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Talking points

» Interplay between....

» How preconditioning provides efficient and reliable a
posteriori error indicators for discretized PDEs.

» How a posteriori error indicators on graphs provide
multilevel hierarchies for AMG.
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®

Operator preconditioning

Setup:

» Hilbert space H equipped with inner product (-, )% and norm || - |3
» Operator A:H — H'

Linear problem: given f € H’, find u € H such that Au=f

Ludmil Zikatanov (Penn State) Adaptive AMG June 10, 2022



®

Operator preconditioning

Setup:

» Hilbert space H equipped with inner product (-, )% and norm || - |3
» Operator A:H — H'

Linear problem: given f € H’, find u € H such that Au=f

Well-posedness (is A an isomorphism?):

A
Continuity of A: sup  sup M <pB
04xem 0y [[X[[ 7]yl
A
Continuity of A™* (inf-sup condition): inf (Ax, y) >y>0

sup
0#xeH ozyen ||[X[2/lyll#
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®

Operator preconditioning

Setup:

» Hilbert space H equipped with inner product (-, )% and norm || - |3
» Operator A:H — H'

Linear problem: given f € H’, find u € H such that Au=f

Well-posedness (is A an isomorphism?):

A
Continuity of A: sup  sup M <pB
04xem 0y [[X[[ 7]yl
A
Continuity of A™* (inf-sup condition): inf (Ax, y) >y>0

sup
0#xeH ozyen ||[X[2/lyll#

Example: Stokes equation

Ax=f = (Eﬁ do) (Z) - <g)

where H = [H3]? x L2, and [[x[3, := [V u]]> + [ o]
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Operator preconditioning

Preconditioner B

Au = f — BAu = Bf
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Operator preconditioning

Preconditioner B

Au = f — BAu = Bf

Requirements on B: xk(BA) = || BA||[|(BA) || = O(1) < k(A)
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Operator preconditioning

Preconditioner B

Au = f — BAu = Bf

Requirements on B: xk(BA) = || BA||[|(BA) || = O(1) < k(A)

B ~ A~! and the action of B is easy to compute
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®

Operator preconditioning

Preconditioner B

Au = f — BAu = Bf

Requirements on B: xk(BA) = || BA||[|(BA) || = O(1) < k(A)

B ~ A~! and the action of B is easy to compute

» Apply Krylov iterative methods to the preconditioned system
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®
Operator preconditioning (Mardal and Winther 2011; Loghin & Wathen

2004, Hiptmair 2006)

Problem: Given f € H’, find u € H such that Au = f. Here, A : H — H'
is an isomorphism.
Riesz operator: B : H' — H, such that for every f € H’,

f,x) = (Bf,x)%, VxeH
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is an isomorphism.
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Operator preconditioning (Mardal and Winther 2011; Loghin & Wathen

2004, Hiptmair 2006)

Problem: Given f € H’, find u € H such that Au = f. Here, A : H — H'
is an isomorphism.
Riesz operator: B : H' — H, such that for every f € H’,

f,x) = (Bf,x)%, VxeH
Estimate x(BA):

BA A
IBA|| = sup sup [(BAX,y)u| _ sup sup A%y 3

xeryer |[Xllalyllne  xeryen [Xllalylze —
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Operator preconditioning (Mardal and Winther 2011; Loghin & Wathen

2004, Hiptmair 2006)

Problem: Given f € H’, find u € H such that Au = f. Here, A : H — H'
is an isomorphism.
Riesz operator: B : H' — H, such that for every f € H’,

f,x) = (Bf,x)%, VxeH
Estimate x(BA):

BA A
IBA|| = sup sup [(BAX,y)u| _ sup sup (Ax,y)| <8
xeryer Xyl xeryer IXIxllylln
BA A
IBAIY[ L = inf sup [BAXYl _ oo o A Y]
xetyer [[X|2llylle — x€Hyer X[ llylln
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®
Operator preconditioning (Mardal and Winther 2011; Loghin & Wathen

2004, Hiptmair 2006)

Problem: Given f € H’, find u € H such that Au = f. Here, A : H — H'
is an isomorphism.
Riesz operator: B : H' — H, such that for every f € H’,

f,x) = (Bf,x)%, VxeH
Estimate x(BA):

BA A
IBA|| = sup sup [(BAX,y)u| _ sup sup (Ax,y)| <8
xeryer Xyl xeryer IXIxllylln
BA A
IBAIY[ L = inf sup [BAXYl _ oo o A Y]
xetyer [[X|2llylle — x€Hyer X[ llylln

— x(BA) = |BAJ||[BA] }] < §

» Riesz operator is a robust preconditioner!
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Error indicators: Estimating the residual

» Existence of a preconditioner B = two-sided estimate on
llellg-1 = |le||x. Let r € H' be the residual r = f — Auy,.

