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To set the notation, A symmetric of order n

Lanczos algorithm

input A, v
β0 = 0, v0 = 0
v1 = v/‖v‖
for k = 1, . . . do
w = Avk − βk−1vk−1

αk = vTk w
w = w − αkvk
βk = ‖w‖
vk+1 = w/βk

end for

It generates tridiagonal matrices Tk , k = 1, . . . , n with coefficients
αi , βi



A symmetric positive definite, Ax = b

CG algorithm

input A, b, x0

r0 = b − Ax0

p0 = r0
for k = 1, . . . until convergence do

γk−1 =
rTk−1rk−1

pTk−1Apk−1

xk = xk−1 + γk−1pk−1

rk = rk−1 − γk−1Apk−1

δk =
rTk rk

rTk−1rk−1

pk = rk + δkpk−1

end for



Relations between CG and Lanczos

Tk = LkDkL
T
k

with
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. . .
. . .√
δk−1 1

 , Dk ≡


γ−1

0
. . .

. . .

γ−1
k−1


βk =

√
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1

γk−1
+
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γk−2
, δ0 = 0, γ−1 = 1

v j+1 = (−1)j
rj
‖rj‖

, j = 0, . . . , k



M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for
solving linear systems, J. Nat. Bur. Standards, v 49 n 6 (1952),
pp. 409–436
Hestenes and Stiefel “error function” was the A-norm of the error

‖εk‖A ≡ (εTk Aεk)1/2

‖εk‖A = ‖x − xk‖A = min
y∈x0+Kk (A,r0)

‖x − y‖A

Note that

‖εk‖2
A = rTk A−1rk , ‖εk‖2 = rTk A−2rk

H-S also noticed the connection of CG with orthogonal
polynomials and Riemann-Stieltjes integrals



Let
A = UΛUT , UUT = UTU = I

with Λ = diag(λ1, . . . , λn), w be a given unit norm vector,

ωi ≡ (w , ui )
2 so that

n∑
i=1

ωi = 1

and the stepwise constant distribution function

ω(λ) ≡


0 for λ < λ1 ,∑i

j=1 ωj for λi ≤ λ < λi+1 , 1 ≤ i ≤ n − 1 ,

1 for λn ≤ λ∫ η

µ
f (λ) dω(λ) =

n∑
i=1

ωi f (λi ) = wT f (A)w

Choosing w = rk/‖rk‖ and f (λ) = 1/λ, it is clear that rTk A−1rk
can be written as a Riemann-Stieltjes integral



This result was used by Gene Golub and his collaborators to
compute approximations of quadratic forms uT f (A)v with several
different applications by using Gauss quadrature rules
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The computation of uT f (A)v and applications are summarized in
the book published by Princeton University Press in 2010



For CG we used the relation

‖εk‖2
A = ‖r0‖2 [(T−1

n e1, e1)− (T−1
k e1, e1)]

It was shown by Z. Strakoš and P. Tichý that this relation holds in
finite precision arithmetic up to a small perturbation term

It can also be written as

‖ε0‖2
A =

k−1∑
j=0

γj‖rj‖2 + ‖εk‖2
A

or (
T−1
n

)
1,1

=
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k

)
1,1

+R(G)
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)
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µ
λ−1 dω(λ)(

T−1
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)
1,1

is the Gauss quadrature approximation of the integral
and the remainder is

R(G)
k

[
λ−1

]
=
‖εk‖2

A

‖r0‖2



The nodes of the Gauss quadrature rule are the eigenvalues of Tk

Since we don’t know ‖ε0‖2
A, we use

‖εk−d‖2
A − ‖εk‖2

A =
k−1∑

j=k−d
γj‖rj‖2

where d is a positive integer smaller than k

The right-hand side is a lower bound of the A-norm squared at
iteration k − d



To obtain an upper bound of the A-norm we use a Gauss-Radau
quadrature rule with a fixed node µ < λ1

‖ε0‖2
A = ‖r0‖2(T̂−1

k+1)1,1 + R̂k+1[λ−1]

Subtracting

‖ε0‖2
A = ‖r0‖2(T−1

k−d)1,1 + ‖εk−d‖2
A

we obtain

‖εk−d‖2
A = ‖r0‖2[ (T̂−1

k+1)1,1 − (T−1
k−d)1,1 ] + R̂k+1[λ−1]

The difference in the right-hand side can be written as

(T̂−1
k+1)1,1 − (T−1

k−d)1,1 = (T̂−1
k+1)1,1 − (T−1

k )1,1 + Qk−d ,d

with the Gauss lower bound

Qk−d ,d =
k−1∑

j=k−d
γj‖rj‖2



We have to find α
(µ)
k+1 such that µ is an eigenvalue of the extended

tridiagonal matrix

T̂
(µ)
k+1 =



α1 β1

β1
. . .

