > 0

Example: Stokes equation

Ax = f =⇒
(
−∆ div∗

div 0

)(
u
p

)
=

(
f
0

)
where H = [H1

0 ]
3 × L2, and ∥x∥2H := ∥∇u∥2 + ∥p∥2
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Operator preconditioning

Preconditioner B

Au = f =⇒ BAu = Bf

Requirements on B: κ(BA) = ∥BA∥∥(BA)−1∥ = O(1) ≪ κ(A)

B ≈ A−1 and the action of B is easy to compute

▶ Apply Krylov iterative methods to the preconditioned system
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Operator preconditioning (Mardal and Winther 2011; Loghin & Wathen

2004, Hiptmair 2006)

Problem: Given f ∈ H′, find u ∈ H such that Au = f. Here, A : H 7→ H′

is an isomorphism.
Riesz operator: B : H′ 7→ H, such that for every f ∈ H′,

⟨f, x⟩ = (Bf, x)H, ∀ x ∈ H

Estimate κ(BA):

∥BA∥ = sup
x∈H

sup
y∈H

|(BAx, y)H|
∥x∥H∥y∥H

= sup
x∈H

sup
y∈H

|⟨Ax, y⟩|
∥x∥H∥y∥H

≤ β

∥[BA]−1∥−1 = inf
x∈H

sup
y∈H

|(BAx, y)H|
∥x∥H∥y∥H

= inf
x∈H

sup
y∈H

|⟨Ax, y⟩|
∥x∥H∥y∥H

≥ γ

=⇒ κ(BA) = ∥BA∥∥[BA]−1∥ ≤ β

γ

▶ Riesz operator is a robust preconditioner!
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Error indicators: Estimating the residual

▶ Existence of a preconditioner B =⇒ two-sided estimate on
∥e∥B−1 = ∥e∥H. Let r ∈ H′ be the residual r = f − Auh.

Lemma

We have the following two sided bound

∥BA∥−1
B−1∥r∥B ≤ ∥e∥B−1 ≤ ∥(BA)−1∥B−1∥r∥B.

∥BA∥H∥r∥H′ ≤ ∥e∥H ≤ ∥(BA)−1∥H∥r∥H′ .

Proof.

Using the relation e = A−1r, we have

∥e∥B−1 = ∥e∥H = ∥A−1B−1Br∥H ≤ ∥(BA)−1∥H∥Br∥H.

On the other hand: ∥r∥B = ∥r∥H′ = ∥BAe∥H ≤ ∥BA∥H∥e∥H.
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∥BA∥H∥r∥H′ ≤ ∥e∥H ≤ ∥(BA)−1∥H∥r∥H′ .

• Result: Efficient and reliable error indicator, provided that the norm of
the residual ∥r∥H′ can be efficiently approximated by local operations.
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A Posteriori Error Estimation I

▶ A point of view: try to rewrite the (a posteriori error estimator) as a
(two-level) Schwarz preconditioner.

▶ Take the infinite dimensional V as the fine grid: Vh ⊂ V instead of
VH ⊂ Vh in the two-level method.

▶ The error e = u− uh ∈ V and residual r = f −Auh ∈ V ′ are related
by the error equation

Ae = r .

▶ Let {ϕi}ni=1 be the nodal basis of Vh. Take Ωi := suppϕi , and
Vi = H1

0 (Ωi ), and Ii : Vi → V be inclusion, Qi = I ′i , Ai = QiAIi .
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A posteriori error estimation II

▶ V = Vh +
∑n

i=1 Vi corresponds to

B = A−1
h Qh +

n∑
i=1

A−1
i Qi : V

′ → V ,

which is a preconditioner for A,

A−1 is spectrally equivalent to B

(follows from S. Nepomnyaschikh’s fictitious space Lemma)

▶ B yields an error estimator

∥e∥2A = ∥A−1r∥2A = ⟨r ,A−1r⟩ ≈ ⟨r ,Br⟩

= ⟨r ,A−1
h Qhr⟩+

n∑
i=1

⟨r ,A−1
i Qi r⟩.

▶ In case of FEM by definition Qhr = 0!
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Residual Error Estimator

▶ The error estimator is

∥e∥2A ≃
n∑

i=1

⟨r ,A−1
i Qi r⟩ =

n∑
i=1

∥ηi∥2Ai
,

where ηi ∈ Vi = H1
0 (Ωi ) solves

(∇ηi ,∇vi ) = (f , vi )− (∇uh,∇vi ), ∀vi ∈ Vi .