Lemma

We have the following two sided bound

IBAJIg2: [Irlle < [lellz-: < [[(BA)™*[lg-1]lrlls.
IBAls¢llrllze < llell < (BA)™ lzllrllze -

Using the relation e = A~'r, we have
lells—: = [lefl+ = [A~"B™'Br|l3 < [|(BA)™*[|3|[Br]|3.

On the other hand: |[r||g = ||r||%/ = ||BAe||x < ||BA|xl€|l2- O

Ludmil Zikatanov (Penn State) Adaptive AMG June 10, 2022



®

Error indicators: Estimating the residual

» Existence of a preconditioner B = two-sided estimate on
llellg-: = |le||x. Let r € H' be the residual r = f — Auy,.

Lemma
We have the following two sided bound

IBAlgLIrlle < [lells-+ < [[(BA)~*|lg-1rl|e-
IBAlzlrll2e < llellz < [I(BA) la¢rllze -

e Result: Efficient and reliable error indicator, provided that the norm of
the residual ||r||% can be efficiently approximated by local operations.
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A Posteriori Error Estimation |

» A point of view: try to rewrite the (a posteriori error estimator) as a
(two-level) Schwarz preconditioner.
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A Posteriori Error Estimation |

» A point of view: try to rewrite the (a posteriori error estimator) as a
(two-level) Schwarz preconditioner.

» Take the infinite dimensional V' as the fine grid: V}, C V instead of
Vy C V4, in the two-level method.
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A Posteriori Error Estimation |

» A point of view: try to rewrite the (a posteriori error estimator) as a
(two-level) Schwarz preconditioner.

» Take the infinite dimensional V as the fine grid: V}, C V instead of
Vy C V4 in the two-level method.

» Theerrore=u—u, € V and residual r = f — Aup, € V'’ are related
by the error equation
Ae =r.
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A Posteriori Error Estimation |

» A point of view: try to rewrite the (a posteriori error estimator) as a
(two-level) Schwarz preconditioner.

» Take the infinite dimensional V as the fine grid: V}, C V instead of
Vy C V4 in the two-level method.

» The error e = u—up € V and residual r = f — Auy, € V/ are related
by the error equation
Ae =r.

» Let {¢;}7_, be the nodal basis of V}. Take Q; := supp¢;, and

V= H&(Q,), and /; : V; — V be inclusion, Q,' = Il-/7 A= Q,AI,
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A posteriori error estimation |l

> V=V,+> ",V corresponds to
B=AQn+ Y A'Q:V =V,
i=1
which is a preconditioner for A,

A1 is spectrally equivalent to B
(follows from S. Nepomnyaschikh's fictitious space Lemma)
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A posteriori error estimation |l

> V=V,+> ",V corresponds to
n
B=AQn+ Y A'Q:V =V,
i=1
which is a preconditioner for A,
A~ is spectrally equivalent to B
(follows from S. Nepomnyaschikh's fictitious space Lemma)
» B yields an error estimator

lellz = A= I3 = (r, A™"r) ~ (r, Br)

= (r, A Qur) + > (r ATQir).

i=1
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A posteriori error estimation |l

> V=V,+> ",V corresponds to
n
B=AQn+ Y A'Q:V =V,
i=1
which is a preconditioner for A,
A~ is spectrally equivalent to B
(follows from S. Nepomnyaschikh's fictitious space Lemma)
» B yields an error estimator

lela = A= I3 = (r, A r) ~ (r, Br)

= (r A Qur) + > (r ATQir).

i=1

» In case of FEM by definition Qnr = 0!
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Residual Error Estimator

» The error estimator is

n

lella = > (r, A7 Qir) Z 7%,

i—1
where 1; € V; = H}(£;) solves
(V??,', VV,') = (f, V,') — (Vuh, VV,')7 VV,' S V,

» It was first proposed in [Babuska&Rheinbolt(1978)SINUM].

» Go to computable quantities by standard arguments (so called
Verfiirth's bubble function approach): [book: Verfiirth(2013)].
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®

Residual Error Estimator

» The error estimator is

n

lellZ =D (r A7 Qir) = > llnill,
i=1

i—1
where 1; € V; = H}(£;) solves

(V??,', VV,') = (f, V,') — (Vuh, VV,'), Yv; € V.

» Similarly: efficient and reliable error indicators (using Nodal
Auxiliary Space Preconditioning) to discretizations of dd, Hodge
Laplacian problems, and linear elasticity with weak symmetry.

