

^b UNIVERSITÄT BERN

An adaptive energy reduction approach for semilinear diffusion-reaction models

Centre INRIA de Paris June 8 – 10, 2022

Thomas P. Wihler Universität Bern

Semilinear elliptic PDE:

$$\begin{aligned} -\Delta u = f(u) & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{aligned}$$

Semilinear elliptic PDE:

$$-\Delta u = f(u) \qquad \text{in } \Omega$$
$$u = 0 \qquad \text{on } \partial \Omega$$

Nonlinear reaction of linear growth:

$$f: \mathbb{R} \to \mathbb{R}$$
 smooth, $|f'| \le C$ No convexity requirements

Semilinear elliptic PDE:

$$-\Delta u = f(u) \qquad \text{in } \Omega$$
$$u = 0 \qquad \text{on } \partial \Omega$$

Nonlinear reaction of linear growth:

$$f: \mathbb{R} \to \mathbb{R}$$
 smooth, $|f'| \le C$ No convexity requirements

Example: Arrhenius production term $f(u) \sim (1 - |u|) \exp(-c |u|^{-1})$ $f(u) \sim (1 - |u|) \exp(-c |u|^{-1})$

1.5

Method of sub- and supersolutions¹

[1] Evans, PDE book, 2nd ed., 2010

Method of sub- and supersolutions¹

Solutions $\underline{u} \leq \overline{u}$ in $H^1(\Omega)$:

$$\int_{\Omega} \nabla \underline{u} \cdot \nabla v \leq \int_{\Omega} f(\underline{u}) v \quad \text{and} \quad \int_{\Omega} \nabla \overline{u} \cdot \nabla v \geq \int_{\Omega} f(\overline{u}) v$$

for all $v \in H_0^1(\Omega), v \ge 0$.

[1] Evans, PDE book, 2nd ed., 2010

Method of sub- and supersolutions¹

Solutions $\underline{u} \leq \overline{u}$ in $H^1(\Omega)$:

$$\int_{\Omega} \nabla \underline{u} \cdot \nabla v \leq \int_{\Omega} f(\underline{u}) v \quad \text{and} \quad \int_{\Omega} \nabla \overline{u} \cdot \nabla v \geq \int_{\Omega} f(\overline{u}) v$$

for all $v \in H_0^1(\Omega), v \ge 0$.

Suppose that $\underline{u} \leq 0 \leq \overline{u}$ on $\partial \Omega$

^[1] Evans, PDE book, 2nd ed., 2010

Method of sub- and supersolutions

Fix $\Delta t > 0$ small enough so that $z \mapsto f(z) + (\Delta t)^{-1}z$ is non-decreasing

Method of sub- and supersolutions

Fix $\Delta t > 0$ small enough so that $z \mapsto f(z) + (\Delta t)^{-1}z$ is non-decreasing

$$\begin{array}{l} \textbf{THEOREM (Steady state iteration-SSI)} \\ \textbf{For } u_0 \coloneqq \underline{u} \mbox{ the iteration} \\ & -\Delta u_{k+1} + \frac{1}{\Delta t} \, u_{k+1} = f(u_k) + \frac{1}{\Delta t} \, u_k & \mbox{ in } \Omega \\ & u_{k+1} = 0 & \mbox{ on } \partial \Omega \\ \mbox{ converges to a weak solution } u_\infty \in H^1_0(\Omega) \mbox{ of the semilinear PDE.} \end{array}$$

Method of sub- and supersolutions

Fix $\Delta t > 0$ small enough so that $z \mapsto f(z) + (\Delta t)^{-1} z$ is non-decreasing

$$\begin{array}{l} \textbf{THEOREM (Steady state iteration-SSI)} \\ \textbf{For } u_0 \coloneqq \underline{u} \ \textbf{the iteration} \\ & -\Delta u_{k+1} + \frac{1}{\Delta t} \, u_{k+1} = f(u_k) + \frac{1}{\Delta t} \, u_k & \text{ in } \Omega \\ & u_{k+1} = 0 & \text{ on } \partial \Omega \\ \textbf{converges to a weak solution } u_\infty \in H_0^1(\Omega) \ \textbf{of the semilinear PDE.} \end{array}$$

Proof. Requires test functions $v_+ = \max(v, 0)$

Method of sub- and supersolutions

Fix $\Delta t > 0$ small enough so that $z \mapsto f(z) + (\Delta t)^{-1}z$ is non-decreasing

Proof. Requires test functions $v_{+} = \max(v,0)$

Semilinear diffusion-reaction model:

$$u \in H_0^1(\Omega)$$
: $-\Delta u + f(\cdot, u) = 0$

Semilinear diffusion-reaction model:

ASSUMPTION (Nonlinearity)

- $f(\cdot, s) \in L^2(\Omega)$ for all $s \in \mathbb{R}$
- f differentiable in u

•
$$\exists \rho > 0 : \Lambda_f(\rho) := \{\lambda > 0 : \sigma_f(\lambda) < \rho + \lambda^{-1}\} \neq \emptyset$$

where
 $\sigma_f(\lambda) := \operatorname{ess\,sup\,sup}_{x \in \Omega \ u \in \mathbb{R}} \left| \frac{\partial f}{\partial u}(x, u) + \frac{1}{\lambda} \right|$

Semilinear diffusion-reaction model:

(uniform) Lipschitz constant of $g_{\lambda}(x, u) := f(x, u) + \lambda^{-1}u$

Semilinear diffusion-reaction model:

Define the "undershooting" coefficient: $\mu_f := \begin{cases} 2 \left(\sup \Lambda(\rho) \right)^{-1} & \text{if } \sup \Lambda(\rho) < \infty \\ 0 & \text{otherwise} \end{cases}$

Convergence — small ρ

THEOREM (Steady state iteration for $\rho \leq C_P^{-1}$) Let $\Delta t \in \Lambda_f(\rho)$. Then, for any $u_0 \in L^2(\Omega)$ the SSI $-\Delta u_{k+1} + \frac{1}{\Delta t} u_{k+1} = f(u_k) + \frac{1}{\Delta t} u_k$ in Ω ($k \geq 0$) $u_{k+1} = 0$ on $\partial\Omega$ converges strongly to the unique weak solution $u_{\infty} \in H_0^1(\Omega)$ of the semilinear PDE.

Proof: Operator $u_k \mapsto u_{k+1}$ is a contraction.

Energy:
$$\mathsf{E}(u) := \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} \mathfrak{F}(\cdot, u) \qquad \left(\mathfrak{F}(x, t) = \int_0^t f(x, s) \, \mathrm{d}s\right)$$

Critical points of E vs. weak solutions:

$$\langle \mathsf{E}'(u), v \rangle := \int_{\Omega} \{ \nabla u \cdot \nabla v - f(\cdot, u)v \} \stackrel{!}{=} 0 \qquad \forall v \in H_0^1(\Omega)$$

We are interested in **local minima**:

$$u \in H_0^1(\Omega)$$
: $\mathsf{E}(u) = \min_{v \in H_0^1(\Omega)} \mathsf{E}(v)$

Let $\kappa_f := \frac{1}{2} \max\{\mu_f + \rho - C_P^{-1}, 0\},$ and $1/\Delta t > \kappa_f$.

ENERGY DECAY

Let

$$\kappa_{f} := \frac{1}{2} \max\{\mu_{f} + \rho - C_{P}^{-1}, 0\},\$$

and $1/\Delta t > \kappa_f$.

Then, for the SSI it holds that

$$\gamma \| \mathsf{E}'(u_k) \|_{\star}^2 \le \mathsf{E}(u_k) - \mathsf{E}(u_{k+1}), \qquad k \ge 0.$$

for a constant $\gamma > 0$ (depending on Δt).

ENERGY DECAY

Let

$$\kappa_{f} := \frac{1}{2} \max\{\mu_{f} + \rho - C_{P}^{-1}, 0\},\$$

and $1/\Delta t > \kappa_f$.

Then, for the SSI it holds that

$$\gamma \| \mathsf{E}'(u_k) \|_{\star}^2 \le \mathsf{E}(u_k) - \mathsf{E}(u_{k+1}), \qquad k \ge 0.$$

for a constant $\gamma > 0$ (depending on Δt).

CONVERGENCE OF RESIDUAL

$$\{\mathsf{E}(u_k)\}_k$$
 bounded from below $\Longrightarrow \lim_{k \to \infty} \|\mathsf{E}'(u_k)\|_{\star} \to 0$.

Involving Palais-Smale compactness (mountain pass theory²):

Involving Palais-Smale compactness (mountain pass theory²):

CONVERGENCE OF SUBSEQUENCE

- *f* continuous
- $\{\mathsf{E}(u_k)\}_k$ bounded from below

Then there is a subsequence $\{u_{k'}\}_{k'}$ such that

 $u_{k'} \rightarrow u_{\infty}$ strongly to a weak solution in $H_0^1(\Omega)$

Involving Palais-Smale compactness (mountain pass theory²):

CONVERGENCE OF SUBSEQUENCE • f continuous • $\{E(u_k)\}_k$ bounded from below Then there is a subsequence $\{u_{k'}\}_{k'}$ such that $u_{k'} \rightarrow u_{\infty}$ strongly to a weak solution in $H_0^1(\Omega)$

✓ Weak convergence and strong L^2 -convergence in closed subspaces ✓ Strong H^1 -convergence in discrete spaces!

