Reliable, efficient, and robust a posteriori estimates for nonlinear elliptic problems

An orthogonal decomposition result based on iterative linearization

(1) Introduction
(2) Main analytical results
(3) Scope of the results
(4) Numerical results1 Outline12

(1) Introduction
(2) Main analytical results
(3) Scope of the results
(4) Numerical results

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*
For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq \sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\left\langle\mathcal{R}\left(u_{\ell}\right)-\mathcal{R}(u), \varphi\right\rangle}{\|\nabla \varphi\|} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right)
$$

1 Introduction

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*
For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq \sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\left\langle\mathcal{R}\left(u_{\ell}\right), \varphi\right\rangle}{\|\nabla \varphi\|} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right) .
$$

1 Introduction

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*
For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq \underbrace{\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\left\langle\mathcal{R}\left(u_{\ell}\right), \varphi\right\rangle}{\|\nabla \varphi\|}}_{\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right) .
$$

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*
For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right) .
$$

1 Introduction

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*
For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right) .
$$

The strength of the nonlinearity is measued by $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$

1 Introduction

Nonlinear elliptic problems
For $d \in \mathbb{N}$, let $\Omega \subset \mathbb{R}^{d}$ be an open and bounded polytope. Let $u \in H_{0}^{1}(\Omega)$ solve the nonlinear elliptic operator equation: for $\mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$,

$$
\langle\mathcal{R}(u), \varphi\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Assumption $1 \mathcal{R}$ is monotone \& Lipschitz*

For a numerical approximation $u_{\ell} \in H_{0}^{1}(\Omega)$, and constants $\lambda_{\mathrm{M}}>\lambda_{\mathrm{m}}>0$,

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)} \leq \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right) .
$$

The strength of the nonlinearity is measued by $\lambda_{M} / \lambda_{m}$
Then the estimate [Chaillou \& Suri (2006), Kim (2007), Houston et al (2008), Garau et al (2011),...],

$$
\lambda_{\mathrm{m}} \operatorname{dist}\left(u_{\ell}, u\right) \leq \eta\left(u_{\ell}\right) \leq C \lambda_{\mathrm{M}} \operatorname{dist}\left(u_{\ell}, u\right)
$$

is not robust with respect to $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$

Reliable, and locally efficient a posteriori error estimates robust with respect to the strength of the nonlinearity $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$

$$
\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)} \leq \eta\left(u_{\ell}\right) \leq C\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}
$$

[Chaillou \& Suri (2006), El Alaoui et al (2011), Ern \& Vohralík (2013), Blechta et al (2018)]

Reliable, and locally efficient a posteriori error estimates robust with respect to the strength of the nonlinearity $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$

$$
\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)} \leq \eta\left(u_{\ell}\right) \leq C\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}
$$

[Chaillou \& Suri (2006), El Alaoui et al (2011), Ern \& Vohralík (2013), Blechta et al (2018)]

- The dual norm of the residual might be too weak an error measure

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D} \nabla u, \nabla \varphi)=0$.
Let $\lambda_{\mathrm{m}}|\boldsymbol{y}|^{2} \leq \boldsymbol{y}^{\mathrm{T}} \mathcal{D} \boldsymbol{y} \leq \lambda_{\mathrm{M}}|\boldsymbol{y}|^{2}$, for all $\boldsymbol{y} \in \mathbb{R}^{d}$.

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D} \nabla u, \nabla \varphi)=0$.
Let $\lambda_{\mathrm{m}}|\boldsymbol{y}|^{2} \leq \boldsymbol{y}^{\mathrm{T}} \mathcal{D} \boldsymbol{y} \leq \lambda_{\mathrm{M}}|\boldsymbol{y}|^{2}$, for all $\boldsymbol{y} \in \mathbb{R}^{d}$. If $u_{\ell} \in V_{\ell} \subset H_{0}^{1}(\Omega)$ is the FE solution of the problem then Cea's lemma gives

$$
\left\|\nabla\left(u-u_{\ell}\right)\right\| \leq \frac{\lambda_{\mathrm{M}}}{\lambda_{\mathrm{m}}}\left\|\nabla\left(u-\varphi_{\ell}\right)\right\| \quad \forall \varphi_{\ell} \in V_{\ell} .
$$

