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Tents

Hyperbolic solutions have finite propagation speed.
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The hyperbolic problem is solvable in the tent provided the tent pole is not too high.
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“Tent pitching” in spacetime

Time marching with unstructured spatial mesh and varying time step sizes using tents were pursued

by many: [Richter 1994] [Lorie+Roe+van Leer 1995] [Falk+Richter 1999]

[Yin+Acharia+Sobh+Haber+Tortorelli 2000] [Üngör+Sheffer 2000] [Monk+Richter 2005]

[Abedi+Petracovici+Haber 2006] [Abedi+Haber 2018]
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[Abedi+Petracovici+Haber 2006] [Abedi+Haber 2018]

Jay Gopalakrishnan 3/18



“Tent pitching” in spacetime

Time marching with unstructured spatial mesh and varying time step sizes using tents were pursued

by many: [Richter 1994] [Lorie+Roe+van Leer 1995] [Falk+Richter 1999]

[Yin+Acharia+Sobh+Haber+Tortorelli 2000] [Üngör+Sheffer 2000] [Monk+Richter 2005]
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Opportunities

, A rational way to incorporate high order approximations, spatial adaptivity, and
locally varying time steps, even on complex structures.

, Tent pole height restriction is a local causality constraint.

I In contrast, in standard timestepping, time step is constrained by the global CFL constraint

minimal mesh size

(maximal degree)2
× 1

wave speed

, Very good candidate for task parallelism and hybrid parallel implementations.
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Limitation

/ A tent domain is not a tensor product with a time interval.

I Cannot directly apply popular spatial discretizations.
I More coupling of tent degrees of freedom (than in explicit timestepping).

Kt

x

All spacetime unknowns
within a tent are coupled.

t

x

In traditional timestepping,
standard spatial discretizations
could be used.
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MTP (Mapped Tent Pitching) Schemes

Spacetime Tent Spacetime Cylinder

Kvt

x
v

τ

x
v

K̂vK̂vK̂vK̂vK̂v

Φ

Instead of solving on spacetime tent Kv, solve after pulling back the equation to a
tensor-product spacetime cylinder K̂v where (pseudo)time τ and space x are separated.

Jay Gopalakrishnan 6/18



Form of the (Duffy-like) map

The map is

Φ

(
x
τ

)
=

(
x

ϕ(x, τ)

)
where ϕ is defined as
follows:

If

tent bottom is the
graph of ϕbot,

tent top is the graph
of ϕtop,

then

ϕ = (1− τ)ϕbot + τϕtop.

Kv

t

v
Ωv

τ

K̂v = Ωv × (0, 1)

Φ

The height difference δ(x) = ϕtop(x)−ϕbot(x) will appear
as a weight function next.
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Pullback of the conservation law
[G+Schöberl+Wintersteiger 2017]

u : Kv → RL satisfies

∂u

∂t
+ divxf(u) = 0

⇐⇒

û = u ◦ Φ : K̂v → RL satisfies

∂

∂τ

[
û− f(û) gradxϕ

]
+ divx

(
δ f(û)) = 0.

In the tensor-product K̂v, consider DG semidiscretization for ûh ≈ û of the form

ûh(x, τ) =
∑
j

Uj(τ)︸ ︷︷ ︸
unknown

function of τ

ψj(x)︸ ︷︷ ︸
basis for spatial

DG space

.

For all DG test functions v, the DG solution ûh solves∫
Ωv

∂

∂τ

[
ûh − f(ûh)gradxϕ

]
· v =

∑
K⊂Ωv

[ ∫
K

δf(ûh) : gradxv −
∫
∂K

δ

numerical
flux︷︸︸︷
F̂ n
ûh
· v
]
.
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Tent ODE

DG:

∫
Ωv

∂

∂τ

[
ûh − f(ûh)gradxϕ

]
· v︸ ︷︷ ︸

d

dτ
(Mûh, v)

=
∑
K⊂Ωv

[ ∫
K

δf(ûh) : gradxv −
∫
∂K

δF̂ n
ûh
· v
]

︸ ︷︷ ︸
(Aûh, v)

Since gradxϕ is linear in τ , using τ -independent operators M0 and M1 to write

M ≡M(τ) = M0 − τ M1,

we obtain the local tent ODE
(Mûh)

′ = Aûh

with the (pseudo)time-varying mass term M(τ).
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Semidiscrete analysis

Restrict to symmetric linear hyperbolic systems. [Drake+G+Schöberl+Wintersteiger 2022]

Lemma A consequence of the causality condition

M(τ) ≡M0 − τM1 is (selfadjoint and) positive definite for all 0 ≤ τ ≤ 1.