» The only ingredients needed are: well-posedness of the problem and
the existence of regular decomposition on continuous level (for
singularly perturbed H(d) problems). .

Li&Z.(2020)CAMWA, Li&Z. arXiv:2010.06774v1
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Graphs and graph Laplacians

A posteriori estimates in AMG for Graph Laplacians

We consider a graph G = (V,€), V={1,...,n}, n=|V| and
n>1

Let A € R"*" be defined via the bilinear form:
(Au,v) = D (=ay)(ui — u)(vi = ).
(i,j)e€
The sum runs over all edges e = (i,j) € £. The resulting matrix is
known as the Graph Laplacian of G.

We are interested in good approximations of the above bilinear form
on a smaller subspace (constructing multilevel hierarchies).

Applications: Fast solution of Au = f for a huge number of
problems.
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@ Graphs and graph Laplacians

Gradients and divergence

» Define G: V=RVl — Rl = W and D : Rl — RI€l in the
following way

(Gv)e = Vhead — Vtail, De,e = de, de = —adjj, €= (I,J)

» Thus we get another form of the bilinear form A:
(Au,v) = (DGu, Gv) (weighted graph Laplacian).

» Taking D = | one obtains the standard graph Laplacian (a; = —1).
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@ Graphs and graph Laplacians

Applications

» Discretizations of PDEs (P1, DG, whatever discretizations of elliptic
equations)

» Diffusion State distance

» Modeling small world networks (protein-protein interraction; social
networks).

» Many other problems lead to systems spectrally equivalent to the
graph Laplacians.
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@ Adaptivity

Adaptivity in solvers (AMG)

» Typical numerical models: Au=f, A= —(V-aV)or Ae R™".

» Such models do not have to use FEM or even to correspond to
discretizations of PDEs.

» A look at the “adaptive” linear solvers (adaptive AMG, bootstrap
AMG, adaptive SA, etc) reveals:

» What is available in the literature is adaptive but with respect
to A;

» These methods do not involve any estimates of the error
during iterations.

» Q: Are there ways to extend, at least partially, what is done in FE,
FV, FD for a posteriori error analysis and adaptivity to areas such as
approximation of data sets?

» Q: Can we use such estimates to create multilevel hierarchical
representation of complicated data-sets (graphs).
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@ Adaptivity

Tools for solution: two level and multilevel methodology

» Algorithms for construction of multilevel hierarchical approximations
of functions defined on graphs.

» By multilevel hierarchies here, we mean splitting of both edges and
vertices in a way that gives: coarser graphs; corresponding
Laplacians; operators that transfer data between the graphs.

» Goal: The solution on a coarser graph has to be close to the
solution on a finer graph.
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@ Adaptivity

aAMG for graph Laplacians

» Adaptive AMG methods: aim at optimizing (wrt convergence) the
choice of coarse spaces and multilevel hierarchies in an AMG
algorithm.

» The majority of known to date adaptive AMG methods approximate
the optimal coarse space and do not use all the information
available such as right hand side.

» The basic ideas on adaptive AMG are outlined in the early works on
classical AMG from the 80s (Brandt, McCormick and Ruge’'82).

» Some adaptive multilevel methods:

> Adaptive filtering (Wittum'92; Wittum&Wagner 1997);
Adaptive ML-ILU (Bank& Smith'02);
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@ Adaptivity

aAMG for graph Laplacians

» Adaptive AMG methods: aim at optimizing (wrt convergence) the
choice of coarse spaces and multilevel hierarchies in an AMG
algorithm.

» The majority of known to date adaptive AMG methods approximate
the optimal coarse space and do not use all the information
available such as right hand side.

» The basic ideas on adaptive AMG are outlined in the early works on
classical AMG from the 80s (Brandt, McCormick and Ruge'82).

» Some adaptive multilevel methods:

» oAMG and aSA
(Brezina,Falgout,MacLachlan,Manteuffel, McCormick,Ruge,
2004, 2006);
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@ Adaptivity

aAMG for graph Laplacians

» Adaptive AMG methods: aim at optimizing (wrt convergence) the
choice of coarse spaces and multilevel hierarchies in an AMG
algorithm.

» The majority of known to date adaptive AMG methods approximate
the optimal coarse space and do not use all the information
available such as right hand side.

» The basic ideas on adaptive AMG are outlined in the early works on
classical AMG from the 80s (Brandt, McCormick and Ruge’'82).

» Some adaptive multilevel methods:

» Bootstrap AMG (Brandt'02, Brandt, Brannick, Livshits, Kahl,
2011,2015)
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@ Adaptivity

aAMG for graph Laplacians

» Adaptive AMG methods: aim at optimizing (wrt convergence) the
choice of coarse spaces and multilevel hierarchies in an AMG
algorithm.

