Adaptive algebraic multigrid methods and Helmholtz decompositions on graphs

Ludmil T Zikatanov

Department of Mathematics, Penn State, USA

Interplay of discretization and algebraic solvers: a posteriori error estimates and adaptivity

June 8-10, 2022 @ INRIA, Paris, France

Joint with: Xiaozhe Hu(Tufts), James H Adler (Tufts), A. Budiša, M. Kuchta, and K.-A. Mardal (UiO and Simula, Oslo) Yuwen Li (Penn State), Junyuan Lin (Loyola Marymount U), and Kaiyi Wu(Tufts)

(1)

- How preconditioning provides efficient and reliable a posteriori error indicators for discretized PDEs.
- How a posteriori error indicators on graphs provide multilevel hierarchies for AMG.

Operator preconditioning

Setup:

1

 \blacktriangleright Hilbert space $\mathcal H$ equipped with inner product $(\cdot,\cdot)_{\mathcal H}$ and norm $\|\cdot\|_{\mathcal H}$

• Operator
$$\mathbf{A} : \mathcal{H} \mapsto \mathcal{H}'$$

Linear problem: given $f\in \mathcal{H}',$ find $u\in \mathcal{H}$ such that Au=f

Well-posedness (is **A** an isomorphism?):

Example: Stokes equation $\begin{aligned} \mathbf{A}\mathbf{x} = \mathbf{f} \Longrightarrow \begin{pmatrix} -\Delta & \operatorname{div}^* \\ \operatorname{div} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \end{pmatrix} \end{aligned}$ where $\mathcal{H} = [H_0^1]^3 \times L^2$, and $\|\mathbf{x}\|_{\mathcal{H}}^2 := \|\nabla \mathbf{u}\|^2 + \|p\|^2$

Operator preconditioning

Setup:

۲

▶ Hilbert space \mathcal{H} equipped with inner product $(\cdot, \cdot)_{\mathcal{H}}$ and norm $\|\cdot\|_{\mathcal{H}}$

• Operator
$$\mathbf{A} : \mathcal{H} \mapsto \mathcal{H}'$$

Linear problem: given $f\in \mathcal{H}',$ find $u\in \mathcal{H}$ such that Au=f

Well-posedness (is **A** an isomorphism?):

Example: Stokes equation

$$\begin{aligned} \mathbf{A}\mathbf{x} = \mathbf{f} \Longrightarrow \begin{pmatrix} -\Delta & \operatorname{div}^* \\ \operatorname{div} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \end{pmatrix} \end{aligned}$$
where $\mathcal{H} = [H_0^1]^3 \times L^2$, and $\|\mathbf{x}\|_{\mathcal{H}}^2 := \|\nabla \mathbf{u}\|^2 + \|p\|^2$

/ -

Operator preconditioning

Setup:

۲

• Hilbert space \mathcal{H} equipped with inner product $(\cdot, \cdot)_{\mathcal{H}}$ and norm $\|\cdot\|_{\mathcal{H}}$

• Operator
$$\mathbf{A} : \mathcal{H} \mapsto \mathcal{H}'$$

Linear problem: given $f\in \mathcal{H}',$ find $u\in \mathcal{H}$ such that Au=f

Well-posedness (is **A** an isomorphism?):

Example: Stokes equation

$$\mathbf{A}\mathbf{x} = \mathbf{f} \Longrightarrow \begin{pmatrix} -\Delta & \operatorname{div}^* \\ \operatorname{div} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \end{pmatrix}$$
where $\mathcal{H} = [H_0^1]^3 \times L^2$, and $\|\mathbf{x}\|_{\mathcal{H}}^2 := \|\nabla \mathbf{u}\|^2 + \|p\|^2$

Preconditioner B

$\textbf{Au} = \textbf{f} \Longrightarrow \textbf{BAu} = \textbf{Bf}$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$ $\mathbf{B} \approx \mathbf{A}^{-1}$ and the action of **B** is easy to compute

Apply Krylov iterative methods to the preconditioned system

Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$

${\bf B}\approx {\bf A}^{-1}$ and the action of ${\bf B}$ is easy to compute

Apply Krylov iterative methods to the preconditioned system

Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$ $\mathbf{B} \approx \mathbf{A}^{-1}$ and the action of **B** is easy to compute

Apply Krylov iterative methods to the preconditioned system

Preconditioner B

$Au = f \Longrightarrow BAu = Bf$

Requirements on **B**: $\kappa(\mathbf{BA}) = ||BA|| ||(BA)^{-1}|| = \mathcal{O}(1) \ll \kappa(\mathbf{A})$ $\mathbf{B} \approx \mathbf{A}^{-1}$ and the action of **B** is easy to compute

► Apply Krylov iterative methods to the preconditioned system

Problem: Given $\mathbf{f} \in \mathcal{H}'$, find $\mathbf{u} \in \mathcal{H}$ such that $\mathbf{A}\mathbf{u} = \mathbf{f}$. Here, $\mathbf{A} : \mathcal{H} \mapsto \mathcal{H}'$ is an isomorphism.

Riesz operator: $\mathbf{B}: \mathcal{H}' \mapsto \mathcal{H}$, such that for every $\mathbf{f} \in \mathcal{H}'$,

 $\langle \mathbf{f}, \mathbf{x} \rangle = (\mathbf{B}\mathbf{f}, \mathbf{x})_{\mathcal{H}}, \qquad \forall \ \mathbf{x} \in \mathcal{H}$

Estimate κ (**BA**):

$$\begin{aligned} \|\mathbf{B}\mathbf{A}\| &= \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}} \|\mathbf{y}\|_{\mathcal{H}}} = \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}} \|\mathbf{y}\|_{\mathcal{H}}} \leq \beta \\ \|[\mathbf{B}\mathbf{A}]^{-1}\|^{-1} &= \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}} \|\mathbf{y}\|_{\mathcal{H}}} = \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}} \|\mathbf{y}\|_{\mathcal{H}}} \geq \gamma \\ \implies \kappa(\mathbf{B}\mathbf{A}) = \|\mathbf{B}\mathbf{A}\|\|[\mathbf{B}\mathbf{A}]^{-1}\| \leq \frac{\beta}{\gamma} \end{aligned}$$

Riesz operator is a robust preconditioner!

1

(Penn State)

Problem: Given $\mathbf{f} \in \mathcal{H}'$, find $\mathbf{u} \in \mathcal{H}$ such that $\mathbf{A}\mathbf{u} = \mathbf{f}$. Here, $\mathbf{A} : \mathcal{H} \mapsto \mathcal{H}'$ is an isomorphism.

Riesz operator: $\mathbf{B} : \mathcal{H}' \mapsto \mathcal{H}$, such that for every $\mathbf{f} \in \mathcal{H}'$,

 $\langle \mathbf{f}, \mathbf{x} \rangle = (\mathbf{B}\mathbf{f}, \mathbf{x})_{\mathcal{H}}, \qquad \forall \ \mathbf{x} \in \mathcal{H}$

Estimate $\kappa(BA)$:

$$\begin{split} \|\mathbf{B}\mathbf{A}\| &= \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \leq \beta \\ \|[\mathbf{B}\mathbf{A}]^{-1}\|^{-1} &= \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \geq \gamma \\ \implies \kappa(\mathbf{B}\mathbf{A}) = \|\mathbf{B}\mathbf{A}\|\|[\mathbf{B}\mathbf{A}]^{-1}\| \leq \frac{\beta}{\gamma} \end{split}$$

Riesz operator is a robust preconditioner!

1

(Penn State)

Problem: Given $f \in \mathcal{H}'$, find $u \in \mathcal{H}$ such that Au = f. Here, $A : \mathcal{H} \mapsto \mathcal{H}'$ is an isomorphism.