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D} \nabla u, \nabla \varphi)=0$.
Let $\lambda_{\mathrm{m}}|\boldsymbol{y}|^{2} \leq \boldsymbol{y}^{\mathrm{T}} \mathcal{D} \boldsymbol{y} \leq \lambda_{\mathrm{M}}|\boldsymbol{y}|^{2}$, for all $\boldsymbol{y} \in \mathbb{R}^{d}$. If $u_{\ell} \in V_{\ell} \subset H_{0}^{1}(\Omega)$ is the FE solution of the problem then Cea's lemma gives

$$
\left\|\nabla\left(u-u_{\ell}\right)\right\| \leq \frac{\lambda_{\mathrm{M}}}{\lambda_{\mathrm{m}}}\left\|\nabla\left(u-\varphi_{\ell}\right)\right\| \quad \forall \varphi_{\ell} \in V_{\ell} .
$$

In this case $\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}$ can be estimated robustly, but might be too weak an error measure.

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D} \nabla u, \nabla \varphi)=0$.
Let $\lambda_{\mathrm{m}}|\boldsymbol{y}|^{2} \leq \boldsymbol{y}^{\mathrm{T}} \mathcal{D} \boldsymbol{y} \leq \lambda_{\mathrm{M}}|\boldsymbol{y}|^{2}$, for all $\boldsymbol{y} \in \mathbb{R}^{d}$. If $u_{\ell} \in V_{\ell} \subset H_{0}^{1}(\Omega)$ is the FE solution of the problem then Cea's lemma gives

$$
\left\|\nabla\left(u-u_{\ell}\right)\right\| \leq \frac{\lambda_{\mathrm{M}}}{\lambda_{\mathrm{m}}}\left\|\nabla\left(u-\varphi_{\ell}\right)\right\| \quad \forall \varphi_{\ell} \in V_{\ell} .
$$

In this case $\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}$ can be estimated robustly, but might be too weak an error measure.
However, defining the energy norm $\|\varphi\|_{1, \mathcal{D}}=\left\|\mathcal{D}^{\frac{1}{2}} \nabla \varphi\right\|$ one has

$$
\left\|u-u_{\ell}\right\|_{1, \mathcal{D}} \leq\left\|u-\varphi_{\ell}\right\|_{1, \mathcal{D}}, \quad \forall \varphi_{\ell} \in V_{\ell}
$$

Consider the diffusion eq: $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D} \nabla u, \nabla \varphi)=0$.
Let $\lambda_{\mathrm{m}}|\boldsymbol{y}|^{2} \leq \boldsymbol{y}^{\mathrm{T}} \mathcal{D} \boldsymbol{y} \leq \lambda_{\mathrm{M}}|\boldsymbol{y}|^{2}$, for all $\boldsymbol{y} \in \mathbb{R}^{d}$. If $u_{\ell} \in V_{\ell} \subset H_{0}^{1}(\Omega)$ is the FE solution of the problem then Cea's lemma gives

$$
\left\|\nabla\left(u-u_{\ell}\right)\right\| \leq \frac{\lambda_{\mathrm{M}}}{\lambda_{\mathrm{m}}}\left\|\nabla\left(u-\varphi_{\ell}\right)\right\| \quad \forall \varphi_{\ell} \in V_{\ell} .
$$

In this case $\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{H^{-1}(\Omega)}$ can be estimated robustly, but might be too weak an error measure.
However, defining the energy norm $\|\varphi\|_{1, \mathcal{D}}=\left\|\mathcal{D}^{\frac{1}{2}} \nabla \varphi\right\|$ one has

$$
\left\|u-u_{\ell}\right\|_{1, \mathcal{D}} \leq\left\|u-\varphi_{\ell}\right\|_{1, \mathcal{D}}, \quad \forall \varphi_{\ell} \in V_{\ell}
$$

This motivates rather the error measure

$$
\left\|\mathcal{R}\left(u_{\ell}\right)\right\|_{-1, \mathcal{D}}:=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\left\langle\mathcal{R}\left(u_{\ell}\right), \varphi\right\rangle}{\|\varphi\|_{1, \mathcal{D}}}=\left\|u-u_{\ell}\right\|_{1, \mathcal{D}}
$$

which also results in robust estimates

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.