. . .
. . .

. . . βk−1

βk−1 αk βk

βk α
(µ)
k+1


where the αj ’s and βj ’s are the Lanczos coefficients
It is known that

α
(µ)
k+1 = µ+ ξ

(µ)
k

where ξ
(µ)
k is the last component of the solution of

(Tk − µI )ξ(µ) = β2
kek

This is computed with the LDLT factorization of Tk − µI



Then, we can use the Sherman-Morrison for the difference
(T̂−1

k+1)1,1 − (T−1
k )1,1

This gives the CGQL algorithm in

G.H. Golub and G. Meurant, 1997

CG coeffs → Lanczos coeffs → Gauss-Radau upper bound

Can we compute the upper bound directly from the CG
coefficients?



We look for a coefficient γ
(µ)
k such that

T
(µ)
k+1 = Lk+1

(
Dk (

γ
(µ)
k

)−1

)
LTk+1

such that µ is an eigenvalue

This problem was solved in

G. Meurant and P. Tichý, On computing quadrature-based bounds
for the A-norm of the error in conjugate gradients,
Numer. Algorithms, 62(2), pp. 163-191, 2013

γ
(µ)
j+1 =

γ
(µ)
j − γj

µ(γ
(µ)
j − γj) + δj+1

, γ
(µ)
0 =

1

µ

This leads to the CGQ algorithm



It was also proved that

γk‖rk‖2 < ‖εk‖2
A < γ

(µ)
k ‖rk‖

2 <

(
φk
µ

)
‖rk‖2

with φk = ‖rk‖2/‖pk‖2 and

φk =
φk−1

φk−1 + δk
, φ0 = 1



CGQ

input A, b, x0, µ, η, d

r0 = b − Ax0, p0 = r0, g
(µ)
0 = ‖r0‖2

µ , g
(η)
0 = ‖r0‖2

η
for k = 1, . . . until convergence do

γk−1 =
rTk−1rk−1

pTk−1Apk−1

xk = xk−1 + γk−1pk−1, rk = rk−1 − γk−1Apk−1

δk =
rTk rk

rTk−1rk−1

pk = rk + δkpk−1

gk−1 = γk−1‖rk−1‖2

∆
(µ)
k−1 = g

(µ)
k−1 − gk−1 , g

(µ)
k =

‖rk‖2∆
(µ)
k−1

µ∆
(µ)
k−1+‖rk‖2

∆
(η)
k−1 = g

(η)
k−1 − gk−1 , g

(η)
k =

‖rk‖2∆
(η)
k−1

η∆
(η)
k−1+‖rk‖2

Qk−d ,d =
∑k−1

j=k−d gj , εGk−d =
√

Qk−d ,d

ε
(µ)
k−d =

√
Qk−d ,d + g

(µ)
k , ε

(η)
k−d =

√
Qk−d ,d + g

(η)
k

end for



bcsstk01

µ = (1− 10−8)λ1 = 3417.267528494, whence
λ1 = 3417.267562666, d = 1
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Same µ, d = 10
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Same µ, other bounds
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How to choose d?

An algorithm for choosing the delay for the Gauss lower bound is
described in

G. Meurant, J. Papež, and P. Tichý, Accurate error estimation in
CG, Numer. Algorithms, 88(3), pp. 1337-1359, 2021

to obtain
‖εk−d‖2

A − Qk−d ,d
‖εk−d‖2

A

≤ τ

with

Qk−d ,d =
k−1∑

j=k−d
γj ‖rj‖2
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τ = 0.25

Iteration
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τ = 0.25
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The Gauss-Radau problem

To study why the Gauss-Radau bound is not tight even when µ is
close to λ1, we set up a model problem of order 30 and we run CG
in extended precision with digits=128

G. Meurant and P. Tichý, The behaviour of the Gauss-Radau
upper bound of the A-norm of the error for the conjugate gradient
algorithm, in preparation

The problem does not come from rounding errors



Model problem

θ
(k)
1 is the smallest Ritz value
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The problem starts when θ
(k)
1 − λ1 < λ1 − µ

We have a theoretical explanation for that phenomenon

One remedy is to increase the delay for Gauss-Radau

We are currently working on an adaptative algorithm to do so
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