Riesz operator: $\mathbf{B}: \mathcal{H}' \mapsto \mathcal{H}$, such that for every $\mathbf{f} \in \mathcal{H}'$,

 $\langle \mathbf{f}, \mathbf{x} \rangle = (\mathbf{B}\mathbf{f}, \mathbf{x})_{\mathcal{H}}, \qquad \forall \ \mathbf{x} \in \mathcal{H}$

Estimate $\kappa(BA)$:

$$\begin{split} \|\mathbf{B}\mathbf{A}\| &= \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}} \|\mathbf{y}\|_{\mathcal{H}}} = \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}} \|\mathbf{y}\|_{\mathcal{H}}} \leq \beta \\ \|[\mathbf{B}\mathbf{A}]^{-1}\|^{-1} &= \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}} \|\mathbf{y}\|_{\mathcal{H}}} = \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}} \|\mathbf{y}\|_{\mathcal{H}}} \geq \gamma \\ \implies \kappa(\mathbf{B}\mathbf{A}) = \|\mathbf{B}\mathbf{A}\|\|[\mathbf{B}\mathbf{A}]^{-1}\| \leq \frac{\beta}{\gamma} \end{split}$$

Riesz operator is a robust preconditioner!

1

(Penn State)

Problem: Given $f \in \mathcal{H}'$, find $u \in \mathcal{H}$ such that Au = f. Here, $A : \mathcal{H} \mapsto \mathcal{H}'$ is an isomorphism.

Riesz operator: $\mathbf{B}: \mathcal{H}' \mapsto \mathcal{H}$, such that for every $\mathbf{f} \in \mathcal{H}'$,

 $\langle \mathbf{f}, \mathbf{x} \rangle = (\mathbf{B}\mathbf{f}, \mathbf{x})_{\mathcal{H}}, \qquad \forall \ \mathbf{x} \in \mathcal{H}$

Estimate $\kappa(\mathbf{BA})$:

$$\begin{split} \|\mathbf{B}\mathbf{A}\| &= \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \leq \beta \\ \|[\mathbf{B}\mathbf{A}]^{-1}\|^{-1} &= \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \geq \gamma \\ \implies \kappa(\mathbf{B}\mathbf{A}) = \|\mathbf{B}\mathbf{A}\|\|[\mathbf{B}\mathbf{A}]^{-1}\| \leq \frac{\beta}{\gamma} \end{split}$$

Riesz operator is a robust preconditioner!

1

(Penn State)

Problem: Given $f \in \mathcal{H}'$, find $u \in \mathcal{H}$ such that Au = f. Here, $A : \mathcal{H} \mapsto \mathcal{H}'$ is an isomorphism.

Riesz operator: $\mathbf{B}: \mathcal{H}' \mapsto \mathcal{H}$, such that for every $\mathbf{f} \in \mathcal{H}'$,

 $\langle \mathbf{f}, \mathbf{x} \rangle = (\mathbf{B}\mathbf{f}, \mathbf{x})_{\mathcal{H}}, \qquad \forall \ \mathbf{x} \in \mathcal{H}$

Estimate $\kappa(\mathbf{BA})$:

1

$$\begin{split} \|\mathbf{B}\mathbf{A}\| &= \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \sup_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \leq \beta \\ \|[\mathbf{B}\mathbf{A}]^{-1}\|^{-1} &= \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|(\mathbf{B}\mathbf{A}\mathbf{x},\mathbf{y})_{\mathcal{H}}|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} = \inf_{\mathbf{x}\in\mathcal{H}} \sup_{\mathbf{y}\in\mathcal{H}} \frac{|\langle\mathbf{A}\mathbf{x},\mathbf{y}\rangle|}{\|\mathbf{x}\|_{\mathcal{H}}\|\mathbf{y}\|_{\mathcal{H}}} \geq \gamma \\ \implies \kappa(\mathbf{B}\mathbf{A}) = \|\mathbf{B}\mathbf{A}\|\|[\mathbf{B}\mathbf{A}]^{-1}\| \leq \frac{\beta}{\gamma} \end{split}$$

Riesz operator is a robust preconditioner!

(Penn State)

Error indicators: Estimating the residual

► Existence of a preconditioner $\mathbf{B} \implies$ two-sided estimate on $\|\mathbf{e}\|_{\mathbf{B}^{-1}} = \|\mathbf{e}\|_{\mathcal{H}}$. Let $r \in \mathcal{H}'$ be the residual $\mathbf{r} = \mathbf{f} - \mathbf{A}\mathbf{u}_h$.

Lemma

۲

We have the following two sided bound

$$\|\mathbf{B}\mathbf{A}\|_{\mathbf{B}^{-1}}^{-1}\|\mathbf{r}\|_{\mathbf{B}} \le \|e\|_{\mathbf{B}^{-1}} \le \|(\mathbf{B}\mathbf{A})^{-1}\|_{\mathbf{B}^{-1}}\|\mathbf{r}\|_{\mathbf{B}}.$$

$$\|\mathbf{B}\mathbf{A}\|_{\mathcal{H}}\|\mathbf{r}\|_{\mathcal{H}'} \leq \|e\|_{\mathcal{H}} \leq \|(\mathbf{B}\mathbf{A})^{-1}\|_{\mathcal{H}}\|\mathbf{r}\|_{\mathcal{H}'}.$$

Proof.

Using the relation $\mathbf{e} = \mathbf{A}^{-1}\mathbf{r}$, we have

$$\|\mathbf{e}\|_{\mathbf{B}^{-1}} = \|\mathbf{e}\|_{\mathcal{H}} = \|\mathbf{A}^{-1}\mathbf{B}^{-1}\mathbf{B}\mathbf{r}\|_{\mathcal{H}} \le \|(\mathbf{B}\mathbf{A})^{-1}\|_{\mathcal{H}}\|\mathbf{B}\mathbf{r}\|_{\mathcal{H}}.$$

On the other hand: $\|\mathbf{r}\|_{\mathcal{B}} = \|\mathbf{r}\|_{\mathcal{H}'} = \|\mathbf{BA}e\|_{\mathcal{H}} \le \|\mathbf{BA}\|_{\mathcal{H}} \|e\|_{\mathcal{H}}.$

Error indicators: Estimating the residual

► Existence of a preconditioner $\mathbf{B} \implies$ two-sided estimate on $\|\mathbf{e}\|_{\mathbf{B}^{-1}} = \|\mathbf{e}\|_{\mathcal{H}}$. Let $r \in \mathcal{H}'$ be the residual $\mathbf{r} = \mathbf{f} - \mathbf{A}\mathbf{u}_h$.

Lemma

1

We have the following two sided bound

$$\|\mathbf{B}\mathbf{A}\|_{\mathbf{B}^{-1}}^{-1}\|\mathbf{r}\|_{\mathbf{B}} \le \|e\|_{\mathbf{B}^{-1}} \le \|(\mathbf{B}\mathbf{A})^{-1}\|_{\mathbf{B}^{-1}}\|\mathbf{r}\|_{\mathbf{B}}.$$

$$\|\mathbf{B}\mathbf{A}\|_{\mathcal{H}}\|\mathbf{r}\|_{\mathcal{H}'} \leq \|e\|_{\mathcal{H}} \leq \|(\mathbf{B}\mathbf{A})^{-1}\|_{\mathcal{H}}\|\mathbf{r}\|_{\mathcal{H}'}.$$

• Result: Efficient and reliable error indicator, provided that the norm of the residual $\|\mathbf{r}\|_{\mathcal{H}'}$ can be efficiently approximated by local operations.

A Posteriori Error Estimation I

- A point of view: try to rewrite the (a posteriori error estimator) as a (two-level) Schwarz preconditioner.
- ▶ Take the infinite dimensional V as the fine grid: $V_h \subset V$ instead of $V_H \subset V_h$ in the two-level method.
- ▶ The error $e = u u_h \in V$ and residual $r = f Au_h \in V'$ are related by the error equation

$$Ae = r$$
.

• Let $\{\phi_i\}_{i=1}^n$ be the nodal basis of V_h . Take $\Omega_i := \operatorname{supp} \phi_i$, and $V_i = H_0^1(\Omega_i)$, and $I_i : V_i \to V$ be inclusion, $Q_i = I'_i$, $A_i = Q_i A I_i$.

