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−Δu = f(u) in Ω
u = 0 on ∂Ω

Nonlinear reaction of linear growth:

f : ℝ → ℝ smooth, | f′ | ≤ C

Example: Arrhenius production term

f(u) ∼ (1 − |u | )exp(−c |u |−1 )

No convexity requirements
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THEOREM (Steady state iteration—SSI)

  For  the iteration


   
  converges to a weak solution  of the semilinear PDE.

u0 := u

u∞ ∈ H1
0(Ω)

−Δuk+1 + 1
Δt

uk+1 = f(uk) + 1
Δt

uk in Ω

uk+1 = 0 on ∂Ω

Proof. Requires test functions v+ = max(v,0)

Fix  small enough so that  is non-decreasingΔt > 0 z ↦ f(z) + (Δt)−1z

 too rough for 
sharp estimates on 
| f′ | ≤ C

Δt
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New variational framework

Semilinear diffusion-reaction model:

ASSUMPTION (Nonlinearity)


•   for all  
 


•   differentiable in  
 


•   
where

f( ⋅ , s) ∈ L2(Ω) s ∈ ℝ
f u

∃ρ > 0 : Λf(ρ) := {λ > 0 : σf(λ) < ρ + λ−1} ≠ ∅

σf(λ) := ess sup
x∈Ω

sup
u∈ℝ

∂f
∂u

(x, u) + 1
λ

(uniform) Lipschitz constant of  gλ(x, u) := f(x, u) + λ−1u

∂u f
(               )

−ρ − 2λ−1 ρ

μf := {2 (sup Λ(ρ))−1
if  sup Λ(ρ) < ∞

0 otherwise
Define the “undershooting” coefficient:



Convergence — small  ρ

THEOREM (Steady state iteration for )

  Let . Then, for any  the SSI


   
  converges strongly to the unique weak solution  of the   
  semilinear PDE.

ρ ≤ C−1
P

Δt ∈ Λf(ρ) u0 ∈ L2(Ω)

u∞ ∈ H1
0(Ω)

−Δuk+1 + 1
Δt

uk+1 = f(uk) + 1
Δt

uk in Ω

uk+1 = 0 on ∂Ω

Proof: Operator  is a contraction.uk ↦ uk+1

(k ≥ 0)



Convergence — general case 

Energy:


Critical points of  vs. weak solutions: 


We are interested in local minima: 


4

4(u) := 1
2 ∫Ω

|∇u |2 − ∫Ω
5( ⋅ , u) (5(x, t) = ∫

t

0
f(x, s) 6s)

⟨4′ (u), v⟩ := ∫Ω
{∇u ⋅ ∇v − f( ⋅ , u)v} != 0 ∀v ∈ H1

0(Ω)

u ∈ H1
0(Ω) : 4(u) = min

v∈H1
0(Ω)

4(v)
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ENERGY DECAY

  Let

  


  and   .

  Then, for the SSI it holds that


   
  for a constant  (depending on ).

1/Δt > κf

γ > 0 Δt

γ∥4′ (uk)∥2
⋆ ≤ 4(uk) − 4(uk+1), k ≥ 0.

κf := 1
2 max{μf + ρ − C−1

P ,0},

 CONVERGENCE OF RESIDUAL

   bounded from below   .{4(uk)}k ⟹ lim

k→∞
∥4′ (uk)∥⋆ → 0
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Involving Palais-Smale compactness (mountain pass theory2):

✓ Weak convergence and strong -convergence in closed subspacesL2

✓ Strong -convergence in discrete spaces!H1

Convergence — general case 
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•  bounded from below 
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FEM discretization

Shape-regular partitions:

•   of domain  into simplex elements{=N}N∈ℕ Ω

• Fixed polynomial degree p ∈ ℕ

On subsets , introduce the finite element spaceω ⊂ =N

 finite element space based on mesh  .@N := @(=N) =N

@(ω) = {v ∈ H1
0(Ω) : v |κ ∈ ℙp(κ), κ ∈ ω, v |Ω∖ω = 0}
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Figure 1. Local element patches associated to a triangular element . Left:
Mesh patch ! consisting of the element  and its face-neighbours. Right: Modi-
fied patch e! constructed based on red-refining  and on green-refining its neigh-
bours.

with a sequence of discrete time steps {⌧n
N}n�0 as in (13).

Remark 3.1. Consider a fixed mesh TN and associated approximation space XN . Let {un
N}n�0 ⇢

XN be the sequence generated by the discrete GFI (14) with some initial value u0
N 2 SN . If

⌧n
N  ⌧max, with ⌧max as in Remark 2.1, for all n � 0, then the corresponding energies are strictly
monotone decreasing, and there exists a limit energy E?

N = limn!1 E(un
N ). Furthermore, up to

subsequences, we have un
N ! u?

N strongly in H, where u?
N 2 SN , with E(u?