Then $\left\|\|\mathcal{R}(\cdot)\|_{-1, \mathcal{D}(u)}\right.$ cannot be defined since $u \in H_{0}^{1}(\Omega)$ is unknown.

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{\ell}^{i} \in V_{\ell}$, let $u_{\ell}^{i+1} \in V_{\ell}$ solve $\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\ell}^{i+1}, \nabla \varphi_{\ell}\right)=\left(f, \varphi_{\ell}\right)$ for all $\varphi_{\ell} \in V_{\ell}$.

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{\ell}^{i} \in V_{\ell}$, let $u_{\ell}^{i+1} \in V_{\ell}$ solve $\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\ell}^{i+1}, \nabla \varphi_{\ell}\right)=\left(f, \varphi_{\ell}\right)$ for all $\varphi_{\ell} \in V_{\ell}$.
This is the FE approximation of $u_{\langle\ell\rangle}^{i+1} \in H_{0}^{1}(\Omega)$ solving the linear problem

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=(f, \varphi)-\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\langle\ell\rangle}^{i+1}, \nabla \varphi\right)=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

1 Moving to the nonlinear case

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{\ell}^{i} \in V_{\ell}$, let $u_{\ell}^{i+1} \in V_{\ell}$ solve $\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\ell}^{i+1}, \nabla \varphi_{\ell}\right)=\left(f, \varphi_{\ell}\right)$ for all $\varphi_{\ell} \in V_{\ell}$.
This is the FE approximation of $u_{\langle\ell\rangle}^{i+1} \in H_{0}^{1}(\Omega)$ solving the linear problem

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=(f, \varphi)-\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\langle\ell\rangle}^{i+1}, \nabla \varphi\right)=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

Then defining the iteration-dependent energy norm

$$
\begin{cases}\|\varphi\|_{1, u_{\ell}^{i}}:=\left\|\mathcal{D}\left(u_{\ell}^{i}\right)^{\frac{1}{2}} \nabla \varphi\right\| & \text { for } \varphi \in H_{0}^{1}(\Omega) \\ \|\zeta\|_{-1, u_{\ell}^{i}}=\sup _{\varphi \in H_{0}^{1}(\Omega)}\langle\varsigma, \varphi\rangle /\|\varphi\|_{1, u_{\ell}^{i}} & \text { for } \varsigma \in H^{-1}(\Omega)\end{cases}
$$

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{\ell}^{i} \in V_{\ell}$, let $u_{\ell}^{i+1} \in V_{\ell}$ solve $\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\ell}^{i+1}, \nabla \varphi_{\ell}\right)=\left(f, \varphi_{\ell}\right)$ for all $\varphi_{\ell} \in V_{\ell}$.
This is the FE approximation of $u_{\langle\ell\rangle}^{i+1} \in H_{0}^{1}(\Omega)$ solving the linear problem

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{e}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=(f, \varphi)-\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\langle\ell\rangle}^{i+1}, \nabla \varphi\right)=0 \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

Then defining the iteration-dependent energy norm

$$
\begin{cases}\|\varphi\|_{1, u_{\ell}^{i}}:=\left\|\mathcal{D}\left(u_{\ell}^{i}\right)^{\frac{1}{2}} \nabla \varphi\right\| & \text { for } \varphi \in H_{0}^{1}(\Omega), \\ \|\varsigma\|_{-1, u_{\ell}^{i}}=\sup _{\varphi \in H_{0}^{1}(\Omega)}\langle\varsigma, \varphi\rangle /\|\varphi\|_{1, u_{\ell}^{i}} & \text { for } \varsigma \in H^{-1}(\Omega),\end{cases}
$$

we have (under conditions) robust estimates of
$\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\|\left\|_{-1, u_{\ell}^{i}}=\right\|\left\|u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}\right\| \|_{1, u_{\ell}^{i}}$

1 Moving to the nonlinear case

Example (nonlinear diffusion): $\langle\mathcal{R}(u), \varphi\rangle:=(f, \varphi)-(\mathcal{D}(u) \nabla u, \nabla \varphi)=0$.
Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by finding a sequence $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell} \subset H_{0}^{1}(\Omega)$.