- A point of view: try to rewrite the (a posteriori error estimator) as a (two-level) Schwarz preconditioner.
- ► Take the infinite dimensional V as the fine grid: $V_h \subset V$ instead of $V_H \subset V_h$ in the two-level method.
- ▶ The error $e = u u_h \in V$ and residual $r = f Au_h \in V'$ are related by the error equation

$$Ae = r$$
.

• Let $\{\phi_i\}_{i=1}^n$ be the nodal basis of V_h . Take $\Omega_i := \operatorname{supp} \phi_i$, and $V_i = H_0^1(\Omega_i)$, and $I_i : V_i \to V$ be inclusion, $Q_i = I'_i$, $A_i = Q_i A I_i$.

- A point of view: try to rewrite the (a posteriori error estimator) as a (two-level) Schwarz preconditioner.
- ► Take the infinite dimensional V as the fine grid: $V_h \subset V$ instead of $V_H \subset V_h$ in the two-level method.
- ▶ The error $e = u u_h \in V$ and residual $r = f Au_h \in V'$ are related by the error equation

$$Ae = r$$
.

• Let $\{\phi_i\}_{i=1}^n$ be the nodal basis of V_h . Take $\Omega_i := \operatorname{supp} \phi_i$, and $V_i = H_0^1(\Omega_i)$, and $I_i : V_i \to V$ be inclusion, $Q_i = I'_i$, $A_i = Q_i A I_i$.

- A point of view: try to rewrite the (a posteriori error estimator) as a (two-level) Schwarz preconditioner.
- ► Take the infinite dimensional V as the fine grid: $V_h \subset V$ instead of $V_H \subset V_h$ in the two-level method.
- ▶ The error $e = u u_h \in V$ and residual $r = f Au_h \in V'$ are related by the error equation

$$Ae = r$$
.

• Let $\{\phi_i\}_{i=1}^n$ be the nodal basis of V_h . Take $\Omega_i := \operatorname{supp} \phi_i$, and $V_i = H_0^1(\Omega_i)$, and $I_i : V_i \to V$ be inclusion, $Q_i = I'_i$, $A_i = Q_i A I_i$.

A posteriori error estimation II

• $V = V_h + \sum_{i=1}^n V_i$ corresponds to

$$B = A_h^{-1}Q_h + \sum_{i=1}^n A_i^{-1}Q_i : V' \to V,$$

which is a preconditioner for A,

 A^{-1} is spectrally equivalent to B(follows from S. Nepomnyaschikh's fictitious space Lemma)

B yields an error estimator

$$\|e\|_{A}^{2} = \|A^{-1}r\|_{A}^{2} = \langle r, A^{-1}r \rangle \approx \langle r, Br \rangle$$
$$= \langle r, A_{h}^{-1}Q_{h}r \rangle + \sum_{i=1}^{n} \langle r, A_{i}^{-1}Q_{i}r \rangle.$$

▶ In case of FEM by definition $Q_h r = 0!$

A posteriori error estimation II

•
$$V = V_h + \sum_{i=1}^n V_i$$
 corresponds to

$$B = A_h^{-1}Q_h + \sum_{i=1}^n A_i^{-1}Q_i : V' \to V,$$

which is a preconditioner for A,

 A^{-1} is spectrally equivalent to B (follows from S. Nepomnyaschikh's fictitious space Lemma)

B yields an error estimator

$$\|e\|_{A}^{2} = \|A^{-1}r\|_{A}^{2} = \langle r, A^{-1}r \rangle \approx \langle r, Br \rangle$$
$$= \langle r, A_{h}^{-1}Q_{h}r \rangle + \sum_{i=1}^{n} \langle r, A_{i}^{-1}Q_{i}r \rangle.$$

▶ In case of FEM by definition $Q_h r = 0!$

A posteriori error estimation II

•
$$V = V_h + \sum_{i=1}^n V_i$$
 corresponds to

$$B = A_h^{-1}Q_h + \sum_{i=1}^n A_i^{-1}Q_i : V' \to V,$$

which is a preconditioner for A,

 A^{-1} is spectrally equivalent to B (follows from S. Nepomnyaschikh's fictitious space Lemma)

B yields an error estimator

$$\|e\|_{A}^{2} = \|A^{-1}r\|_{A}^{2} = \langle r, A^{-1}r \rangle \approx \langle r, Br \rangle$$
$$= \langle r, A_{h}^{-1}Q_{h}r \rangle + \sum_{i=1}^{n} \langle r, A_{i}^{-1}Q_{i}r \rangle.$$

• In case of FEM by definition $Q_h r = 0!$

► The error estimator is

$$\|e\|_{A}^{2} \simeq \sum_{i=1}^{n} \langle r, A_{i}^{-1}Q_{i}r \rangle = \sum_{i=1}^{n} \|\eta_{i}\|_{A_{i}}^{2},$$

where $\eta_i \in V_i = H_0^1(\Omega_i)$ solves

$$(\nabla \eta_i, \nabla v_i) = (f, v_i) - (\nabla u_h, \nabla v_i), \quad \forall v_i \in V_i.$$

- ► It was first proposed in [Babuška&Rheinbolt(1978)SINUM].
- Go to computable quantities by standard arguments (so called Verfürth's bubble function approach): [book: Verfürth(2013)].

► The error estimator is

$$\|e\|_{A}^{2} \simeq \sum_{i=1}^{n} \langle r, A_{i}^{-1}Q_{i}r \rangle = \sum_{i=1}^{n} \|\eta_{i}\|_{A_{i}}^{2},$$

where $\eta_i \in V_i = H_0^1(\Omega_i)$ solves

$$(\nabla \eta_i, \nabla v_i) = (f, v_i) - (\nabla u_h, \nabla v_i), \quad \forall v_i \in V_i.$$

- Similarly: efficient and reliable error indicators (using Nodal Auxiliary Space Preconditioning) to discretizations of δd, Hodge Laplacian problems, and linear elasticity with weak symmetry.
- The only ingredients needed are: well-posedness of the problem and the existence of regular decomposition on continuous level (for singularly perturbed H(d) problems).

Li&Z.(2020)CAMWA, Li&Z. arXiv:2010.06774v1

A posteriori estimates in AMG for Graph Laplacians

- We consider a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, $\mathcal{V} = \{1, \dots, n\}$, $n = |\mathcal{V}|$ and $n \gg 1$.
- Let $A \in \mathbb{R}^{n \times n}$ be defined via the bilinear form:

$$(Au, v) = \sum_{(i,j)\in\mathcal{E}} (-a_{ij})(u_i - u_j)(v_i - v_j).$$

The sum runs over all edges $e = (i, j) \in \mathcal{E}$. The resulting matrix is known as the Graph Laplacian of \mathcal{G} .

- ► We are interested in good approximations of the above bilinear form on a smaller subspace (constructing multilevel hierarchies).
- Applications: Fast solution of Au = f for a huge number of problems.

Gradients and divergence

1

• Define $G: V = \mathbb{R}^{|\mathcal{V}|} \mapsto \mathbb{R}^{|\mathcal{E}|} = W$ and $D: \mathbb{R}^{|\mathcal{E}|} \mapsto \mathbb{R}^{|\mathcal{E}|}$ in the following way

$$(\mathsf{Gv})_e = \mathsf{v}_{\mathsf{head}} - \mathsf{v}_{\mathsf{tail}}, \quad D_{e,e} = \mathsf{a}_e, \qquad \mathsf{a}_e = -\mathsf{a}_{ij}, \qquad e = (i,j).$$

- ► Thus we get another form of the bilinear form A: (Au, v) = (DGu, Gv) (weighted graph Laplacian).
- Taking D = I one obtains the standard graph Laplacian $(a_{ij} = -1)$.

- Discretizations of PDEs (P1, DG, whatever discretizations of elliptic equations)
- Diffusion State distance
- Modeling small world networks (protein-protein interraction; social networks).
- Many other problems lead to systems spectrally equivalent to the graph Laplacians.