Lemma A property of DG for MTP

For a large class of DG num. fluxes & b.c., −D = A+At+M1 is negative semidefinite.

Lemma Stability of semidiscretization in one tent

DG solution ûh(·, τ) ≡ ûh(τ) satisfies ‖ûh(τ)‖M(τ) ≤ ‖ûh(0)‖M(0) for any 0 < τ ≤ 1.

A large class of DG numerical fluxes and boundary conditions can be treated at
once using the Friedrichs’ systems framework of [Ern+Guermond 2006–2008].

|v|2D = (Dv, v) ∼
∥∥ [[v]]

∥∥2
L2(facets)

+ dissipation through boundary conditions.
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The lemma identifies a norm in which stability on spacetime fronts is attainable:

‖v‖M(τ) ≡ (M(τ)v, v)1/2.
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Semidiscrete analysis

Restrict to symmetric linear hyperbolic systems. [Drake+G+Schöberl+Wintersteiger 2022]

Lemma A consequence of the causality condition

M(τ) ≡M0 − τM1 is (selfadjoint and) positive definite for all 0 ≤ τ ≤ 1.

Lemma A property of DG for MTP

For a large class of DG num. fluxes & b.c., −D = A+At+M1 is negative semidefinite.

Lemma Stability of semidiscretization in one tent

DG solution ûh(·, τ) ≡ ûh(τ) satisfies ‖ûh(τ)‖M(τ) ≤ ‖ûh(0)‖M(0) for any 0 < τ ≤ 1.

Theorem Global semidiscrete error estimate

Suppose Ω× (0, T ) is meshed by m layers of tents whose layer heights sum up to O(T ).
Then the exact solution at the final time, u(T ), and the semidiscrete solution uh(T )
computed using DG discretization using degree p polynomials, satisfy

‖u(T )− uh(T )‖L2(Ω) = O(hp+1/2).
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Full discretization: unexpected reduced rates

Solve (Mu)′ = Au by

introducing y = Mu and solving

y′ = AM(τ)−1y.

But . . .

When using the standard
upwind spatial DG discretization
for the wave equation and the
classical explicit RK4 scheme for
timestepping, we observe that
the rate drops to first order.
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Fix: Structure-Aware Taylor (SAT) timestepping

Idea: Compute Taylor coefficients of the solution of of y′ = AM(τ)−1y, or

y′ = Au, y = M(τ)u, u(0) = u0,

y′ = Au =⇒ y(k)(0) = Au(k−1)(0).

y = M(τ)u =⇒ y(k)(0) = M0u
(k)(0)− kM1u

(k−1)(0).

=⇒ the recursive formula u(k)(0) = M−1
0 (A+ kM1)u

(k−1)(0).

Let X0 = I, Xk = M−1
0 (A+ kM1)Xk−1. Then u(k)(0) = Xku0.

SAT timestepping with s stages: Compute y(k)(0) = AXk−1u0,

approximate y(τ) by ys :=
s∑

k=0

τ k

k!
y(k)(0), and

approximate u(τ) by Rsu0 := M(τ)−1ys.
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Higher rates restored with s = p + 1 stage SAT
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[G+Schöberl+Wintersteiger 2020]
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Fully discrete analysis

1 Divide each tent into r subtents and apply the s-stage
SAT scheme in each subtent:

ûbot
h ≡ ûh(0)→ · · · r intermediate subtents · · · → ûtop

r,s,h

2 Suppose tent-wise discrete weak stability holds in the
sense that

‖ûtop
r,s,h‖M(1) ≤ (1 + Cstabh) ‖ûbot

h ‖M(0).

û
bo

t
h

û topr,s,h

Theorem Global error estimate for MTP with SAT

If the above stability condition holds, then (under the same assumptions as the previous
theorem) the discrete solution ur,s,h(T ) at the final time T satisfies

‖u(T )− ur,s,h(T )‖L2(Ω) = O(hp+1/2) +O(hs−1/2).