» The majority of known to date adaptive AMG methods approximate
the optimal coarse space and do not use all the information
available such as right hand side.

» The basic ideas on adaptive AMG are outlined in the early works on
classical AMG from the 80s (Brandt, McCormick and Ruge'82).

» Some adaptive multilevel methods:

» Adaptive matching (Vassilevski & D'Ambra '2016)
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@ Adaptivity

aAMG for graph Laplacians

» Adaptive AMG methods: aim at optimizing (wrt convergence) the
choice of coarse spaces and multilevel hierarchies in an AMG
algorithm.

» The majority of known to date adaptive AMG methods approximate
the optimal coarse space and do not use all the information
available such as right hand side.

» The basic ideas on adaptive AMG are outlined in the early works on
classical AMG from the 80s (Brandt, McCormick and Ruge’'82).

» This talk:

» Adaptive path covering (Hu, Lin, Z. 2019).
» aAMG with Helmholtz decomposition (Hu, Wu, Z. 2022).

Ludmil Zikatanov (Penn State) Adaptive AMG June 10, 2022



@ Adaptivity

Coarse spaces: Recursive matching algorithm

N
yavh~

The matching algorithm works as follows.
1. Choose the a vertex of smaller degree and group it with one of its
unmatched neighbors (if such neighbor exists).

Repeat this until there are no unmatched neighbors.

. Then group each isolated vertex with a neighbor with which it has
the most connections: coarse graph
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@ Adaptivity

Coarse spaces: Recursive matching algorithm

N
IS

The matching algorithm works as follows.
1. Choose the a vertex of smaller degree and group it with one of its
unmatched neighbors (if such neighbor exists).

Repeat this until there are no unmatched neighbors.

. Then group each isolated vertex with a neighbor with which it has
the most connections: coarse graph

Ludmil Zikatanov (Penn State)

Adaptive AMG

June 10, 2022



@ Adaptivity

Coarse spaces: Recursive matching algorithm

N4
avh-

The matching algorithm works as follows.
1. Choose the a vertex of smaller degree and group it with one of its
unmatched neighbors (if such neighbor exists).

Repeat this until there are no unmatched neighbors.

. Then group each isolated vertex with a neighbor with which it has
the most connections: coarse graph
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@ Adaptivity

Coarse spaces: Recursive matching algorithm

6

Nl —
avA

The matching algorithm works as follows.
1.

Choose the a vertex of smaller degree and group it with one of its
unmatched neighbors (if such neighbor exists).

Repeat this until there are no unmatched neighbors.

. Then group each isolated vertex with a neighbor with which it has
the most connections: coarse graph
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@ Adaptivity

UA-AMG in action (HAZmath)

HAZmath | hazmath - Brave

@ HAZmath | hazmath x +
d (¢ Q@ hazmathteam.github.io/hazmath/ |

7 DepartmentofM... 4 MDSS-phpMyAdm.. @ POro_OneDrive e 2021_EG_Stokes Co rapprox.d_xu G PSOCSKiPatrol @ HowtomixCand.. (b QCL § OEC-Book [y REBGO ) EditpagecThefi..  Commo

HAZmath

v on GitHub load .zip Download .t

HAZmath: A Simple Finite Element, Graph, and Solver Library

Authors: Xiaozhe *H*u (Tufts), James *A*dler (Tufts), Ludmil *Z*ikatanov (Penn State)

Contributors:

HAZNICS (HAZMATH+FEniCS) and Python interface: Ana Budisa (Simula, Norway), Miroslav
Kuchta (Simula, Norway), Kent-Andre Mardal (Simula, Univ Oslo, Norway).

Rational Approximation of Functions: Clemens Hofreither (RICAM, Austrian Academy of
Sciences)

Grid refinement and adaptive FE: Yuwen Li (Penn State)

Geometric MultiGrid: Johannes Kraus (Universitat Duisburg-Essen, Germany), Peter Ohm
dmil Zikatanov (Penn State) Adaptive AMG June 10, 2022




@ Adaptivity

UA-AMG in action

21aigey:/sync_psu_grive/Talks/2022_GATIPOR.

. Factor

« No PLOT: D:

UA-AMG for a Laplacian on the unit cube in 5D after 14 bisection
refinements

il Zikatanov (Penn St Adaptive AMG 10, 2022



@ Adaptivity

Preconditioning Darcy-Stokes (Rational
approximations+UA-AMG)

Figure: Left: shows the network (graph) of vessels and the porous
tissue. Right: Computational result on coupled flow characteristics in
the brain done with HAZniCS (dated Sep 10, 2021).