Adaptivity in solvers (AMG)

- ▶ Typical numerical models: Au = f, $A = -(\nabla \cdot \alpha \nabla)$ or $A \in \mathbb{R}^{n \times n}$.
- Such models do not have to use FEM or even to correspond to discretizations of PDEs.
- A look at the "adaptive" linear solvers (adaptive AMG, bootstrap AMG, adaptive SA, etc) reveals:
 - What is available in the literature is adaptive but with respect to A;
 - These methods do not involve any estimates of the error during iterations.
- Q: Are there ways to extend, at least partially, what is done in FE, FV, FD for a posteriori error analysis and adaptivity to areas such as approximation of data sets?
- Q: Can we use such estimates to create multilevel hierarchical representation of complicated data-sets (graphs).

Tools for solution: two level and multilevel methodology

- Algorithms for construction of multilevel hierarchical approximations of functions defined on graphs.
- By multilevel hierarchies here, we mean splitting of both edges and vertices in a way that gives: coarser graphs; corresponding Laplacians; operators that transfer data between the graphs.
- Goal: The solution on a coarser graph has to be close to the solution on a finer graph.

α AMG for graph Laplacians

- Adaptive AMG methods: aim at optimizing (wrt convergence) the choice of coarse spaces and multilevel hierarchies in an AMG algorithm.
- The majority of known to date adaptive AMG methods approximate the optimal coarse space and do not use all the information available such as right hand side.
- The basic ideas on adaptive AMG are outlined in the early works on classical AMG from the 80s (Brandt, McCormick and Ruge'82).
- Some adaptive multilevel methods:
 - Adaptive filtering (Wittum'92; Wittum&Wagner 1997); Adaptive ML-ILU (Bank& Smith'02);

- Adaptive AMG methods: aim at optimizing (wrt convergence) the choice of coarse spaces and multilevel hierarchies in an AMG algorithm.
- The majority of known to date adaptive AMG methods approximate the optimal coarse space and do not use all the information available such as right hand side.
- ► The basic ideas on adaptive AMG are outlined in the early works on classical AMG from the 80s (Brandt, McCormick and Ruge'82).
- Some adaptive multilevel methods:
 - αAMG and αSA (Brezina,Falgout,MacLachlan,Manteuffel,McCormick,Ruge, 2004, 2006);

α AMG for graph Laplacians

- Adaptive AMG methods: aim at optimizing (wrt convergence) the choice of coarse spaces and multilevel hierarchies in an AMG algorithm.
- The majority of known to date adaptive AMG methods approximate the optimal coarse space and do not use all the information available such as right hand side.
- The basic ideas on adaptive AMG are outlined in the early works on classical AMG from the 80s (Brandt, McCormick and Ruge'82).
- Some adaptive multilevel methods:
 - Bootstrap AMG (Brandt'02, Brandt, Brannick, Livshits, Kahl, 2011,2015)

α AMG for graph Laplacians

- Adaptive AMG methods: aim at optimizing (wrt convergence) the choice of coarse spaces and multilevel hierarchies in an AMG algorithm.
- The majority of known to date adaptive AMG methods approximate the optimal coarse space and do not use all the information available such as right hand side.
- The basic ideas on adaptive AMG are outlined in the early works on classical AMG from the 80s (Brandt, McCormick and Ruge'82).
- ► Some adaptive multilevel methods:
 - Adaptive matching (Vassilevski & D'Ambra '2016)

α AMG for graph Laplacians

- Adaptive AMG methods: aim at optimizing (wrt convergence) the choice of coarse spaces and multilevel hierarchies in an AMG algorithm.
- The majority of known to date adaptive AMG methods approximate the optimal coarse space and do not use all the information available such as right hand side.
- The basic ideas on adaptive AMG are outlined in the early works on classical AMG from the 80s (Brandt, McCormick and Ruge'82).

► This talk:

- ► Adaptive path covering (Hu, Lin, Z. 2019).
- α AMG with Helmholtz decomposition (Hu, Wu, Z. 2022).

Adaptivity

(1)

Coarse spaces: Recursive matching algorithm

The matching algorithm works as follows.

- 1. Choose the a vertex of smaller degree and group it with one of its unmatched neighbors (if such neighbor exists).
- 2. Repeat this until there are no unmatched neighbors.
- 3. Then group each isolated vertex with a neighbor with which it has the most connections: coarse graph
(1)

Coarse spaces: Recursive matching algorithm

- 1. Choose the a vertex of smaller degree and group it with one of its unmatched neighbors (if such neighbor exists).
- 2. Repeat this until there are no unmatched neighbors.
- 3. Then group each isolated vertex with a neighbor with which it has the most connections: coarse graph

(1)

Coarse spaces: Recursive matching algorithm

- 1. Choose the a vertex of smaller degree and group it with one of its unmatched neighbors (if such neighbor exists).
- 2. Repeat this until there are no unmatched neighbors.
- 3. Then group each isolated vertex with a neighbor with which it has the most connections: coarse graph

(1)

Coarse spaces: Recursive matching algorithm

- 1. Choose the a vertex of smaller degree and group it with one of its unmatched neighbors (if such neighbor exists).
- 2. Repeat this until there are no unmatched neighbors.
- 3. Then group each isolated vertex with a neighbor with which it has the most connections: coarse graph

(1)

Coarse spaces: Recursive matching algorithm

- 1. Choose the a vertex of smaller degree and group it with one of its unmatched neighbors (if such neighbor exists).
- 2. Repeat this until there are no unmatched neighbors.
- 3. Then group each isolated vertex with a neighbor with which it has the most connections: coarse graph

(1)

Coarse spaces: Recursive matching algorithm

- 1. Choose the a vertex of smaller degree and group it with one of its unmatched neighbors (if such neighbor exists).
- 2. Repeat this until there are no unmatched neighbors.
- 3. Then group each isolated vertex with a neighbor with which it has the most connections: coarse graph

1

UA-AMG in action (HAZmath)

			HAZmath hazmath - Bray	ve		
d D C	🗋 🔒 hazmathteam.giti	thub.io/hazmath/				
🦁 Department of M 🔬 MDSS-phpMyAdm	Poro_OneDrive 2021_EG_Stokes	s 😋 rapprox_d_xu 🔓 PSOC Ski Patrol	🕃 How to mix C and 🚯 QCL	👔 OEC-BOOK 💺 REB 60	🦁 Edit Page < The Fi	🦸 Commo
		I	HAZma	th		

HAZmath: A Simple Finite Element, Graph, and Solver Library

Authors: Xiaozhe *H*u (Tufts), James *A*dler (Tufts), Ludmil *Z*ikatanov (Penn State)

Contributors:

- HAZNICS (HAZMATH+FEniCS) and Python interface: Ana Budisa (Simula, Norway), Miroslav Kuchta (Simula, Norway), Kent-Andre Mardal (Simula, Univ Oslo, Norway).
- Rational Approximation of Functions: Clemens Hofreither (RICAM, Austrian Academy of Sciences)
- Grid refinement and adaptive FE: Yuwen Li (Penn State)
- Geometric MultiGrid: Johannes Kraus (Universitat Duisburg-Essen, Germany), Peter Ohm

Ludmil Zikatanov	(Penn State)	Adaptive AMG	June 10, 2022	17 / 47
------------------	--------------	--------------	---------------	---------