^[2] Ambrosetti & Rabinowitz, 1973

FEM discretization

Shape-regular partitions:

- $\left\{\mathscr{T}_N\right\}_{N\in\mathbb{N}}$ of domain Ω into simplex elements
- Fixed polynomial degree $p \in \mathbb{N}$

FEM discretization

Shape-regular partitions:

- $\left\{\mathscr{T}_N\right\}_{N\in\mathbb{N}}$ of domain Ω into simplex elements
- Fixed polynomial degree $p \in \mathbb{N}$

On subsets $\omega \subset \mathcal{T}_N$, introduce the finite element space

$$\mathbb{V}(\omega) = \left\{ v \in H_0^1(\Omega) : \left. v \right|_{\kappa} \in \mathbb{P}_p(\kappa), \kappa \in \omega, \left. v \right|_{\Omega \setminus \omega} = 0 \right\}$$

 $\mathbb{V}_N := \mathbb{V}(\mathcal{T}_N)$ finite element space based on mesh \mathcal{T}_N .

Adaptive mesh refinements – Estimate

For given $u_N^n \in \mathbb{V}_N$ and each element $\kappa \in \mathcal{T}_N$:

Adaptive mesh refinements – Estimate

For given $u_N^n \in \mathbb{V}_N$ and each element $\kappa \in \mathcal{T}_N$:

1. Uniformly ref

Introduce new basis functions of locally supported space $\left\{\xi_{\kappa}^{1}, \ldots, \xi_{\kappa}^{m_{\kappa}}\right\} \in \mathbb{V}(\tilde{\omega}_{\kappa})$

Adaptive mesh refinements - Estimate

For given $u_N^n \in \mathbb{V}_N$ and each element $\kappa \in \mathcal{T}_N$:

1. Uniformly ref

Adaptive mesh refinements - Estimate

For given $u_N^n \in \mathbb{V}_N$ and each element $\kappa \in \mathcal{T}_N$:

1. Uniformly ref

3. Perform one SSI step in $\mathbb{V}(\tilde{\omega}_{\kappa}; \boldsymbol{u}_{N}^{n})$ in order to obtain approximation $\tilde{\boldsymbol{u}}_{N,\kappa}^{n}$ (with potential energy reduction due to a refinement of the element κ)

Adaptive mesh refinements - Estimate

For given $u_N^n \in \mathbb{V}_N$ and each element $\kappa \in \mathcal{T}_N$:

1. Uniformly ref

- 3. Perform one SSI step in $\mathbb{V}(\tilde{\omega}_{\kappa}; \boldsymbol{u}_{N}^{n})$ in order to obtain approximation $\tilde{\boldsymbol{u}}_{N,\kappa}^{n}$ (with potential energy reduction due to a refinement of the element κ)
- 4. Local error decay (based on local computations):

 $-\Delta \mathsf{E}_N^n(\kappa) := \mathsf{E}(\tilde{u}_{N,\kappa}^n) - \mathsf{E}(u_N^n) \le 0$

How to refine the mesh ?

Mark a subset $\mathscr{K} \subset \mathscr{T}_N$ of minimal cardinality that satisfies the Dörfler marking criterion:

$$\sum_{\kappa \in \mathcal{K}} \Delta \mathsf{E}_N^n(\kappa) \ge \theta \sum_{\kappa \in \mathcal{T}_N} \Delta \mathsf{E}_N^n(\kappa)$$

How to refine the mesh ?

Mark a subset $\mathscr{K} \subset \mathscr{T}_N$ of minimal cardinality that satisfies the Dörfler marking criterion:

$$\sum_{\kappa \in \mathcal{K}} \Delta \mathsf{E}_N^n(\kappa) \ge \theta \sum_{\kappa \in \mathcal{T}_N} \Delta \mathsf{E}_N^n(\kappa)$$

Refine all elements in $\mathscr{K} \longrightarrow$ new mesh \mathscr{T}_{N+1} .

How to refine the mesh ?

Mark a subset $\mathscr{K} \subset \mathscr{T}_N$ of minimal cardinality that satisfies the Dörfler marking criterion:

$$\sum_{\kappa \in \mathcal{K}} \Delta \mathsf{E}_N^n(\kappa) \ge \theta \sum_{\kappa \in \mathcal{T}_N} \Delta \mathsf{E}_N^n(\kappa)$$

Refine all elements in $\mathscr{K} \longrightarrow$ new mesh \mathscr{T}_{N+1} .