▶ It was first proposed in [Babuška&Rheinbolt(1978)SINUM].

▶ Go to computable quantities by standard arguments (so called
Verfürth’s bubble function approach): [book: Verfürth(2013)].
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Residual Error Estimator

▶ The error estimator is

∥e∥2A ≃
n∑

i=1

⟨r ,A−1
i Qi r⟩ =

n∑
i=1

∥ηi∥2Ai
,

where ηi ∈ Vi = H1
0 (Ωi ) solves

(∇ηi ,∇vi ) = (f , vi )− (∇uh,∇vi ), ∀vi ∈ Vi .

▶ Similarly: efficient and reliable error indicators (using Nodal
Auxiliary Space Preconditioning) to discretizations of δd , Hodge
Laplacian problems, and linear elasticity with weak symmetry.

▶ The only ingredients needed are: well-posedness of the problem and
the existence of regular decomposition on continuous level (for
singularly perturbed H(d) problems). .

Li&Z.(2020)CAMWA, Li&Z. arXiv:2010.06774v1
Ludmil Zikatanov (Penn State) Adaptive AMG June 10, 2022 9 / 47



Graphs and graph Laplacians

A posteriori estimates in AMG for Graph Laplacians

▶ We consider a graph G = (V, E), V = {1, . . . , n}, n = |V| and
n ≫ 1.

▶ Let A ∈ Rn×n be defined via the bilinear form:

(Au, v) =
∑

(i,j)∈E

(−aij)(ui − uj)(vi − vj).

The sum runs over all edges e = (i , j) ∈ E . The resulting matrix is
known as the Graph Laplacian of G.

▶ We are interested in good approximations of the above bilinear form
on a smaller subspace (constructing multilevel hierarchies).

▶ Applications: Fast solution of Au = f for a huge number of
problems.
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Graphs and graph Laplacians

Gradients and divergence

▶ Define G : V = R|V| 7→ R|E| = W and D : R|E| 7→ R|E| in the
following way

(Gv)e = vhead − vtail , De,e = ae , ae = −aij , e = (i , j).

▶ Thus we get another form of the bilinear form A :
(Au, v) = (DGu,Gv) (weighted graph Laplacian).

▶ Taking D = I one obtains the standard graph Laplacian (aij = −1).

Ludmil Zikatanov (Penn State) Adaptive AMG June 10, 2022 11 / 47



Graphs and graph Laplacians

Applications

▶ Discretizations of PDEs (P1, DG, whatever discretizations of elliptic
equations)

▶ Diffusion State distance

▶ Modeling small world networks (protein-protein interraction; social
networks).

▶ Many other problems lead to systems spectrally equivalent to the
graph Laplacians.
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Adaptivity

Adaptivity in solvers (AMG)

▶ Typical numerical models: Au = f , A = −(∇· α∇) or A ∈ Rn×n.

▶ Such models do not have to use FEM or even to correspond to
discretizations of PDEs.

▶ A look at the “adaptive” linear solvers (adaptive AMG, bootstrap
AMG, adaptive SA, etc) reveals:

▶ What is available in the literature is adaptive but with respect
to A;

▶ These methods do not involve any estimates of the error
during iterations.

▶ Q: Are there ways to extend, at least partially, what is done in FE,
FV, FD for a posteriori error analysis and adaptivity to areas such as
approximation of data sets?

▶ Q: Can we use such estimates to create multilevel hierarchical
representation of complicated data-sets (graphs).
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Adaptivity

Tools for solution: two level and multilevel methodology

▶ Algorithms for construction of multilevel hierarchical approximations
of functions defined on graphs.

▶ By multilevel hierarchies here, we mean splitting of both edges and
vertices in a way that gives: coarser graphs; corresponding
Laplacians; operators that transfer data between the graphs.

▶ Goal: The solution on a coarser graph has to be close to the
solution on a finer graph.
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Adaptivity

αAMG for graph Laplacians

▶ Adaptive AMG methods: aim at optimizing (wrt convergence) the
choice of coarse spaces and multilevel hierarchies in an AMG
algorithm.

▶ The majority of known to date adaptive AMG methods approximate
the optimal coarse space and do not use all the information
available such as right hand side.

▶ The basic ideas on adaptive AMG are outlined in the early works on
classical AMG from the 80s (Brandt, McCormick and Ruge’82).