۲

ACCPUILING LISSING V) = 3.294 sec CAILING VA MAG Level Num of town Num of DOIDETOS Arg. NUC / Tow Town Num of DOIDETOS Arg. NUC / Tow 0 1.05500 1002573 30.03 2 2.5 1003 20.07 Crist Complexity = 1.056 0 corestor complexity = 1.09 Argin Complexity = 1.056 0 corestor complexity = 1.09 Crist Complexity = 1.056 0 corestor corestor complexity = 1.09 Crist Complexity = 1.056 0 corestor complexity = 1.0566 0 corestor complexity = 1.05666 0 corestor complexity = 1.05	п			ltz1@ziggy: -/sync_psu_gdi	rive/Talks/2022_GATIPOR	9, ≣	-	•	8
Calling UA AME Level: Non of row: Non of nonzeros Arg. NEZ / row 1 2557 15725 3-3.6.97 2 457 15725 3-26.07 Frid Complexity - 1.056 Generator complexity - 1.091 memorihed aggregation setup carts 0.6224 seconds. 		me(assembly) = 3.							
Level Num of from Num of moments Aug. NZ / ree 0 455.9 1025725 34.93 2 2 5 1025725 34.93 6 455.9 1025725 34.93 6 455.9 1025725 34.93 6 1025725 34.93 34.93 6 1025725 32.80 34.93 6 1025725 32.80 34.93 manoched aggregation setup costs 0.0224 seconds.									
0 40540 102725 1+0 1 2247 147139 57.76 2 45 17139 57.76 3 45 17139 57.76 3 45 17139 57.76 5 45 17159 57.75 5 45 17159 57.55 5 45 17159 57.55 5 45 17159 57.55 5 45 17555557 5 45 1755	Level	Num of rows N	um of nonzeros	Avg. NNZ / row					
Grid complexity + 1.854 Cyperster complexity + 1.919 insochhed aggregation sette casts		46549 2547 45	1625725 147119 1263	34.93 57.76 28.07					
nementaria aggregation straige cut 0.0.22.4 seconds. → using Canjugate Gradient Method: to tumn [//i/1/101 [/ i/1] Conv. Factor 0 4 1.000000-001 0.000000000000000000000000		omplexity = 1.056	Operator con	plexity = 1.091					
	Jnsmooth	ed aggregation se	tup costs 0.0224	seconds.					
tt tum r / b r d 1.4000400-40 0.501509-03 d 1.4000400-40 0.501509-03 2 1.5160400-40 0.501509-03 3 1.63807-03 1.564107-05 0.5150 4 5.501509-03 1.564107-05 0.5150 5 1.554107-05 0.5150 0.5120 6 1.53807-03 1.564107-05 0.5150 7 5.631517-05 0.4152 5.51507-07 0.4155 8 1.400071-06 1.301508-07 0.4155 5.535017-07 0.4155 10 1.20017-06 2.435218-00 0.4154 5.531518-00 0.4154 11 9.302688-07 0.3152-00 0.4154 5.155767-10 0.3372 12 1.420797-1 2.92160-00 0.4154 5.155767-10 0.3154 13 1.5536518-00 5.155767-10 0.3372 5.156767-10 0.3372 13 1.4209-40 5.156767-10 0.3372		ng Conjugate Grad	ient Method:						
0 1									
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 12 13 14 15 16 16	1.860080e-60 4.190978-62 1.34087-63 4.190978-63 1.33507-63 4.94837-63 1.335080-64 5.961122-65 5.885786-66 5.385786-66 5.385786-66 5.385786-66 5.385786-66 5.385786-67 5.395786-67 5.395786	9.561490e-03 4.607202e-04 1.2618976e-04 9.518370e-06 9.518370e-06 9.518370e-06 5.259017e-07 5.6272256e-06 2.315138e-08 2.315138e-08 2.315138e-08 2.315138e-08 3.864512e-10 1.260590e-00 1.200590e-09 1.260590e-10 1.264552e-10 1.26555555555555555555555555555555555555	0.0419 0.1309 0.1309 0.1407 0.4407 0.4407 0.4407 0.4407 0.4107 0.4107 0.4107 0.3314 0.3341 0.3341 0.3272 0.3272 0.3102 0.3102 0.3102 0.3102					

UA-AMG for a Laplacian on the unit cube in 5D after 14 bisection refinements

1

Preconditioning Darcy-Stokes (Rational approximations+UA-AMG)

Figure: Left: shows the network (graph) of vessels and the porous tissue. Right: Computational result on coupled flow characteristics in the brain done with HAZniCS (dated Sep 10, 2021).

- Darcy-Stokes equations with these boundary conditions are used to model CSF-brain interaction.
- ► The action of the Riesz operator: requires computing the action of fractional Laplacian (s > 0, t > 0, D := (-∆)):

1

Making UA-AMG adaptive:approximation of level sets

- ► Given an (approximation to the) error *e*;
- Define auxiliary graph with same set of edges and with weights based on the computed approximation of the error *e*.

$$w_{ij}=rac{1}{|e_i-e_j|}, \hspace{1em} (i,j)\in \mathcal{E}; \hspace{1em} \mathcal{G}=(\mathcal{V},\mathcal{E}).$$

- ► Form a max weight path cover for this graph.
- ► By construction the paths follow the level sets of *e*, i.e. *e* |_p ≈ const for any path *p* from the covering.

۲

Path cover of level sets: illustration

• Left: smooth error; Right: Path cover following the level sets of the error;

• Left: matchings following the level sets; Right: coarse space approximation. Error of approximation $\approx 10^{-10}!$

(Penn State)

Adaptive AMG

۲

Level sets are not aligned with the grid

► We augment the set of adds of G(A) by adding edges from G(A²) (correponding to paths in G(A) of length 2).

• Left: smooth error; Middle: path cover; Right: matching/aggregates on this path cover.

1

How do we know the level sets of the error?

• Indeed, \boldsymbol{e} is readily known only when $\boldsymbol{b} = 0$: not practical.

Practical adaptive algorithm

- With the current approximation x_k, run several (couple of) W cycles on Ae = f − Ax_k to obtain an approximation of the error.
- ▶ Build hierarchy following the level sets of *e*.
- Perform AMG iterations until the convergence slows down and go to the first step; or go to the first step every iteration.

• This algorithm looks expensive but it is also aimed to solve hard problems (not just at Laplace equation on uniform grid)

Numerical experiments (Real World Graphs)

Table: Largest connected components of the networks from the University of Florida sparse matrix collection (UF)

	$n \times 10^{-6}$	$nnz imes 10^{-6}$	Description
333SP	3.7	22.0	2-dimensional FE triangular meshes
belgium_osm	1.4	3.0	Belgium street network
M6	3.5	2.1	2-dimensional FE triangular meshes
NACA0015	1.0	6.2	2-dimensional FE triangular meshes
netherlands_osm	2.2	4.9	Netherlands street network
packing	2.1	35.0	DIMACS Implementation Challenge
500×100×100-			
b050			
roadNet-CA	1.9	5.5	California road network
roadNet-PA	1.1	3.1	Philadelphia road network
roadNet-TX	1.3	3.7	Texas road network
fl2010	0.5	2.8	Florida census 2010
as-Skitter	1.6	22.0	Autonomous systems by Skitter
hollywood-2009	1.0	113.0	Hollywood movie actor network

(1)

Numerical experiments(continued)

Table: Largest connected components of the networks from Stanford large network datasets collection

	n	nnz	Description
com-DBLP	3.17080e5	2.41681e6	DBLP collaboration network
web-NotreDame	3.25729e5	1.09011e6	Web graph of Notre Dame
amazon0601	4.03364e5	5.28999e6	Amazon product co-purchasing network

Numerical experiments(continued)

Table: UF Collection (Low-Frequency \boldsymbol{b})

	UA-A	AMG w/M	WM	Algor	ithm A	Alg	gorithr	nВ
	lter	ConvR	OC	Iter	OC	lter	Re	OC
	UF la	arge netwo	ork datas	sets col	ection			
333SP	-	0.997	1.89	9	2.01	14	7	2.08
belgium_osm	1629	0.996	1.99	11	2.02	15	9	2.02
M6	-	0.997	1.86	10	2.11	15	8	2.11
NACA0015	-	0.995	1.86	9	2.10	14	7	2.10
netherlands_osm	-	0.997	1.98	10	2.02	16	9	2.02
packing	-	0.999	1.06	11	2.46	19	10	2.46
roadNet-CA	878	0.991	2.05	8	2.08	14	7	2.08
roadNet-PA	1382	0.991	2.05	8	2.10	14	7	2.09
roadNet-TX	1424	0.994	2.04	9	2.08	14	7	2.08
fl2010	-	0.998	1.83	9	2.19	15	7	2.19
as-Skitter	-	0.998	1.21	10	3.13	19	8	3.14
hollywood-2009	-	0.999	1.01	5	3.17	11	3	3.18

