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Motivations
Many engineering and geophysical 
applications have complex physical domains 
(fluid-structure interaction, crack propagation, 
flow in fractured porous media).

Idealised aortic leaflets

Evolution of an ideal red blood cell experiencing very large 
displacementsContact between two flexible bodies 

FSI [A., Verani, Zonca, Vergara 2019] [A., Zonca, Vergara, 
2019.]

Development of numerical methods that use general polygonal and 
polyhedral mesh elements (es. Virtual Element Method, Polygonal 
Discontinous Galerkin, HDG, Weak Galerkin, Mimetic Finite 
Differences, Hybrid High Order, etc…).



Objective
- Develop effective algorithms to handle polygonal and polyhedral grids, in particular

mesh refinement and agglomeration, based on employing Machine Learning 
techniques.

- Enhance the performance and accuracy of Polyhedral Finite Element methods based 
on employing ML-aided strategies



ML-enhanced mesh refinement (2D)

Refinement strategies for triangles and quadrilaterals.



initial polygons Voronoi midpoint preferential
direction*

Refinement strategies for general polygons

*S. Berrone, A. Borio, and A. D’Auria 2021



"Ideal" strategy

1. Classify the "shape" of a polygon.
2. Apply a suitable refinement for that specific shape.

Step 1 can be learned from a database of examples using Machine 
Learning (ML).

[A., Manuzzi, JCP, 2022]



Image classification using Convolutional Neural Networks (CNNs)

neuron

polygon image

CNN

label

Network training is the process of tuning the neurons
parameters, in order to correctly classify a given database 
of samples. 

It is expensive but it can be done offline once and for all, 
while online classification is very fast.



Algorithm 1: CNN-enhanced Reference Polygon (CNN-RP) strategy

Triangle Square Pentagon Hexagon

Strategies for regular polygons are extended to arbitrary polygons by 
exploiting the CNN information about the "shape".



Algorithm 2: CNN-enhanced Mid-Point (CNN-MP) strategy

Triangle Square Pentagon Hexagon

The MP strategy can be enhanced by classifying polygons using a 
CNN and chosing refinement connections according to the label.



Automatic dataset generation

Reference 
polygon

Small distortions 
applied

Binary image
64x64 pixels

Label: "Triangle" Label: "Triangle" Label: "Triangle"



Refined grids obtained after three steps of uniform refinement based on employing the MP, 
the CNN-RP and the CNN-MP strategies.



Effects of CNN-enhanced refinement strategies on Quality Metrics

Uniformity Factor = element size
mesh size Circle Ratio =  inscribed circle radius

circumscribed circle radius



Effects of CNN-enhanced refinement strategies on accuracy of 
polyhedral Finite Element Methods

- PolyDG methods [A. Brezzi, Marini, 2009], [Bassi et al, 2012], [A., Giani, Houston, 2013], 
[Cangiani,  Geourgolis, Houston, 2014], [A., Cangiani, Collis, Dong, Georgoulis, Giani, Houston, 
2016], [Cangiani, Dong,  Geourgolis, Houston, 2017], …...

- Virtual Element Methods [Beirão da Veiga , Brezzi, Cangiani, Manzini, Marini, Russo, 2013], 
[Beirão da Veiga, Brezzi, Marini 2013], [Brezzi, Marini, 2013], [Ahmad, Alsaedi, Brezzi, Marini, 
Russo 2013], [Brezzi, Falk, Marini , 2014], [Beirao da Veiga, Brezzi, Marini, Russo, 2014],………



PolyDG formulation



PolyDG formulation



[Beirão da Veiga , Brezzi, Cangiani, Manzini, Marini, Russo, 2013] 

Virtual Element formula=on



𝐓𝐡𝐞 𝐥𝐨𝐜𝐚𝐥 𝐬𝐩𝐚𝐜𝐞𝐬 𝐕𝐡|𝐄



The degrees of freedom for 𝐕𝐡|𝐄



The bilinear form 𝐚𝐡(·,·)



Triangular grid Voronoi grid

Smoothed-Voronoi grid Non-convex grid

Solving the Poisson problem using the VEM (uniform refinement)
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Triangular grid Voronoi grid

Smoothed-Voronoi grid Non-convex grid

Solving the Poisson problem using the PolyDG method (uniform refinement)

Analogous results for advection-diffusion and Stokes problems.
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Solving the Poisson problem using the VEM (adaptive refinement)

P.F. Antonietti and E. Manuzzi Journal of Computational Physics 452 (2022) 110900

Fig. 16. Test case of Section 6.2. Computed errors as a function of the number of degrees of freedom. Each row corresponds to the same initial grid 
(triangles, Voronoi, smoothed Voronoi, non-convex) refined adaptively with a fixed fraction refinement criterion (refinement fraction r set equal to 30%) 
with different strategies (MP, CNN-RP and CNN-MP), while each column corresponds to a different numerical method (VEM left and PolyDG right).

is more evident for VEMs than for PolyDG approximations.