▶ Some adaptive multilevel methods:

▶ Adaptive filtering (Wittum’92; Wittum&Wagner 1997);
Adaptive ML-ILU (Bank& Smith’02);
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▶ Adaptive AMG methods: aim at optimizing (wrt convergence) the
choice of coarse spaces and multilevel hierarchies in an AMG
algorithm.

▶ The majority of known to date adaptive AMG methods approximate
the optimal coarse space and do not use all the information
available such as right hand side.

▶ The basic ideas on adaptive AMG are outlined in the early works on
classical AMG from the 80s (Brandt, McCormick and Ruge’82).

▶ Some adaptive multilevel methods:

▶ αAMG and αSA
(Brezina,Falgout,MacLachlan,Manteuffel,McCormick,Ruge,
2004, 2006);
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Adaptivity

αAMG for graph Laplacians

▶ Adaptive AMG methods: aim at optimizing (wrt convergence) the
choice of coarse spaces and multilevel hierarchies in an AMG
algorithm.

▶ The majority of known to date adaptive AMG methods approximate
the optimal coarse space and do not use all the information
available such as right hand side.

▶ The basic ideas on adaptive AMG are outlined in the early works on
classical AMG from the 80s (Brandt, McCormick and Ruge’82).

▶ Some adaptive multilevel methods:

▶ Bootstrap AMG (Brandt’02, Brandt, Brannick, Livshits, Kahl,
2011,2015)
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Adaptivity

αAMG for graph Laplacians

▶ Adaptive AMG methods: aim at optimizing (wrt convergence) the
choice of coarse spaces and multilevel hierarchies in an AMG
algorithm.

▶ The majority of known to date adaptive AMG methods approximate
the optimal coarse space and do not use all the information
available such as right hand side.

▶ The basic ideas on adaptive AMG are outlined in the early works on
classical AMG from the 80s (Brandt, McCormick and Ruge’82).

▶ Some adaptive multilevel methods:

▶ Adaptive matching (Vassilevski & D’Ambra ’2016)
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Adaptivity

αAMG for graph Laplacians

▶ Adaptive AMG methods: aim at optimizing (wrt convergence) the
choice of coarse spaces and multilevel hierarchies in an AMG
algorithm.

▶ The majority of known to date adaptive AMG methods approximate
the optimal coarse space and do not use all the information
available such as right hand side.

▶ The basic ideas on adaptive AMG are outlined in the early works on
classical AMG from the 80s (Brandt, McCormick and Ruge’82).

▶ This talk:

▶ Adaptive path covering (Hu, Lin, Z. 2019).
▶ αAMG with Helmholtz decomposition (Hu, Wu, Z. 2022).
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Adaptivity

Coarse spaces: Recursive matching algorithm

1 2

3

4 5

6 7

1′

2′
3′

The matching algorithm works as follows.

1. Choose the a vertex of smaller degree and group it with one of its
unmatched neighbors (if such neighbor exists).

2. Repeat this until there are no unmatched neighbors.

3. Then group each isolated vertex with a neighbor with which it has
the most connections: coarse graph
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Adaptivity

UA-AMG in action (HAZmath)
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Adaptivity

UA-AMG in action

UA-AMG for a Laplacian on the unit cube in 5D after 14 bisection
refinements
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Adaptivity

Preconditioning Darcy-Stokes (Rational
approximations+UA-AMG)

(a) (b)

Figure: Left: shows the network (graph) of vessels and the porous
tissue. Right: Computational result on coupled flow characteristics in
the brain done with HAZniCS (dated Sep 10, 2021).

▶ Darcy-Stokes equations with these boundary conditions are used to
model CSF-brain interaction.

▶ The action of the Riesz operator: requires computing the action of
fractional Laplacian (s > 0,t > 0, D := (−∆)):(

αDs + βD−t
)−1 ≈

np∑
j=1

cj (D + pj I )
−1
.
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Adaptivity

Making UA-AMG adaptive:approximation of level sets

▶ Given an (approximation to the) error e;

▶ Define auxiliary graph with same set of edges and with weights
based on the computed approximation of the error e.

wij =
1

|ei − ej |
, (i , j) ∈ E ; G = (V, E).

▶ Form a max weight path cover for this graph.

▶ By construction the paths follow the level sets of e, i.e. e
∣∣∣∣
p

≈ const

for any path p from the covering.
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Adaptivity

Path cover of level sets: illustration

• Left: smooth error; Right: Path cover following the level sets of the
error;

• Left: matchings following the level sets; Right: coarse space
approximation. Error of approximation ≈ 10−10!
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Adaptivity

What if...