» Darcy-Stokes equations with these boundary conditions are used to
model CSF-brain interaction.

» The action of the Riesz operator: requires computing the action of
fractional Laplacian (s > 0,t > 0, D := (—A)):

June 10, 2022
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@ Adaptivity

Making UA-AMG adaptive:approximation of level sets

|
» Given an (approximation to the) error e;

» Define auxiliary graph with same set of edges and with weights
based on the computed approximation of the error e.

1

el

., (Lhp)e& G=W,¢).

» Form a max weight path cover for this graph.

» By construction the paths follow the level sets of e, i.e. e| =~ const

P
for any path p from the covering.
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@ Adaptivity

Path cover of level sets: illustration

I
S SNty
5,','/:,','{0,"‘:‘\ \\\\
2550 55 Ny
S
55

e Left: smooth error; Right: Path cover following the level sets of the
error;

G4 e

A Ny

;,f'l/, 4075480 “\\‘ 0
";/o ‘“\\‘\\\

o Left: matchings following the level sets; Right: coarse space
approximation. Error of approximation ~ 100!
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Adaptivity

Level sets are not aligned with the grid

> We augment the set of adds of G(A) by adding edges from G(A?)

(correponding to paths in G(A) of length 2).

AN
i

SO ST

e Left: smooth error; Middle: path cover; Right: matching/aggregates
on this path cover.
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@ Adaptivity

How do we know the level sets of the error?

» Indeed, e is readily known only when b = 0: not practical.

Practical adaptive algorithm

» With the current approximation x, run several (couple of) W
cycles on Ae = f — Ax, to obtain an approximation of the error.

» Build hierarchy following the level sets of e.
» Perform AMG iterations until the convergence slows down and go to

the first step; or go to the first step every iteration.

e This algorithm looks expensive but it is also aimed to solve hard
problems (not just at Laplace equation on uniform grid)
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@ Adaptivity

Numerical experiments (Real World Graphs)

Table: Largest connected components of the networks from the
University of Florida sparse matrix collection (UF)

[ H nx107° [ nnz x 10~° [ Description ]

333SP 3.7 22.0 | 2-dimensional FE triangular meshes
belgium_osm 1.4 3.0 | Belgium street network

M6 3.5 2.1 | 2-dimensional FE triangular meshes
NACA0015 1.0 6.2 | 2-dimensional FE triangular meshes
netherlands_osm 2.2 4.9 | Netherlands street network

packing 2.1 35.0 | DIMACS Implementation Challenge
500x100x100-

b050

roadNet-CA 1.9 5.5 | California road network
roadNet-PA 11 3.1 | Philadelphia road network
roadNet-TX 13 3.7 | Texas road network

fl2010 0.5 2.8 | Florida census 2010

as-Skitter 1.6 22.0 | Autonomous systems by Skitter
hollywood-2009 1.0 113.0 | Hollywood movie actor network
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@ Adaptivity

Numerical experiments(continued)

Table: Largest connected components of the networks from Stanford
large network datasets collection

[ H n [ nnz [ Description ]
com-DBLP 3.17080e5 | 2.41681e6 | DBLP collaboration network
web-NotreDame 3.25729e5 | 1.09011e6 | Web graph of Notre Dame
amazon0601 4.03364e5 | 5.28999e6 | Amazon product co-purchasing network

June 10, 2022
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@ Adaptivity

Numerical experiments(continued)

Table: UF Collection (Low-Frequency b)

UA-AMG w/MWM Algorithm A Algorithm B

Iter [ ConvR [ OC Iter [ OC Iter [ Re [ OC
[ UF large network datasets collection ]

333SP - 0.997 1.89 9 2.01 14 7 2.08
belgium_osm 1629 0.996 1.99 11 2.02 15 9 2.02
M6 - 0.997 1.86 10 2.11 15 8 2.11
NACAO0015 - 0.995 1.86 9 2.10 14 7 2.10
netherlands_osm - 0.997 1.98 10 2.02 16 9 2.02
packing - 0.999 1.06 11 2.46 19 10 | 2.46
roadNet-CA 878 0.991 2.05 8 2.08 14 7 2.08
roadNet-PA 1382 0.991 2.05 8 2.10 14 7 2.09
roadNet-TX 1424 0.994 2.04 9 2.08 14 7 2.08
fl2010 - 0.998 1.83 9 2.19 15 7 2.19
as-Skitter - 0.998 1.21 10 3.13 19 8 3.14
hollywood-2009 - 0.999 1.01 5 3.17 11 3 3.18

