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To set the notation, A symmetric of order n

Lanczos algorithm

input A, v
Bo=0, v=0
vi=v/|v|

for k=1,... do
w = Avi — Br_1Vk—1
Q= VkTW
W= W — QVk
B = |lw|
Vi1 = w/ B
end for

It generates tridiagonal matrices Ty, k =1,...,n with coefficients
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A symmetric positive definite, Ax = b

CG algorithm
input A, b, xg
n = b— AXO
Po = o
for k =1,... until convergence do
_ _afk—1
’\/kil B p[Z—_lAPk—l

Xk = Xk—1 + Vk—1Pk—1
Mk = rk—1 — Yk—1APk—1

5k o r,;rrk
= 55—
Me—1Tk—1

Pk = rk + OkpPr—1
end for



Relations between CG and Lanczos

Ty = LDy L]
with
1 'yo_l
5/<—1 1 7/?_11
) 1 Ok
Vk—1 Vk—1 Vk—2

Vi = (-1Y-2 =0,k
[l



M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for
solving linear systems, J. Nat. Bur. Standards, v 49 n 6 (1952),
pp. 409-436

Hestenes and Stiefel “error function” was the A-norm of the error

leklla = (] Ack)*/?
€ = |lx — X = min X —
leklla = | Kl y6xo+le(A,ro)|| ylla
Note that

lenla=rd A re, el =l A2n,

H-S also noticed the connection of CG with orthogonal
polynomials and Riemann-Stieltjes integrals



Let
A= UNUT, v =uTu=1

with A = diag(A1,...,\,), w be a given unit norm vector,
n
wi = (w, u,-)2 so that Zw,- =1
i=1

and the stepwise constant distribution function

0 for A< A1,
w(/\)E Z}:le for /\,‘S/\</\,‘+1, 1§i§n—1,
1 for A, <A

/17 f(A) dw(N) = iw;f(/\,-) = w  f(Aw
TH i=1

Choosing w = ri/||rk|| and £(\) = 1/A, it is clear that r/ A=1r,
can be written as a Riemann-Stieltjes integral



This result was used by Gene Golub and his collaborators to
compute approximations of quadratic forms v’ f(A)v with several
different applications by using Gauss quadrature rules
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The computation of u’ f(A)v and applications are summarized in
the book published by Princeton University Press in 2010
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For CG we used the relation
leklla = IrllP (T,  er, 1) — (T, Mer, e1)]

It was shown by Z. Strako$ and P. Tichy that this relation holds in
finite precision arithmetic up to a small perturbation term
It can also be written as

k—1

leolla = D wllel® + lexll

j=0
or
(T71)1,1 = (Tl:1>1,1 + Rgf;)[)‘il]

n

(Toh)y, = I<olla :/n A1 dw())
"Lt Hr0H2 o

(Tk_l)1 | is the Gauss quadrature approximation of the integral
and the remainder is

©) ry—11 _ llexll’
R A =
PPN BB




The nodes of the Gauss quadrature rule are the eigenvalues of T

Since we don't know ||=0/|%, we use

k—1
2 2 2
lex—dlla = llella = > lnll
j=k—d
where d is a positive integer smaller than k

The right-hand side is a lower bound of the A-norm squared at
iteration k — d



To obtain an upper bound of the A-norm we use a Gauss-Radau
quadrature rule with a fixed node ;1 < A\;

H€0||A = ||fo|| ( k+1)1 1 +Rk+1[)\ ]

Subtracting

leollZ = llrol*(TeZg)1.1 + llex—all

we obtain

lek—alla = IolPL( Tt = (Tt )]+ R[]

The difference in the right-hand side can be written as

(-’A-k+1) — (Tl = ( Kk+1 "1 — (T D11 + Qe

with the Gauss lower bound

k—1

Qk—d,d = Z oiltdls

j=k—d



We have to find ag(i)l such that p is an eigenvalue of the extended
tridiagonal matrix
ar B

w b1 - -
() _ . }
T, . o Br—

k41 =
Bk—1 o Bk
B O‘Effﬁ-)l

where the a;'s and f3;'s are the Lanczos coefficients
It is known that

a$<+)1—/ + ¢

where 5,&"') is the last component of the solution of
(T — Ml)f Bkek

This is computed with the LDLT factorization of Tj — 11/



Then, we can use the Sherman-Morrison for the difference
(Tt — (T i

This gives the CGQL algorithm in

G.H. Golub and G. Meurant, 1997

CG coeffs — Lanczos coeffs — Gauss-Radau upper bound

Can we compute the upper bound directly from the CG
coefficients?



We look for a coefficient 7,((”) such that

T(/‘) =L Dk -1 T
k+1 k+1 (W’;(fl)) k+1

such that p is an eigenvalue

This problem was solved in

G. Meurant and P. Tichy, On computing quadrature-based bounds
for the A-norm of the error in conjugate gradients,
Numer. Algorithms, 62(2), pp. 163-191, 2013

(1) .
’Y(ﬂ)l _ 7] = ﬂ,/(();L) _ =
+ y )
e =) + 0 H

This leads to the CGQ algorithm

[y




It was also proved that

Qbk 2
el rll? < lleeld < ¥ < ( 7kl

with ¢y = |[re||? /1 p]|* and

k-1

P = k-1 + O

¢o =1



CGQ

input A, b, xo, i, 1, d

Pk = rk + OkPr—1
8k—1 = Vk— 1||f/<—1\|2

M, - ar. 6 -
A(n) glgn)l g1, glgn)

_ k—1 G
Qu—d,d = 2 j—k—d &» 6kd—

5k d*\/Qk dd+gl)

end for

_ _ (#) _ lro
for k =1,... until convergence do
T

N qtk—1
k-1 = Pl Apk—1
X = X—1 + Ve—1Ph—1, Tk = M1 = Yk—1APk—1
5 _ rk Fi
k= e _1fk—1

NN
||rk||2A£@1

A, 42

Qk d.d

=1/ Q- dd+gk



besstk01

p=(1-10"8)\; = 3417.267528494, whence
A1 = 3417.267562666, d = 1
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Same 1, d =10
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besstk01

Same i, other bounds




How to choose d?
An algorithm for choosing the delay for the Gauss lower bound is
described in

G. Meurant, J. Papez, and P. Tichy, Accurate error estimation in
CG, Numer. Algorithms, 88(3), pp. 1337-1359, 2021

to obtain )
lek—dlla — Qk—d,d

lex—all4

with
k—1

Qk—d,d = Z v 1P

j=k—d
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d opt. Gauss

—-—-—d Gauss

Iteration
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The Gauss-Radau problem

To study why the Gauss-Radau bound is not tight even when 1 is
close to A1, we set up a model problem of order 30 and we run CG
in extended precision with digits=128

G. Meurant and P. Tichy, The behaviour of the Gauss-Radau
upper bound of the A-norm of the error for the conjugate gradient
algorithm, in preparation

The problem does not come from rounding errors



Model problem

Hgk) is the smallest Ritz value

10°

10-10

| —@xlla
= (1103
——pg = (1 =105
—— p1g = double();)
« o= (1—1070)),
oo\

10-20




The problem starts when Hgk) — M <Al—pu
We have a theoretical explanation for that phenomenon
One remedy is to increase the delay for Gauss-Radau

We are currently working on an adaptative algorithm to do so
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