Level sets are not aligned with the grid

▶ We augment the set of adds of G(A) by adding edges from G(A2)
(correponding to paths in G(A) of length 2).

• Left: smooth error; Middle: path cover; Right: matching/aggregates
on this path cover.
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Adaptivity

How do we know the level sets of the error?

▶ Indeed, e is readily known only when b = 0: not practical.

Practical adaptive algorithm

▶ With the current approximation xk , run several (couple of) W
cycles on Ae = f − Axk to obtain an approximation of the error.

▶ Build hierarchy following the level sets of e.

▶ Perform AMG iterations until the convergence slows down and go to
the first step; or go to the first step every iteration.

• This algorithm looks expensive but it is also aimed to solve hard
problems (not just at Laplace equation on uniform grid)
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Adaptivity

Numerical experiments (Real World Graphs)

Table: Largest connected components of the networks from the
University of Florida sparse matrix collection (UF)

n × 10−6 nnz× 10−6 Description

333SP 3.7 22.0 2-dimensional FE triangular meshes
belgium osm 1.4 3.0 Belgium street network
M6 3.5 2.1 2-dimensional FE triangular meshes
NACA0015 1.0 6.2 2-dimensional FE triangular meshes
netherlands osm 2.2 4.9 Netherlands street network
packing
500x100x100-
b050

2.1 35.0 DIMACS Implementation Challenge

roadNet-CA 1.9 5.5 California road network
roadNet-PA 1.1 3.1 Philadelphia road network
roadNet-TX 1.3 3.7 Texas road network
fl2010 0.5 2.8 Florida census 2010
as-Skitter 1.6 22.0 Autonomous systems by Skitter
hollywood-2009 1.0 113.0 Hollywood movie actor network
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Adaptivity

Numerical experiments(continued)

Table: Largest connected components of the networks from Stanford
large network datasets collection

n nnz Description

com-DBLP 3.17080e5 2.41681e6 DBLP collaboration network
web-NotreDame 3.25729e5 1.09011e6 Web graph of Notre Dame
amazon0601 4.03364e5 5.28999e6 Amazon product co-purchasing network

Ludmil Zikatanov (Penn State) Adaptive AMG June 10, 2022 25 / 47



Adaptivity

Numerical experiments(continued)

Table: UF Collection (Low-Frequency b)

UA-AMG w/MWM Algorithm A Algorithm B
Iter ConvR OC Iter OC Iter Re OC

UF large network datasets collection

333SP – 0.997 1.89 9 2.01 14 7 2.08
belgium osm 1629 0.996 1.99 11 2.02 15 9 2.02

M6 – 0.997 1.86 10 2.11 15 8 2.11
NACA0015 – 0.995 1.86 9 2.10 14 7 2.10

netherlands osm – 0.997 1.98 10 2.02 16 9 2.02
packing – 0.999 1.06 11 2.46 19 10 2.46

roadNet-CA 878 0.991 2.05 8 2.08 14 7 2.08
roadNet-PA 1382 0.991 2.05 8 2.10 14 7 2.09
roadNet-TX 1424 0.994 2.04 9 2.08 14 7 2.08

fl2010 – 0.998 1.83 9 2.19 15 7 2.19
as-Skitter – 0.998 1.21 10 3.13 19 8 3.14

hollywood-2009 – 0.999 1.01 5 3.17 11 3 3.18
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Adaptivity

Numerical experiments (continued)

Table: Stanford Collection (Low-Frequency b)

UA-AMG w/MWM Algorithm A Algorithm B
Iter ConvR OC Iter OC Iter Re OC

Stanford large network datasets collection

com-DBLP 297 0.986 2.01 4 3.22 11 2 3.22
web-NotreDame – 0.999 1.26 7 2.43 13 6 2.40
amazon0601 – 0.998 1.58 5 3.49 12 4 3.52
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Adaptivity

Numerical experiments(continued)

Table: UF collection: Zero-Sum Random b, tol=1e-6

UA-AMG w/MWM Algorithm A Algorithm B
Iter ConvR OC Iter OC Iter Re OC

UF large network datasets collection

333SP – 0.997 1.89 9 2.09 6 1 2.08
belgium osm – 0.996 1.99 11 2.02 15 9 2.02

M6 – 0.997 1.86 8 2.11 5 1 2.11
NACA0015 1565 0.995 1.86 8 2.10 5 1 2.10

netherlands osm – 0.997 1.98 12 2.02 17 11 2.02
packing – 0.999 1.06 11 2.46 17 10 2.47

roadNet-CA 1308 0.994 2.08 8 2.08 15 7 2.08
roadNet-PA 970 0.991 2.05 8 2.09 14 6 2.08
roadNet-TX 1168 0.992 2.04 9 2.08 14 7 2.08

fl2010 – 0.998 1.83 8 2.19 16 7 2.19
as-Skitter – 0.998 1.21 10 3.04 17 7 3.06

hollywood-2009 – 0.999 1.01 7 3.17 13 5 3.18
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Adaptivity