Ludmil Zikatanov

Numerical experiments (continued)

Table: Stanford Collection (Low-Frequency \boldsymbol{b})

	UA-	AMG w/N	1WM	Algor	rithm A	Alg	gorithr	n B
	Iter	ConvR	OC	Iter	OC	lter	Re	OC
	Stanfor	rd large ne	twork d	atasets	collection	ı		
com-DBLP	297	0.986	2.01	4	3.22	11	2	3.22
web-NotreDame	-	0.999	1.26	7	2.43	13	6	2.40
amazon0601	-	0.998	1.58	5	3.49	12	4	3.52

Numerical experiments(continued)

Table: UF collection: Zero-Sum Random \boldsymbol{b} , tol=1e-6

	UA-A	AMG w/M	WM	Algor	ithm A	Alg	gorithr	nВ
	Iter	ConvR	OC	Iter	OC	lter	Re	OC
	UF la	arge netwo	ork datas	sets col	lection			
333SP	-	0.997	1.89	9	2.09	6	1	2.08
belgium_osm	-	0.996	1.99	11	2.02	15	9	2.02
M6	-	0.997	1.86	8	2.11	5	1	2.11
NACA0015	1565	0.995	1.86	8	2.10	5	1	2.10
netherlands_osm	-	0.997	1.98	12	2.02	17	11	2.02
packing	-	0.999	1.06	11	2.46	17	10	2.47
roadNet-CA	1308	0.994	2.08	8	2.08	15	7	2.08
roadNet-PA	970	0.991	2.05	8	2.09	14	6	2.08
roadNet-TX	1168	0.992	2.04	9	2.08	14	7	2.08
fl2010	-	0.998	1.83	8	2.19	16	7	2.19
as-Skitter	-	0.998	1.21	10	3.04	17	7	3.06
hollywood-2009	-	0.999	1.01	7	3.17	13	5	3.18

Numerical experiments (continued)

	UA-	AMG w/N	1WM	Algor	rithm A	Alg	gorithr	n B
	lter	ConvR	OC	lter	OC	Iter	Re	OC
	S	tanford co	llection	Zero su	ım b			
com-DBLP	573	0.987	2.01	4	3.23	11	3	3.22
web-NotreDame	-	0.999	1.26	7	2.47	15	6	2.56
amazon0601	-	0.998	1.58	6	3.49	10	4	3.50

Graph Operators

1

• Discrete gradient operator $G : \mathbb{R}^n \to \mathbb{R}^m$:

$$(G\mathbf{v})_e = \mathbf{v}_i - \mathbf{v}_j, \quad \forall \ \mathbf{v} \in \mathbb{R}^n.$$

• Edge weight matrix $D : \mathbb{R}^m \to \mathbb{R}^m$,

$$(D au)_e = w_e au_e, \quad \forall \ au \in \mathbb{R}^m.$$

• Weighted graph Laplacian $L := G^T D G$.

Graph Operators

۲

• Discrete gradient operator $G : \mathbb{R}^n \to \mathbb{R}^m$:

$$(G\mathbf{v})_e = \mathbf{v}_i - \mathbf{v}_j, \quad \forall \ \mathbf{v} \in \mathbb{R}^n.$$

• Edge weight matrix $D : \mathbb{R}^m \to \mathbb{R}^m$,

$$(D au)_e = w_e au_e, \quad \forall \ au \in \mathbb{R}^m.$$

• Weighted graph Laplacian $L := G^T D G$.

$$G = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \quad L = \begin{pmatrix} 4 & -3 & -1 & 0 \\ -3 & 6 & -1 & -2 \\ -1 & -1 & 4 & -2 \\ 0 & -2 & -2 & 4 \end{pmatrix}$$
$$D = \operatorname{diag}(3, 1, 1, 2, 2)$$

Error Estimator (quick intro)

For the graph Laplacian problem , $L \boldsymbol{u} = \boldsymbol{f}$.

Lemma (Prager-Synge and S. Repin)

Fix $\mathbf{v} \in \mathbb{R}^n$, for any $\mathbf{\tau} \in \mathbb{R}^m$,

$$\|\boldsymbol{u}-\boldsymbol{v}\|_{L} \leq \|\boldsymbol{D}\boldsymbol{G}\boldsymbol{v}-\boldsymbol{\tau}\|_{D^{-1}} + C_{p}^{-1}\|\boldsymbol{G}^{T}\boldsymbol{\tau}-\boldsymbol{f}\|.$$
(1)

C_p is the Poincaré's constant of L.

Remarks:

- ▶ RHS of this inequality provides a reliable upper bound of the error.
- This error estimate is expensive to compute.

W. Xu, Z., J. Comput. Appl. Math. (2018)

Error Estimator (quick intro)

For the graph Laplacian problem , $L \boldsymbol{u} = \boldsymbol{f}$.

Lemma (Prager-Synge and S. Repin)

Fix $\mathbf{v} \in \mathbb{R}^n$, for any $\mathbf{\tau} \in \mathbb{R}^m$,

$$\|\boldsymbol{u}-\boldsymbol{v}\|_{L} \leq \|\boldsymbol{D}\boldsymbol{G}\boldsymbol{v}-\boldsymbol{\tau}\|_{D^{-1}} + C_{\rho}^{-1}\|\boldsymbol{G}^{T}\boldsymbol{\tau}-\boldsymbol{f}\|.$$
(1)

C_p is the Poincaré's constant of L.

Remarks:

- ► RHS of this inequality provides a reliable upper bound of the error.
- ► This error estimate is expensive to compute.

W. Xu, Z., J. Comput. Appl. Math. (2018)

A Posteriori Error Estimates

Denote
$$\mathscr{W}(\boldsymbol{f}) = \{ \boldsymbol{\tau} \in \mathbb{R}^m | \boldsymbol{G}^T \boldsymbol{\tau} = \boldsymbol{f} \}.$$

Theorem (Exact error)

Let **u** be the solution to $L\mathbf{x} = \mathbf{f}$. Then for any $\mathbf{v} \in \mathbb{R}^n$,

$$\|\boldsymbol{u}-\boldsymbol{v}\|_{L}=\min_{\boldsymbol{\tau}\in\mathscr{W}(\boldsymbol{f})}\|DG\boldsymbol{v}-\boldsymbol{\tau}\|_{D^{-1}}.$$

Remark: If \mathbf{v} is the approximate solution to $L\mathbf{x} = \mathbf{f}$, $\|DG\mathbf{v} - \boldsymbol{\tau}\|_{D^{-1}}$ is always an upper bound of the error $\mathbf{u} - \mathbf{v}$ for any $\boldsymbol{\tau} \in \mathcal{W}(\mathbf{f})$.

|--|

1

Goal: solve for $\tau \in \mathscr{W}(f)$ by minimizing $\psi(\tau) := \|DG\mathbf{v} - \tau\|_{D^{-1}}$, with reasonable computational cost.

Helmholtz decomposition:

 $\boldsymbol{\tau} = \boldsymbol{\tau}_f + \boldsymbol{\tau}_0,$

 $au_f \in \mathscr{W}(f)$: curl free. $au_0 \in \mathscr{W}(\mathbf{0})$: divergence free $(G^T au_0 = \mathbf{0})$.

Minimize $\psi({m au})$

1

Goal: solve for $\tau \in \mathscr{W}(f)$ by minimizing $\psi(\tau) := \|DG\mathbf{v} - \tau\|_{D^{-1}}$, with reasonable computational cost.