Ludmil Zikatanov (Penn State) Adaptive AMG June 10, 2022



@ Adaptivity

Numerical experiments (continued)

Table: Stanford Collection (Low-Frequency b)

UA-AMG w/MWM Algorithm A
Iter [ ConvR [ OC Iter [ OC
[ Stanford large network d

Algorithm B
Iter [ Re [ o]@
atasets collection ]

com-DBLP 297 0.986 2.01 4 3.22 11 2 3.22
web-NotreDame - 0.999 1.26 7 2.43 13 6 2.40
amazon0601 - 0.998 1.58 5 3.49 12 4 3.52

Ludmil Zikatanov (Penn State)

Adaptive AMG

June 10, 2022



@ Adaptivity

Numerical experiments(continued)

Table: UF collection: Zero-Sum Random b, tol=1e-6

UA-AMG w/MWM Algorithm A Algorithm B

Iter [ ConvR [ OC Iter [ OC Iter [ Re [ OC
[ UF large network datasets collection ]

333SP - 0.997 1.89 9 2.09 6 1 2.08
belgium_osm - 0.996 1.99 11 2.02 15 9 2.02
M6 - 0.997 1.86 8 2.11 5 1 2.11
NACAO0015 1565 0.995 1.86 8 2.10 5 1 2.10
netherlands_osm - 0.997 1.98 12 2.02 17 11 | 2.02
packing - 0.999 1.06 11 2.46 17 10 | 2.47
roadNet-CA 1308 0.994 2.08 8 2.08 15 7 2.08
roadNet-PA 970 0.991 2.05 8 2.09 14 6 2.08
roadNet-TX 1168 0.992 2.04 9 2.08 14 7 2.08
fl2010 - 0.998 1.83 8 2.19 16 7 2.19
as-Skitter - 0.998 1.21 10 3.04 17 7 3.06
hollywood-2009 - 0.999 1.01 7 3.17 13 5 3.18
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Adaptivity

®

Numerical experiments (continued)

UA-AMG w/MWM Algorithm A Algorithm B
Iter [ ConvR | OC Iter [ OC Iter [ Re [ OC
[ Stanford collection Zero sum b ]
com-DBLP 573 0.987 2.01 4 3.23 11 3 3.22
web-NotreDame - 0.999 1.26 7 2.47 15 6 2.56
amazon0601 - 0.998 1.58 6 3.49 10 4 3.50

Ludmil Zikatanov

(Penn State)

Adaptive AMG

June 10, 2022



@ A Posteriori Error Estimates
v

Graph Operators

» Discrete gradient operator G : R” — R™:
(Gv)e=v,—v;, VveR"
» Edge weight matrix D : R™ — R™,

(DT)e = WeTe, VT €R™.

» Weighted graph Laplacian L := G DG.
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@ A Posteriori Error Estimates
v

Graph Operators

» Discrete gradient operator G : R” — R™:
(Gv)e=v,—v;, VveR"
» Edge weight matrix D : R™ — R™,

(DT)e = WeTe, VT €R™.

» Weighted graph Laplacian L := G DG.

L 0o 4 -3 -1 0
-1 0 1 0 3 6 1 o

-1 -1 4 =2
0 -1 01 0 -2 -2 4
0 0 -11

D = diag(3,1,1,2,2)
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@ A Posteriori Error Estimates
>

Error Estimator (quick intro)

For the graph Laplacian problem , Lu = f.

Lemma (Prager-Synge and S. Repin)

Fix v e R", for any T € R™,
lu—v[le <[[DGv —7[lp-+ + G HGTT — f. (1)

77

C, is the Poincaré’s constant of L.

W. Xu, Z., J. Comput. Appl. Math. (2018)
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®

A Posteriori Error Estimates

Error Estimator (quick intro)

For the graph Laplacian problem , Lu = f.

Lemma (Prager-Synge and S. Repin)

Fix v e R", for any T € R™,
lu—vl <|IDGv —7|lp-+ + GG T — f|. (1)
C, is the Poincaré’s constant of L.

Remarks:
» RHS of this inequality provides a reliable upper bound of the error.

» This error estimate is expensive to compute.

W. Xu, Z., J. Comput. Appl. Math. (2018)
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@ A Posteriori Error Estimates
>

A Posteriori Error Estimates

Denote #/ (f) = {T e R"|GTT = f}.

Theorem (Exact error)

Let u be the solution to Lx = f. Then for any v € R”",

u—vl|,= min ||[DGv — “1.
Ju=vll=_min [IDGv o

Remark: If v is the approximate solution to Lx = f, |DGv — T||p-1 is
always an upper bound of the error u — v for any T € #/(f).