[Drake+G+Schöberl+Wintersteiger 2022]
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Stability is a complex issue

For standard RK methods on method of lines discretizations (without tents):

Textbook stability diagrams are misleading for u′ = Lu with non-normal L.

RK2 and RK3 stable when ∆t . h if (Lv, v) ≤ −‖Lv‖2. [Levy+Tadmor 1998]

RK2 for advection with DG unstable when ∆t . h. [Cockburn+Shu 2001]

RK2 stable when ∆t . h4/3. [Zhang+Shu 2004][Burman+Ern+Fernández 2010]

RK(s-stages, sthorder) stable when s%4 = 3 under ∆t . h. [Sun+Shu 2019]

Stability for nonautonomous systems is still the wild west. [Ranocha+Ketcheson 2020]

For s-stage SAT scheme, dividing a tent into r ∼ h/∆t subtents:

stable for s = 2 when ∆t . h3/2. [Drake+G+Schöberl+Wintersteiger 2022]
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Stability of SAT schemes

Theorem [G+Sun (preprint)]

The s-stage SAT method is weakly stable if ∆t . h1+1/s for any polynomial degree p.

Some ideas in the very technical stability proof:
1 Using the propagation operator u0 7→ Rsu0, it suffices to prove that

‖Rsv‖M ≤ (1 + Cτ 1+s)‖v‖M0 , since

‖ûtop
r,s,h‖M(1) ≤ (1 + Cτ 1+s)r‖ûbot

h ‖M(0) applying it on r subtents

≤ (1 + Cτ 1+sr)‖ûbot
h ‖M(0)

≤ (1 + Cτ s)‖ûbot
h ‖M(0) since τ = r−1 on subtent top

≤ (1 + Ch)‖ûbot
h ‖M(0) when τ . h1/s.

2 Simplify the SAT expression to get Rsv =
s∑

k=0

τ k

k!
Xkv + · · ·

where Xk = M−1
0 (A+ kM1)Xk−1 and X0 = I.
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Proving ‖Rsv‖M ≤ (1 + Cτ 1+s)‖v‖M0

3 ‖Rsv‖2M =
∥∥∥ s−1∑
k=0

τ k

k!
Xkv + · · ·

∥∥∥2
M0−τM1

=
s−1∑
i,j=0

Gij

i!j!
−

s−1∑
i,j=0

Fij
i!j!

+ high-order term︸ ︷︷ ︸
ρ

Notation:
Fij = τ i+j(Xiv,Xjv)τM1 ,
Gij = τ i+j(Xiv,Xjv)M0

,

Hij = τ i+j(Xiv,Xjv)τD.

4 ‖Rsv‖2M =
s−1∑
i=0

βiGii +
s−1∑
i,j=0

ηijFij +
s−1∑
i,j=0

γijHij + ρ

5 β0 = 1, β1 = β2 = · · · = βbs/2c = 0, and βbs/2c+1 6= 0,

6 ηij = 0 for all i+ j ≤ s− 1, and

7 γij for i, j < b(s+ 1)/2c form a negative definite matrix.
A few more technicalities finish the proof.
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Gij = −
1

2
Hii +

(
i+

1

2

)
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Gij = −Gi+1,j−1 −Hi,j−1 + (i+ j)Fi,j−1, if j > i+ 1.
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Conclusion

Maps & Tents: [G+Schöberl+Wintersteiger 2017] Mapped tent pitching schemes for hyperbolic systems, SIAM J Sci.

Comp., 39(6):B1043–B1063. MTP schemes, for the first time, allows fully explicit high order
schemes (using standard DG) on unstructured spacetime meshes of causal tents.

SAT timestepping: [G+Hochsteger+Schöberl+Wintersteiger 2020] An explicit mapped tent pitching

scheme for Maxwell equations, Proc. ICOSAHOM, Lecture Notes in Computational Science and Engineering: 134: 359–369.

Error analysis: [Drake+G+Schöberl+Wintersteiger 2022] Convergence analysis of some tent-based schemes for

linear hyperbolic systems, Math. Comp. 91:699–733. Convergence analysis can be done at once for a large
class of linear hyperbolic systems.

Stability of timestepping: [G+Sun (preprint)] A proof of weak stability of
Structure-Aware Taylor schemes of any order is now available.

An NGSolve extension for tents under development at GitHub: ngstents
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	Pullback of the conservation law