Helmholtz decomposition:

$$\boldsymbol{\tau}=\boldsymbol{\tau}_f+\boldsymbol{\tau}_0,$$

 $\tau_f \in \mathscr{W}(f)$: curl free. $\tau_0 \in \mathscr{W}(\mathbf{0})$: divergence free $(G^T \tau_0 = \mathbf{0})$. 1

Goal: solve for τ to minimize $\psi(\tau) = \|DG\mathbf{v} - \tau\|_{D^{-1}}$, with reasonable computational cost.

Helmholtz decomposition:

$$\boldsymbol{\tau}=\boldsymbol{\tau}_f+\boldsymbol{\tau}_0,$$

 $au_f \in \mathscr{W}(f)$: curl free. A gradient corresponding to a spanning tree of \mathcal{G} . $au_0 \in \mathscr{W}(\mathbf{0})$: divergence free. An element of the cycle space. ۲

Spanning Tree and Cycle Space

Fundamental cycle basis:

$$\boldsymbol{c}^1 = [1, 1, -1, 0, 0]^T, \quad \boldsymbol{c}^2 = [0, 0, 1, -1, 1]^T.$$

(1)

 τ_f is nonzero on the spanning tree Goal: Solve $G^T \tau_f = \mathbf{f}$ such that $(\tau_f)_e = 0$ for $e \in \mathcal{E} \setminus \mathcal{E}_T$.

$$\boldsymbol{f} = \boldsymbol{G}^{\mathsf{T}} \boldsymbol{\tau}_{f} = \begin{pmatrix} \boldsymbol{G}_{\mathcal{T}}^{\mathsf{T}} & \boldsymbol{G}_{\mathcal{G} \setminus \mathcal{T}}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \boldsymbol{\tau}_{f\mathcal{T}} \\ \boldsymbol{0} \end{pmatrix} = \boldsymbol{G}_{\mathcal{T}}^{\mathsf{T}} \boldsymbol{\tau}_{f\mathcal{T}}.$$

► to solve
$$G_T^T \tau_{fT} = f$$
,

Key Idea: make use of $L_{\mathcal{T}} = G_{\mathcal{T}}^T D_{\mathcal{T}} G_{\mathcal{T}}$ and solve a linear system on \mathcal{T} instead.

- solve
$$L_T \mathbf{x} = \mathbf{f}$$

- equivalent to solving: $G_T^T D_T G_T \mathbf{x} = \mathbf{f}$.

۲

 τ_f is nonzero on the spanning tree Goal: Solve $G^T \tau_f = \mathbf{f}$ such that $(\tau_f)_e = 0$ for $e \in \mathcal{E} \setminus \mathcal{E}_T$.

•
$$\mathbf{f} = \mathbf{G}^T \boldsymbol{\tau}_f = \begin{pmatrix} \mathbf{G}_T^T & \mathbf{G}_{\mathcal{G}\setminus\mathcal{T}}^T \end{pmatrix} \begin{pmatrix} \boldsymbol{\tau}_{f\mathcal{T}} \\ \mathbf{0} \end{pmatrix} = \mathbf{G}_T^T \boldsymbol{\tau}_{f\mathcal{T}}.$$

• to solve
$$G_T^T \boldsymbol{\tau}_{fT} = \boldsymbol{f}$$
,

Key Idea: make use of $L_{\mathcal{T}} = G_{\mathcal{T}}^T D_{\mathcal{T}} G_{\mathcal{T}}$ and solve a linear system on \mathcal{T} instead.

- solve
$$L_T \mathbf{x} = \mathbf{f}$$

- equivalent to solving: $G_T^T D_T G_T \mathbf{x} = \mathbf{f}$.

۲

 τ_f is nonzero on the spanning tree Goal: Solve $G^T \tau_f = \mathbf{f}$ such that $(\tau_f)_e = 0$ for $e \in \mathcal{E} \setminus \mathcal{E}_T$.

$$\bullet \ \mathbf{f} = \mathbf{G}^{\mathsf{T}} \boldsymbol{\tau}_{f} = \begin{pmatrix} \mathbf{G}_{\mathcal{T}}^{\mathsf{T}} & \mathbf{G}_{\mathcal{G} \setminus \mathcal{T}}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \boldsymbol{\tau}_{f\mathcal{T}} \\ \mathbf{0} \end{pmatrix} = \mathbf{G}_{\mathcal{T}}^{\mathsf{T}} \boldsymbol{\tau}_{f\mathcal{T}}.$$

• to solve
$$G_T^T \boldsymbol{\tau}_{fT} = \boldsymbol{f}$$
,

Key Idea: make use of $L_{\mathcal{T}} = G_{\mathcal{T}}^T D_{\mathcal{T}} G_{\mathcal{T}}$ and solve a linear system on \mathcal{T} instead.

- solve $L_T \mathbf{x} = \mathbf{f}$ - equivalent to solving: $G_T^T D_T G_T \mathbf{x} = \mathbf{f}$.

۲

 τ_f is nonzero on the spanning tree

Goal: Solve $G^T \tau_f = \mathbf{f}$ such that $(\tau_f)_e = 0$ for $e \in \mathcal{E} \setminus \mathcal{E}_T$.

$$\bullet \ \mathbf{f} = \mathbf{G}^{\mathsf{T}} \boldsymbol{\tau}_{f} = \begin{pmatrix} \mathbf{G}_{\mathcal{T}}^{\mathsf{T}} & \mathbf{G}_{\mathcal{G} \setminus \mathcal{T}}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \boldsymbol{\tau}_{f\mathcal{T}} \\ \mathbf{0} \end{pmatrix} = \mathbf{G}_{\mathcal{T}}^{\mathsf{T}} \boldsymbol{\tau}_{f\mathcal{T}}.$$

► to solve
$$G_T^T \tau_{fT} = f$$
,

Key Idea: make use of $L_{\mathcal{T}} = G_{\mathcal{T}}^T D_{\mathcal{T}} G_{\mathcal{T}}$ and solve a linear system on \mathcal{T} instead.

- solve $L_T \mathbf{x} = \mathbf{f}$ - equivalent to solving: $G_T^T D_T G_T \mathbf{x} = \mathbf{f}$.

(1)

 au_{f} is nonzero on the spanning tree

Goal: Solve $G^T \tau_f = \mathbf{f}$ such that $(\tau_f)_e = 0$ for $e \in \mathcal{E} \setminus \mathcal{E}_T$.

•
$$\boldsymbol{f} = \boldsymbol{G}^{T} \boldsymbol{\tau}_{f} = \begin{pmatrix} \boldsymbol{G}_{\mathcal{T}}^{T} & \boldsymbol{G}_{\mathcal{G} \setminus \mathcal{T}}^{T} \end{pmatrix} \begin{pmatrix} \boldsymbol{\tau}_{f\mathcal{T}} \\ \boldsymbol{0} \end{pmatrix} = \boldsymbol{G}_{\mathcal{T}}^{T} \boldsymbol{\tau}_{f\mathcal{T}}.$$

• to solve
$$G_{\mathcal{T}}^T \boldsymbol{\tau}_{f\mathcal{T}} = \boldsymbol{f}$$
,

Key Idea: make use of $L_{\mathcal{T}} = G_{\mathcal{T}}^T D_{\mathcal{T}} G_{\mathcal{T}}$ and solve a linear system on \mathcal{T} instead.

- solve
$$L_{\mathcal{T}} \mathbf{x} = \mathbf{f}$$

- equivalent to solving: $G_{\mathcal{T}}^T \underbrace{D_{\mathcal{T}} G_{\mathcal{T}} \mathbf{x}}_{\mathbf{\tau}_{f\mathcal{T}}} = \mathbf{f}$.

D. Rose et al. SIAM J. Comput.(1976)

Adaptive AMG

A Posteriori Error Estimates

Step 2: Compute au_0 in Cycle Space \mathscr{C}

Problem recap: solve $\min_{\tau \in \mathscr{W}(f)} \| DG \mathbf{v} - \tau \|_{D^{-1}}$, where $\tau = \tau_f + \tau_0$.