K. Wu, X. Hu, & Z., arXiv (2021)
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@ A Posteriori Error Estimates
>

‘Minimize (1)

Goal: solve for 7 € #/(f) by minimizing ¢(7) := ||DGv — 7||p-1, with
reasonable computational cost.
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@ A Posteriori Error Estimates
>

‘Minimize (1)

Goal: solve for 7 € #/(f) by minimizing ¢(7) := ||DGv — 7||p-1, with
reasonable computational cost.

Helmholtz decomposition:
T =T¢+ To,

7r € W (F): curl free.
70 € #/(0): divergence free (G 1y = 0).
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@ A Posteriori Error Estimates
>

‘Minimize (1)

Goal: solve for T to minimize ¥(7) = ||DGv — 7| p-1, with reasonable
computational cost.

Helmholtz decomposition:
T =T¢+ To,

7r € W (f): curl free. A gradient corresponding to a spanning tree of G.
70 € #/(0): divergence free. An element of the cycle space.

Ludmil Zikatanov (Penn State) Adaptive AMG June 10, 2022



@ A Posteriori Error Estimates

Spanning Tree and Cycle Space

graph G spanning tree T cycle 1 cycle 2

Fundamental cycle basis:

c' =[1,1,-1,0,0]", ¢*=10,0,1,-1,1]".
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@ A Posteriori Error Estimates

Step 1: Compute 7+ on the Spanning Tree

Goal: Solve G™7¢ = f such that (1¢)e =0 fore € £\ £7.

Tf is nonzero
on the
spanning tree
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@ A Posteriori Error Estimates

Step 1: Compute 7+ on the Spanning Tree

Goal: Solve G™7¢ = f such that (1¢)e =0 fore € £\ £7.

> f=GTr = (GF GJr) (TBT> = GFrer-

Tf is nonzero
on the
spanning tree
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@ A Posteriori Error Estimates

Step 1: Compute 7+ on the Spanning Tree

Goal: Solve G™7¢ = f such that (1¢)e =0 fore € £\ £7.

> f=GTr = (GF GJr) (TBT> = GFrer-
> to solve Gf7rr = f,

Key Idea: make use of Ly = G;DTGT and solve a
linear system on 7 instead.

Tf is nonzero
on the
spanning tree
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@ A Posteriori Error Estimates

Step 1: Compute 7+ on the Spanning Tree

Goal: Solve G™7¢ = f such that (1¢)e =0 fore € £\ £7.

> f=GTr = (GF GJr) (TBT> = GFrer-
> to solve Gf7rr = f,

Key Idea: make use of Ly = G;DTGT and solve a
linear system on 7 instead.

— solve Lyx = F

T4 is nonzero equivalent to solving: G;DrGrx = f.

on the
spanning tree
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@ A Posteriori Error Estimates

Step 1: Compute 7+ on the Spanning Tree

Goal: Solve G™7¢ = f such that (1¢)e =0 for e € £\ £7.

> F=GTlr = <G7T GgT\T) (7'67> = Glrer.
» to solve G77:Tf7’ =f,

Key Idea: make use of L = G;DTGT and solve a
linear system on 7 instead.

— solve Lyrx = f

_ . . . T —
¢ is nonzero equivalent to solving: Gy D7 Grx = f.

on the T
spanning tree

D. Rose et al. SIAM J. Comput.(1976)
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@ A Posteriori Error Estimates

Step 2: Compute 7y in Cycle Space &

Problem recap: solve min cy (f) [|[DGv — 7| p-1, where T = ¢ + 70.

Constrained Minimization

For a given 7¢, we need to solve (approximately):

‘g'lelnchDGV—Tf—To”Dfl- (2)
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@ A Posteriori Error Estimates

Step 2: Compute 7y in Cycle Space &

Problem recap: solve min cy (f) [|[DGv — 7| p-1, where T = ¢ + 70.

Constrained Minimization

For a given 7¢, we need to solve (approximately):

‘g'lelnchDGV—Tf—To”Dfl- (2)

Schwarz Methods:

Decompose the cycle space € into subspaces:
cg:cgl_’_cgz_’_'”_’_cg.].

Solve in each subspace 6;, i =1,2,--- ,J:

min ||[DGv — 7¢ — (14 + AT)||p-1. (3)

ATEC 1
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@ A Posteriori Error Estimates

Step 2: Schwarz Methods to Compute 75 in €

Domain decomposition:

%; = span{c/| cycle j contains vertex i}, (2 A

i=1,...,J. A
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@ A Posteriori Error Estimates

Step 2: Schwarz Methods to Compute 75 in €

Domain decomposition:

%; = span{c/| cycle j contains vertex i}, (2 A

i=1,...,J. A

Cost of Schwarz method depends on:
» number of subspaces J: O(n).