N ) = E?
N , is a discrete

eigenfunction of the corresponding GPE, i.e. there is �?
N so that

au?
N
(u?

N , v) = �?
N (u?

N , v)L2(⌦) 8v 2 XN . (15)

We refer to [35, Corollary 4.11] for details.

Remark 3.2. In practical computations, in order to guarantee a positive energy decay in each
iteration step, we propose the time step strategy within (14) given by

⌧n
N = max

�
2�m : E(un+1

N (2�m)) < E(un
N ), m � 0

 
, n � 0.

where, for 0 < s  1, we write un+1
N (s) to denote the output of the discrete GFI (14) based on

the time step ⌧n
N = s and on the previous approximation un

N . We observed in several examples
that for the choice ⌧0

N = 1, i.e. using m = 0 above, no time correction was needed; we also refer
to [35, Remark 4.8] for a discussion of the fixed time step ⌧ = 1. For that reason, and for the
sake of keeping the computational cost minimal, we fix the time step ⌧ = 1 in the local GFI from
Algorithm 1 below. We still use, however, the time step strategy for the global GFI in Algorithm 2.

3.3. Local energy decay and adaptive mesh refinements. For any element  2 TN we
consider the open patch ! comprising of  and its immediate face-wise neighbours. Moreover,
given  2 TN , we define the modified patch e! by uniformly (red) refining the element  into a
(fixed) number of subelements; here, we assume that the introduction of any hanging nodes in !

is removed by doing (e.g. green) refinements, see Figure 1.
We consider basis functions {⇠1, . . . , ⇠m

 } of the locally supported space V(e!). Furthermore,
for any given v 2 V(TN ), we introduce the extended space

bV(e!; v) := span{⇠1, . . . , ⇠m
 , v}.

Suppose we have found an accurate approximation un
N 2 XN of the discrete GPE (15), for some n �

0. Then, by performing one local discrete GFI-step in bV(e!;un
N ) ⇢ H we obtain a new local

approximation, denoted by eun
N, 2 bV(e!;un

N ), with
��eun

N,

��
 L2

= 1. We emphasize that bV(e!;un
N )

has a small dimension, and hence the discrete GFI (14) based on bV(e!;uk
N ) entails hardly any

computational cost (for instance, for dimension d = 2 and polynomial degree p = 1, the dimension

of the locally refined space bV(e!;un
N ), cf. Figure 1, is typically 3 or 4).

By modus operandi of the discrete GFI (14), the above construction leads in general, see
Remark 3.2, to the (local) energy decay

��En
N () := E(eun

N,)� E(un
N )  0, (16)

1. Uniformly refine the patch  around :ωκ κ
ω̃κ
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ωκ

Introduce new basis functions

of locally supported space

{ξ1

κ , …, ξmκ
κ } ∈ @(ω̃κ)

(p = 1)



Adaptive mesh refinements – Estimate
For given  and each element : un

N ∈ @N κ ∈ =N

2. Extended space:
@(ω̃κ; un

N) := span{ξ1
κ , …, ξmκ

κ , un
N}

global support

local support
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N,κ
κ

6 P. HEID, B. STAMM, AND T. P. WIHLER



Figure 1. Local element patches associated to a triangular element . Left:
Mesh patch ! consisting of the element  and its face-neighbours. Right: Modi-
fied patch e! constructed based on red-refining  and on green-refining its neigh-
bours.

with a sequence of discrete time steps {⌧n
N}n�0 as in (13).

Remark 3.1. Consider a fixed mesh TN and associated approximation space XN . Let {un
N}n�0 ⇢

XN be the sequence generated by the discrete GFI (14) with some initial value u0
N 2 SN . If

⌧n
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4. Local error decay (based on local computations):

−Δ4n
N(κ) := 4(ũn

N,κ) − 4(un
N) ≤ 0
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After mesh-refinement: Continue with SSI iterations.
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Sanity check

Sine-Gordon model:

−Δu + sin(u) + u = g in Ω
u = 0 on ∂Ω

(Δt = 1/2)



L–shaped domain

Singular perturbation model:

−ϵΔu = e−u2
in Ω

u = 0 on ∂Ω

(Δt = ϵ = 10−2)



Arrhenius reaction

−Δu = (1 − |u | )exp(−1/ |u | ) in Ω
u = 2 on ∂Ω

(Δt = 1)



Define the discretization indicator on : 





@N

ℰN(En
N) := ∥4′ (un

N)∥H−1(Ω) − ∥4′ (un
N)∥@⋆

N

Current state

 THEOREM (ADAPTIVITY)


•  satisfies





•  bounded in  


•  continuous

  Then there is a subsequence  such that

{@N}N

ℰN+1(En
N) ≤ qℰN(En

N), 0 < q < 1
{EN}N H1

0(Ω)
f

{uN′ }N′ 

uN′ → u∞ strongly to a weak solution in H1
0(Ω)
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