Constrained Minimization

For a given τ_f , we need to solve (approximately):

$$\min_{\boldsymbol{\tau}_0 \in \mathscr{C}} \| D \boldsymbol{G} \boldsymbol{\nu} - \boldsymbol{\tau}_f - \boldsymbol{\tau}_0 \|_{D^{-1}}.$$
(2)

Schwarz Methods:

Decompose the cycle space $\mathscr C$ into subspaces:

$$\mathscr{C} = \mathscr{C}_1 + \mathscr{C}_2 + \cdots + \mathscr{C}_J.$$

Solve in each subspace \mathscr{C}_i , $i = 1, 2, \cdots, J$:

$$\min_{\Delta \tau \in \mathscr{C}_{i+1}} \| DG \boldsymbol{\nu} - \boldsymbol{\tau}_f - (\boldsymbol{\tau}_0^i + \Delta \tau) \|_{D^{-1}}.$$
(3)

A Posteriori Error Estimates

Step 2: Compute au_0 in Cycle Space \mathscr{C}

Problem recap: solve $\min_{\tau \in \mathscr{W}(f)} \| DG \mathbf{v} - \tau \|_{D^{-1}}$, where $\tau = \tau_f + \tau_0$.

Constrained Minimization

For a given τ_f , we need to solve (approximately):

$$\min_{\boldsymbol{\tau}_0 \in \mathscr{C}} \| D \boldsymbol{G} \boldsymbol{\nu} - \boldsymbol{\tau}_f - \boldsymbol{\tau}_0 \|_{D^{-1}}.$$
(2)

Schwarz Methods:

Decompose the cycle space $\mathscr C$ into subspaces:

$$\mathscr{C} = \mathscr{C}_1 + \mathscr{C}_2 + \cdots + \mathscr{C}_J.$$

Solve in each subspace \mathscr{C}_i , $i = 1, 2, \cdots, J$:

$$\min_{\Delta \boldsymbol{\tau} \in \mathscr{C}_{i+1}} \| D \boldsymbol{G} \boldsymbol{\nu} - \boldsymbol{\tau}_f - (\boldsymbol{\tau}_0^i + \Delta \boldsymbol{\tau}) \|_{D^{-1}}.$$
(3)

(1)

Step 2: Schwarz Methods to Compute au_0 in ${\mathscr C}$

Domain decomposition:

$$\mathscr{C}_i = \text{span}\{\boldsymbol{c}^j | \text{ cycle } j \text{ contains vertex } i\},\ i = 1, \dots, J.$$

Cost of Schwarz method depends on:

- lacktriangleright number of subspaces J: O(n).
- cost of solving (3) in each subspace: $\mathcal{O}(1)$.

Total cost of one iteration of Schwarz method: O(n).

Remark: Worst case runtime: $\mathcal{O}(n \log n)$.

Kelner et al, STOC(2013)

(1)

Step 2: Schwarz Methods to Compute au_0 in ${\mathscr C}$

Domain decomposition:

$$\mathscr{C}_i = \text{span}\{\boldsymbol{c}^j | \text{ cycle } j \text{ contains vertex } i\},\ i = 1, \dots, J.$$

Cost of Schwarz method depends on:

- number of subspaces $J: \mathcal{O}(n)$.
- cost of solving (3) in each subspace: $\mathcal{O}(1)$.

Total cost of one iteration of Schwarz method: O(n).

Remark: Worst case runtime: $\mathcal{O}(n \log n)$.

Kelner et al, STOC(2013)

Ludmil Zikatanov

(Penn State)
(1)

Step 2: Schwarz Methods to Compute au_0 in ${\mathscr C}$

Domain decomposition:

$$\mathscr{C}_i = \text{span}\{\boldsymbol{c}^j | \text{ cycle } j \text{ contains vertex } i\},\ i = 1, \dots, J.$$

Cost of Schwarz method depends on:

- ▶ number of subspaces $J: \mathcal{O}(n)$.
- cost of solving (3) in each subspace: $\mathcal{O}(1)$.

Total cost of one iteration of Schwarz method: O(n).

Remark: Worst case runtime: $\mathcal{O}(n \log n)$.

Kelner et al, STOC(2013)

Ludmil Zikatanov

(Penn State)

(1)

Step 2: Schwarz Methods to Compute au_0 in ${\mathscr C}$

Domain decomposition:

$$\mathscr{C}_i = \text{span}\{\boldsymbol{c}^j | \text{ cycle } j \text{ contains vertex } i\},\ i = 1, \dots, J.$$

Cost of Schwarz method depends on:

- number of subspaces $J: \mathcal{O}(n)$.
- cost of solving (3) in each subspace: $\mathcal{O}(1)$.

Total cost of one iteration of Schwarz method: O(n).

Remark: Worst case runtime: $\mathcal{O}(n \log n)$.

Kelner et al, STOC(2013)

Results: Scalability

1

Parameters and Notation:

- Graph: 2D uniform triangular grids (corresponding to 2D Poisson equation on square domain with Neumann B.C.)
- Grid size: $h = 2^{-\ell}$, $\ell = 5, 6, 7, 8, 9$.
- Cycle type: face cycle.

- Efficiency coefficient:
$$e_{ff} := \frac{\psi(\boldsymbol{\tau})}{\|\boldsymbol{u}-\boldsymbol{v}\|_{L}}$$
.

- CPU time: in seconds.

Results: Scalability

		1 iter		3 iters		5 iters	
$ \mathcal{V} $	$\ \boldsymbol{u} - \boldsymbol{v} \ _L$	$\psi({m au})$	e _{ff}	$\psi({m au})$	e _{ff}	$\psi({m au})$	e _{ff}
1089	1.73	2.25	1.30	1.99	1.15	1.91	1.10
4097	1.73	2.67	1.55	2.28	1.32	2.16	1.25
16641	1.73	3.36	1.95	2.76	1.60	2.56	1.48
66049	1.72	4.43	2.57	3.51	2.03	3.20	1.86
263169	1.72	6.01	3.49	4.66	2.71	4.19	2.43

Results: Real World Graphs

$ \mathcal{V} $	$ \mathcal{E} $	Problem Type	u − v _L	$\psi({m au})$	e _{ff}
292	958	Least Squares Problem	1.74	1.75	1.00
1879	5525	Circuit Simulation	2.71	2.71	1.00
5300	8271	Power Network	5.82	5.82	1.00
2048	4034	Electronagnetics Problem	0.47	0.50	1.07
1423	16342	Structural Problem	14.5	19.7	1.36
8205	58681	Accoustic Problem	23.8	37.7	1.58
1857	13762	Social Network	52.9	76.3	1.44
2361	13828	Protein Network	4.61	4.70	1.01

T. Davis and Y. Hu, The Univ. of Florida Sparse Matrix Collection

۲

Numerical Results

۲

Results: Local Error Estimates

Localized error estimates: $\psi_e(\tau) = \omega_e^{-\frac{1}{2}} |(DG \mathbf{v} - \tau)_e|.$

1

Idea: use approximate (smooth) error to build adaptive AMG.

Path Cover adaptive AMG (PC- α AMG):

- Approximate the smooth error with a posteriori error estimates.
- Find level sets of the smooth error by path cover.
- Aggregate along the level sets.
- Define AMG hierarchy using the aggregates and smooth error.

J. Lin, X. Hu, and L. Z. SISC(2019); Hu, Wu, Z. 2022 (SISC)

 $\alpha \mathsf{AMG}$

۲

Application: α AMG coarsening

upper row: aggregation with smooth error. lower row: aggregation with error estimator.

1

- Operator preconditioning: provides a path for constructing error indicators, right?
- A posteriori techniques can aid Adaptive AMG coarsening.
 - Approximate the smooth error using a posteriori estimator.
 - Adaptive path cover algorithm (coarsening following the level sets of an approximation of the error)
- Such techniques currently finding their way into the HAZniCS library https://hazmathteam.github.io/hazmath/

۲

Thank you

Thank You!