» cost of solving (3) in each subspace: O(1).
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@ A Posteriori Error Estimates

Step 2: Schwarz Methods to Compute 75 in €

Domain decomposition:

%; = span{c/| cycle j contains vertex i}, (2 A

i=1,...,J. A

Cost of Schwarz method depends on:
» number of subspaces J: O(n).
» cost of solving (3) in each subspace: O(1).

Total cost of one iteration of Schwarz method: O(n).
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@ A Posteriori Error Estimates

Step 2: Schwarz Methods to Compute 75 in €

Domain decomposition:

%; = span{c/| cycle j contains vertex i}, (2 A

i=1,...,J. A

Cost of Schwarz method depends on:

» number of subspaces J: O(n).

» cost of solving (3) in each subspace: O(1).
Total cost of one iteration of Schwarz method: O(n).
Remark: Worst case runtime:O(n log n).

Kelner et al, STOC(2013)
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@ Numerical Results
>

Results: Scalability

Parameters and Notation:

Graph: 2D uniform triangular grids (corresponding to 2D Poisson
equation on square domain with Neumann B.C.)

Grid size: h=2"* ¢=5,6,7,8,9.

Cycle type: face cycle.

_ _u(r)
Tu—vllc*

Efficiency coefficient: e :

CPU time: in seconds.
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@ Numerical Results
>

Results: Scalability

1 iter 3 iters 5 iters
VI [ lu—vle | o) | exr | o(r) | er [0(1) | er
1089 1.73 225 | 130 ] 199 | 1.15| 191 | 1.10
4097 1.73 267 | 155 | 228 | 1.32 | 2.16 | 1.25

16641 1.73 336 | 1.95| 2.76 | 1.60 | 2.56 | 1.48
66049 1.72 443 | 257 | 351 | 2.03 | 3.20 | 1.86
263169 1.72 6.01 | 349 | 466 | 271 | 4.19 | 2.43

-©-1 iter
-3 iters
—*-5 iters

CPU time

10° 10* 10°
V]
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®

Numerical Results

Results: Real World Graphs

v 1€l Problem Type Jlu—vle | ¥(7) | er

292 958 | Least Squares Problem 1.74 1.75 | 1.00
1879 | 5525 | Circuit Simulation 2.71 2.71 | 1.00
5300 8271 | Power Network 5.82 5.82 | 1.00
2048 | 4034 | Electronagnetics Problem 0.47 0.50 | 1.07
1423 | 16342 | Structural Problem 145 19.7 | 1.36
8205 | 58681 | Accoustic Problem 23.8 37.7 | 1.58
1857 | 13762 | Social Network 52.9 76.3 | 1.44
2361 | 13828 | Protein Network 461 470 | 1.01

T. Davis and Y. Hu, The Univ. of Florida Sparse Matrix Collection
(Penn State) Adaptive AMG

Ludmil Zikatanov
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Numerical Results

Results: Local Error Estimates

Localized error estimates: (T)

_1
= we 2|(DGv — 7).
Smooth error, u — v Pe(T) 1iteration
0.5 1.5
1
0- 0.5
0SS S o
<O
05 Seseseny

::‘\\“““‘

Pe(T) 3 iterations
0.5 0.5
0
0 /
-0.5 /4
, o
. 05 "'z,{l,f'o

SIS
T SsS
Ludmil Zikatanov

oS
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@ aAMG

Application: «AMG Coarsening

Idea: use approximate (smooth) error to build adaptive AMG.

Path Cover adaptive AMG (PC-aAMG):

— Approximate the smooth error with a posteriori error estimates.

Find level sets of the smooth error by path cover.

Aggregate along the level sets.

Define AMG hierarchy using the aggregates and smooth error.

J. Lin, X. Hu, and L. Z. SISC(2019); Hu, Wu, Z. 2022 (SISC)
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@ aAMG

Application: «AMG coarsening

0.5

AKX
==
got
70075
sz
HLE

Y/,
llll;//

upper row: aggregation with smooth error.
lower row: aggregation with error estimator.
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@ Conclusions
7

Summary

» Operator preconditioning: provides a path for constructing error
indicators, right?

» A posteriori techniques can aid Adaptive AMG coarsening.

» Approximate the smooth error using a posteriori estimator.
» Adaptive path cover algorithm (coarsening following the level
sets of an approximation of the error)

» Such techniques currently finding their way into the HAZniCS library
https://hazmathteam.github.io/hazmath/
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https://hazmathteam.github.io/hazmath/

@ Conclusions

Thank you

Thank Youl
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