After mesh-refinement: Continue with SSI iterations.

- 1. $\operatorname{inc}_{N}^{n} := \mathsf{E}(u_{N}^{n-1}) \mathsf{E}(u_{N}^{n})$
- 2. $\Delta \mathsf{E}_N^n := \mathsf{E}(u_N^0) \mathsf{E}(u_N^n)$

- 1. $\operatorname{inc}_{N}^{n} := \mathsf{E}(u_{N}^{n-1}) \mathsf{E}(u_{N}^{n})$
- 2. $\Delta \mathsf{E}_N^n := \mathsf{E}(u_N^0) \mathsf{E}(u_N^n)$

- 1. $\operatorname{inc}_{N}^{n} := \mathsf{E}(u_{N}^{n-1}) \mathsf{E}(u_{N}^{n})$
- 2. $\Delta \mathsf{E}_N^n := \mathsf{E}(u_N^0) \mathsf{E}(u_N^n)$

- 1. $\operatorname{inc}_{N}^{n} := \mathsf{E}(u_{N}^{n-1}) \mathsf{E}(u_{N}^{n})$
- 2. $\Delta \mathsf{E}_N^n := \mathsf{E}(u_N^0) \mathsf{E}(u_N^n)$

- 1. $\operatorname{inc}_{N}^{n} := \mathsf{E}(u_{N}^{n-1}) \mathsf{E}(u_{N}^{n})$
- 2. $\Delta \mathsf{E}_N^n := \mathsf{E}(u_N^0) \mathsf{E}(u_N^n)$

- 1. $\operatorname{inc}_{N}^{n} := \mathsf{E}(u_{N}^{n-1}) \mathsf{E}(u_{N}^{n})$
- 2. $\Delta \mathsf{E}_N^n := \mathsf{E}(u_N^0) \mathsf{E}(u_N^n)$

Two indicators ($n \ge 1$):

- 1. $\operatorname{inc}_{N}^{n} := \mathsf{E}(u_{N}^{n-1}) \mathsf{E}(u_{N}^{n})$
- 2. $\Delta \mathsf{E}_N^n := \mathsf{E}(u_N^0) \mathsf{E}(u_N^n)$

For $0 < \gamma < 1$, refine the mesh if $\operatorname{inc}_N^n \leq \gamma \Delta \mathsf{E}_N^n$ (not worth iterating further)

- 1. $\operatorname{inc}_{N}^{n} := \mathsf{E}(u_{N}^{n-1}) \mathsf{E}(u_{N}^{n})$
- 2. $\Delta \mathsf{E}_N^n := \mathsf{E}(u_N^0) \mathsf{E}(u_N^n)$

Sanity check

Sine-Gordon model:

$$(\Delta t = 1/2)$$

L-shaped domain

Singular perturbation model:

$-\epsilon\Delta u = e^{-u^2}$	in Ω
u = 0	on $\partial \Omega$

 $(\Delta t = \epsilon = 10^{-2})$

Arrhenius reaction

$$-\Delta u = (1 - |u|)\exp(-1/|u|) \qquad \text{in } \Omega$$
$$u = 2 \qquad \qquad \text{on } \partial \Omega$$

$$(\Delta t = 1)$$

Current state

Define the discretization indicator on \mathbb{V}_N :

$$\mathscr{C}_N(\mathfrak{u}_N^n) := \|\mathsf{E}'(u_N^n)\|_{H^{-1}(\Omega)} - \|\mathsf{E}'(u_N^n)\|_{\mathbb{W}_N^*}$$

THEOREM (ADAPTIVITY)

• $\{\mathbb{V}_N\}_N$ satisfies

$$\mathscr{E}_{N+1}(\mathfrak{u}_N^n) \le q \mathscr{E}_N(\mathfrak{u}_N^n), \qquad 0 < q < 1$$

- $\{\mathfrak{u}_N\}_N$ bounded in $H^1_0(\Omega)$
- *f* continuous

```
Then there is a subsequence \{u_{N'}\}_{N'} such that
```

```
u_{N'} \rightarrow u_{\infty} strongly to a weak solution in H_0^1(\Omega)
```

Some papers

> [Amrein, Heid & TW]

A numerical energy minimisation approach for semilinear diffusion-reaction boundary value problems based on steady state iterations arXiv Report 2202.07398 (2022)

> [Heid, Stamm & TW]

Gradient Flow Finite Element Discretizations with Energy-Based Adaptivity for the Gross-Pitaevskii Equation J. Comp. Phys. (2021)

> [Heid, Praetorius & TW]

Energy contraction and optimal convergence of adaptive iterative linearized finite element methods Comput. Meth. Appl. Math. (2021)