Numerical experiments (continued)

UA-AMG w/MWM Algorithm A Algorithm B
Iter ConvR OC Iter OC Iter Re OC

Stanford collection Zero sum b
com-DBLP 573 0.987 2.01 4 3.23 11 3 3.22

web-NotreDame – 0.999 1.26 7 2.47 15 6 2.56
amazon0601 – 0.998 1.58 6 3.49 10 4 3.50
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A Posteriori Error Estimates

Graph Operators

▶ Discrete gradient operator G : Rn → Rm:

(Gv)e = vi − vj , ∀ v ∈ Rn.

▶ Edge weight matrix D : Rm → Rm,

(Dτ )e = weτe , ∀ τ ∈ Rm.

▶ Weighted graph Laplacian L := GTDG .

G =


−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1

 L =


4 −3 −1 0
−3 6 −1 −2
−1 −1 4 −2
0 −2 −2 4


D = diag(3, 1, 1, 2, 2)
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A Posteriori Error Estimates

Error Estimator (quick intro)

For the graph Laplacian problem , Lu = f .

Lemma (Prager-Synge and S. Repin)

Fix v ∈ Rn, for any τ ∈ Rm,

∥u − v∥L ≤ ∥DGv − τ∥D−1 + C−1
p ∥GTτ − f ∥. (1)

Cp is the Poincaré’s constant of L.

Remarks:

▶ RHS of this inequality provides a reliable upper bound of the error.

▶ This error estimate is expensive to compute.

W. Xu, Z., J. Comput. Appl. Math. (2018)
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A Posteriori Error Estimates

A Posteriori Error Estimates

Denote W (f ) = {τ ∈ Rm|GTτ = f }.

Theorem (Exact error)

Let u be the solution to Lx = f . Then for any v ∈ Rn,

∥u − v∥L = min
τ∈W (f )

∥DGv − τ∥D−1 .

Remark: If v is the approximate solution to Lx = f , ∥DGv − τ∥D−1 is
always an upper bound of the error u − v for any τ ∈ W (f ).

K. Wu, X. Hu, & Z., arXiv (2021)
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A Posteriori Error Estimates

Minimize ψ(τ )

Goal: solve for τ ∈ W (f ) by minimizing ψ(τ ) := ∥DGv − τ∥D−1 , with
reasonable computational cost.

Helmholtz decomposition:

τ = τf + τ0,

τf ∈ W (f ): curl free.
τ0 ∈ W (0): divergence free (GTτ0 = 0).
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A Posteriori Error Estimates

Minimize ψ(τ )

Goal: solve for τ to minimize ψ(τ ) = ∥DGv − τ∥D−1 , with reasonable
computational cost.

Helmholtz decomposition:

τ = τf + τ0,

τf ∈ W (f ): curl free. A gradient corresponding to a spanning tree of G.
τ0 ∈ W (0): divergence free. An element of the cycle space.
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A Posteriori Error Estimates

Spanning Tree and Cycle Space

graph G spanning tree T cycle 1 cycle 2

Fundamental cycle basis:

c1 = [1, 1,−1, 0, 0]T , c2 = [0, 0, 1,−1, 1]T .
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A Posteriori Error Estimates

Step 1: Compute τf on the Spanning Tree

1

2
3

4
τf is nonzero
on the
spanning tree

Goal: Solve GTτf = f such that (τf )e = 0 for e ∈ E \ ET .

▶ f = GTτf =
(
GT
T GT

G\T

)(
τf T
0

)
= GT

T τf T .

▶ to solve GT
T τf T = f ,

Key Idea: make use of LT = GT
T DT GT and solve a

linear system on T instead.

– solve LT x = f
– equivalent to solving: GT

T DT GT x = f .
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A Posteriori Error Estimates

Step 1: Compute τf on the Spanning Tree

1

2
3

4
τf is nonzero
on the
spanning tree

Goal: Solve GTτf = f such that (τf )e = 0 for e ∈ E \ ET .