6.3. Application to an advection-diffusion problem

We now consider the following advection-diffusion problem:

{ −!u + div(βu) = f in "
u = 0 on ∂"
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Triangular grid

Voronoi grid

Smoothed-Voronoi grid

Non-convex grid
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Fig. 15. Adaptively refined grids for the test case of Section 6.2. Each row corresponds to the same initial grid (triangles, Voronoi, smoothed Voronoi, non-
convex), while the second-fourth columns correspond to the different refinement strategies (MP, CNN-RP, CNN-MP). Three successively adaptive refinement 
steps have been performed, with a fixed fraction refinement criterion (refinement fraction r set equal to 30%).

the time of solving the numerical problem over the refined grid. However, this ratio will decrease if meshes with more 
elements are considered, because except for particular cases the average number of edges of a mesh element will remain 
approximately constant and the number of pixels will remain constant, while solving the numerical problem has a cost 
which in general scales more than linearly with the number of degrees of freedom.

In Fig. 14 we compare the performance of the currently used CNN with accuracy 93% and of a CNN with accuracy 80%. 
As we can see, the PolyDG method does not seem very sensitive to the CNN accuracy, while the VEM seems more sensitive 
but performance seem not to always improve consistently over the selected grids.

6.2. Adaptively refined grids

In this case we selected r = 0.3. The forcing term f in (1) is selected in such a way that the exact solution is u(x, y) =
(1 − e−10x)(x − 1) sin(π y), that exhibits a boundary layer along x = 0. Fig. 15 shows the computed grids after three steps of 
refinement for the PolyDG case. Very similar grids have been obtained with Virtual Element discretizations.

In Fig. 16 we show the computed errors as a function of the number of degrees of freedom for both Virtual Element and 
PolyDG discretizations. The CNN-enhanced strategies (both MP and RP ones) outperform the plain MP rule. The difference 
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ML-enhanced mesh refinement (3D)

Challenges in 3D:

• high geometrical complexity: need to design of simple and 

robust refinement strategies

• high computational costs: need for fast algorithms (e.g. CNNs)

• high shape variability: need to tackle unknown shapes explicitly

with E. Manuzzi and F. Dassi (U. Milano Bicocca) 



3D refinement strategies for general polyhedra

• Diameter strategy: cut the element perpendicular to its diameter.
• K-means strategy: cut the element balancing the volume distribution.
• "Classical" strategies: if the element has a specific shape refine it using a 

predefined strategy.



3D CNN-enhanced refinement strategies
3D image CNN shape label

The CNN classifies the 3D image of the input polyhedron according to its shape, in order to apply 
suitable refinement strategies.  Elements in class "other" are refined using the k-means strategy. 



Refined grids obtained after three steps of uniform refinement based on employing the 
diameter, the k-means and the CNN strategies.



Uniformity Factor = element size
mesh size Circle Ratio =  inscribed circle radius

circumscribed circle radius

Quality Metrics



Effects of ML-based refinement strategies on statistics of computational complexity



Solving the Poisson problem with the VEM (3D)

Analogous results for the VEM of order higher than 1.

Tetrahedra grid Cubes grid Prisms grid

Voronoi grid CVT grid



ML-enhanced 
agglomeration 
strategies 

Merging neighboring mesh 
elements to obtain a coarser grid.

• Design of multilevel solvers

• Defeaturing of complex 
geometries



Agglomeration using Graph Neural Networks (so far)

Objective:
Find a partition with minimal interconnections between sets, while keeping errors 
(volumes) balanced. 

Advantages:
Fast inference and full exploitation of both graph and geometrical features.



Agglomerated grids based on employing the k-means strategy and 
the metis solver. Metis is standard solver for graph partitioning.

Agglomerated grids based on employing the k-means strategy and 
the metis solver. Metis is standard solver for graph partitioning.Agglomerated grids based on employing metis. Metis is «standard» for graph

partitioning. 



Agglomeration using Graph Neural Networks (so far)

GNN-based method can be competitive wrt SotA
methods (Metis, Kmeans, …)?

• Implement different model architectures 
• Optimize model’s runtime

Work in progress:
Agglomeration using Graph Neural Networks

mesh GNNconnectivity partition

Objective:
Find a partition minimal interconnections between sets, while keeping errors (or 
volumes) balanced. 

Advantages:
Fast inference and full exploitation of both graph and geometrical features.

So Far...

-

We have observed that the implemented

GNN-based method can be compared to SotA

methods.

We are planning to:

Implement di↵erent model architectures

Optimize model’s runtime

N. Farenga, G. Martinelli, L. Saverio DL-based agglomeration strategies for polygonal grids



Quality factors



1. ML can be employed to learn  the "shape" of mesh elements within 
(adaptive) refinement strategies
§ Allows to extend or boost existing refinement strategies.
§ Improves the performance in terms of accuracy and quality of the 

underlying mesh.
§ It is fully automatic, and it has a low computational cost for online 

classification.
§ It is independent of the underlying differential model and of the 

numerical method used. 
2. GNN can be employed to drive agglomeration procedures
§ Design of multilevel solvers
§ Defeaturing of complex geometries

Conclusions



1. Optimal estimate of the PolyDG/VEM  stabilization parameters using CNNs (with E. Manuzzi, 
S. Bonetti)

2. Development 3D ML-enhanced agglomeration strategies for multigrid solvers (with E. 
Manuzzi)

3. Improving efficiency of algebraic multigrid methods through artificial neural networks: 
choosing the strong threshold parameter θ as  the one the ANN predicts to give the best 
performance.

4. Application of the described algorithms in the context of 
§ Modelling neurodegenerative deseases
§ Geophysical applications, including fluid-structure interaction with complex and 

moving geometries.

Ongoing
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