Example (Fixed point iteration) For each $i \in \mathbb{N}$ and $u_{\ell}^{i} \in V_{\ell}$, let $u_{\ell}^{i+1} \in V_{\ell}$ solve $\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\ell}^{i+1}, \nabla \varphi_{\ell}\right)=\left(f, \varphi_{\ell}\right)$ for all $\varphi_{\ell} \in V_{\ell}$.
This is the FE approximation of $u_{\langle\ell\rangle}^{i+1} \in H_{0}^{1}(\Omega)$ solving the linear problem

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=(f, \varphi)-\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla u_{\langle\ell\rangle}^{i+1}, \nabla \varphi\right)=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

Noting that

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right), \varphi\right\rangle:=-\left(\mathcal{D}\left(u_{\ell}^{i}\right) \nabla\left(u_{\ell}^{i+1}-u_{\ell}^{i}\right), \nabla \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle
$$

can we provide a robust estimate for $\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}}$?
(1) Introduction
(2) Main analytical results

Decomposition of error
A posteriori error estimates
(3) Scope of the results
(4) Numerical results
\triangle UHASSELT FWO

Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell}$ are generated by FE approximations of $u_{\langle\ell\rangle}^{i} \in H_{0}^{1}(\Omega)$ solving

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=-\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

and $i \geq 0$, for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{\ell}^{i}, \cdot, \cdot\right)$,

2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell}$ are generated by FE approximations of $u_{\langle\ell\rangle}^{i} \in H_{0}^{1}(\Omega)$ solving

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=-\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

and $i \geq 0$, for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{\ell}^{i}, \cdot, \cdot\right)$,

Remark We would consider \mathfrak{L} : $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \mapsto \mathbb{R}$ corresponding to linear reaction-diffusion problems, i.e,

2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations $\left\{u_{\ell}^{i}\right\}_{i \in \mathbb{N}} \subset V_{\ell}$ are generated by FE approximations of $u_{\langle\ell\rangle}^{i} \in H_{0}^{1}(\Omega)$ solving

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=-\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

and $i \geq 0$, for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{\ell}^{i}, \cdot, \cdot\right)$, and

$$
\|\varphi\|_{1, u_{\ell}^{i}}:=\mathfrak{L}\left(u_{\ell}^{i} ; \varphi, \varphi\right)^{\frac{1}{2}}, \quad\|\varsigma\|_{-1, u_{\ell}^{i}}:=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\varsigma, \varphi\rangle}{\|\varphi\|_{1, u_{\ell}^{i}}},
$$

2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations $\left\{u_{\ell}^{i}\right\}_{i \geq 0} \subset V_{\ell}$ are generated by FE approximations of $u_{\langle\ell\rangle}^{i} \in H_{0}^{1}(\Omega)$ solving

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{\ell}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=-\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

and $i \geq 0$, for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{\ell}^{i}, \cdot, \cdot\right)$, and

$$
\|\varphi\|_{1, u_{\ell}^{i}}:=\mathfrak{L}\left(u_{\ell}^{i} ; \varphi, \varphi\right)^{\frac{1}{2}}, \quad\|\varsigma\|_{-1, u_{\ell}^{i}}:=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\varsigma, \varphi\rangle}{\|\varphi\|_{1, u_{\ell}^{i}}}
$$

we have

$$
\underbrace{\left\|\mathcal{R}\left(u_{\ell}^{i}\right) \mid\right\|_{-1, u_{\ell}^{i}}^{2}}_{\text {total error }}=\underbrace{\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right) \mid\right\|_{-1, u_{\ell}^{i}}^{2}}_{\begin{array}{c}
\text { discretization error of } \\
\text { the linerization step }
\end{array}}+\underbrace{\| \| u_{\ell}^{i+1}-u_{\ell}^{i}\| \|_{1, u_{\ell}^{i}}^{2}}_{\begin{array}{c}
\text { linearization } \\
\text { error }
\end{array}}
$$