▶ f = GTτf =
(
GT
T GT

G\T

)(
τf T
0

)
= GT

T τf T .

▶ to solve GT
T τf T = f ,

Key Idea: make use of LT = GT
T DT GT and solve a

linear system on T instead.

– solve LT x = f
– equivalent to solving: GT

T DT GT x︸ ︷︷ ︸
τfT

= f .

D. Rose et al. SIAM J. Comput.(1976)
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A Posteriori Error Estimates

Step 2: Compute τ0 in Cycle Space C

Problem recap: solve minτ∈W (f ) ∥DGv − τ∥D−1 , where τ = τf + τ0.

Constrained Minimization

For a given τf , we need to solve (approximately):

min
τ0∈C

∥DGv − τf − τ0∥D−1 . (2)

Schwarz Methods:
Decompose the cycle space C into subspaces:

C = C1 + C2 + · · ·+ CJ .

Solve in each subspace Ci , i = 1, 2, · · · , J:

min
∆τ∈Ci+1

∥DGv − τf − (τ i
0 +∆τ )∥D−1 . (3)
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A Posteriori Error Estimates

Step 2: Schwarz Methods to Compute τ0 in C

Domain decomposition:

Ci = span{c j | cycle j contains vertex i},
i = 1, . . . , J.

Cost of Schwarz method depends on:

▶ number of subspaces J: O(n).

▶ cost of solving (3) in each subspace: O(1).

Total cost of one iteration of Schwarz method: O(n).

Remark: Worst case runtime:O(n log n).

Kelner et al, STOC(2013)
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Numerical Results

Results: Scalability

Parameters and Notation:

– Graph: 2D uniform triangular grids (corresponding to 2D Poisson
equation on square domain with Neumann B.C.)

– Grid size: h = 2−ℓ, ℓ = 5, 6, 7, 8, 9.

– Cycle type: face cycle.

– Efficiency coefficient: eff := ψ(τ )
∥u−v∥L

.

– CPU time: in seconds.
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Numerical Results

Results: Scalability

1 iter 3 iters 5 iters
|V| ∥u − v∥L ψ(τ ) eff ψ(τ ) eff ψ(τ ) eff
1089 1.73 2.25 1.30 1.99 1.15 1.91 1.10
4097 1.73 2.67 1.55 2.28 1.32 2.16 1.25
16641 1.73 3.36 1.95 2.76 1.60 2.56 1.48
66049 1.72 4.43 2.57 3.51 2.03 3.20 1.86
263169 1.72 6.01 3.49 4.66 2.71 4.19 2.43
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Numerical Results

Results: Real World Graphs

|V| |E| Problem Type ∥u − v∥L ψ(τ ) eff
292 958 Least Squares Problem 1.74 1.75 1.00

1879 5525 Circuit Simulation 2.71 2.71 1.00
5300 8271 Power Network 5.82 5.82 1.00
2048 4034 Electronagnetics Problem 0.47 0.50 1.07
1423 16342 Structural Problem 14.5 19.7 1.36
8205 58681 Accoustic Problem 23.8 37.7 1.58
1857 13762 Social Network 52.9 76.3 1.44
2361 13828 Protein Network 4.61 4.70 1.01

T. Davis and Y. Hu,The Univ. of Florida Sparse Matrix Collection
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Numerical Results

Results: Local Error Estimates

Localized error estimates: ψe(τ ) = ω
− 1

2
e |(DGv − τ )e |.
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αAMG

Application: αAMG Coarsening

Idea: use approximate (smooth) error to build adaptive AMG.

Path Cover adaptive AMG (PC-αAMG):

– Approximate the smooth error with a posteriori error estimates.

– Find level sets of the smooth error by path cover.

– Aggregate along the level sets.

– Define AMG hierarchy using the aggregates and smooth error.

J. Lin, X. Hu, and L. Z. SISC(2019); Hu, Wu, Z. 2022 (SISC)
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αAMG

Application: αAMG coarsening

upper row: aggregation with smooth error.
lower row: aggregation with error estimator.
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Conclusions

Summary

▶ Operator preconditioning: provides a path for constructing error
indicators, right?

▶ A posteriori techniques can aid Adaptive AMG coarsening.

▶ Approximate the smooth error using a posteriori estimator.
▶ Adaptive path cover algorithm (coarsening following the level

sets of an approximation of the error)

▶ Such techniques currently finding their way into the HAZniCS library
https://hazmathteam.github.io/hazmath/
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Conclusions

Thank you

Thank You!
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