2 An orthogonal decomposition result

Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations $\left\{u_{\ell}^{i}\right\}_{i \geq 0} \subset V_{\ell}$ are generated by FE approximations of $u_{\langle\ell\rangle}^{i} \in H_{0}^{1}(\Omega)$ solving

$$
\left\langle\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{\ell}}\left(u_{\langle\ell\rangle}^{i+1}\right), \varphi\right\rangle:=-\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i}, \varphi\right)+\left\langle\mathcal{R}\left(u_{\ell}^{i}\right), \varphi\right\rangle=0 \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

and $i \geq 0$, for a symmetric, bounded, coercive, bilinear form $\mathfrak{L}\left(u_{\ell}^{i}, \cdot, \cdot\right)$, and

$$
\|\varphi\|_{1, u_{\ell}^{i}}:=\mathfrak{L}\left(u_{\ell}^{i} ; \varphi, \varphi\right)^{\frac{1}{2}}, \quad\|\varsigma\|_{-1, u_{\ell}^{i}}:=\sup _{\varphi \in H_{0}^{1}(\Omega)} \frac{\langle\varsigma, \varphi\rangle}{\|\varphi\|_{1, u_{\ell}^{i}}}
$$

we have

$$
\underbrace{\underbrace{\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2}}_{\left\|u_{\ell}^{i}-u_{\langle\ell\rangle}^{i+1}\right\| \|_{1, u^{i}}^{2}}=\underbrace{\| \underbrace{\left\|\mathcal{R}_{l i n}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right) \mid\right\|_{-1, u_{\ell}^{i}}^{2}}_{\|}}_{\begin{array}{c}
\text { discretization error of } \\
\text { the linerization step }
\end{array}}+\underbrace{\left\|u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}\right\| \|_{1, u_{\ell}^{i}}^{2}}_{\begin{array}{c}
\text { linearization } \\
\text { error }
\end{array}}\left\|u_{\ell}^{i+1}-u_{\ell}^{i}\right\|_{1, u_{\ell}^{i}}^{2}}_{\text {total error }} .
$$

Proof: Since $u_{\ell}^{i+1}-u_{\ell}^{i} \in V_{\ell}$,

$$
\begin{aligned}
& \left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|\left\|_{-1, u_{\ell}^{i}}^{2}=\right\|\left\|u_{\ell}^{i}-u_{\langle\ell\rangle}^{i+1}\right\|\left\|_{1, u_{\ell}^{i}}^{2}=\right\|\left\|\left(u_{\ell}^{i}-u_{\ell}^{i+1}\right)+\left(u_{\ell}^{i+1}-u_{\langle\ell\rangle}^{i+1}\right)\right\| \|_{1, u_{\ell}^{i}}^{2} \\
& \quad=\left\|u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}\right\|\left\|_{1, u_{\ell}^{i}}^{2}+\right\| u_{\ell}^{i+1}-u_{\ell}^{i}\| \|_{1, u_{\ell}^{i}}^{2}+2 \underbrace{\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}, u_{\ell}^{i+1}-u_{\ell}^{i}\right)}_{=0, \text { due to Galerkin orthogonality }} \\
& \quad=\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\|\left\|_{-1, u_{\ell}^{i}}^{2}+\right\|\left\|u_{\ell}^{i+1}-u_{\ell}^{i}\right\| \|_{1, u_{\ell}^{i}}^{2}
\end{aligned}
$$

Proof: Since $u_{\ell}^{i+1}-u_{\ell}^{i} \in V_{\ell}$,

$$
\begin{aligned}
& \left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2}=\left\|u_{\ell}^{i}-u_{\langle\ell\rangle}^{i+1}\right\|\left\|_{1, u_{\ell}^{i}}^{2}=\right\|\left\|\left(u_{\ell}^{i}-u_{\ell}^{i+1}\right)+\left(u_{\ell}^{i+1}-u_{\langle\ell\rangle}^{i+1}\right)\right\|_{1, u_{\ell}^{i}}^{2} \\
& \quad=\| \| u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}\| \|_{1, u_{\ell}^{i}}^{2}+\| \| u_{\ell}^{i+1}-u_{\ell}^{i}\| \|_{1, u_{\ell}^{i}}^{2}+2 \underbrace{2{\mathcal{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}, u_{\ell}^{i+1}-u_{\ell}^{i}\right)}^{=\|}\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\|\left\|_{-1, u_{\ell}^{i}}^{2}+\right\| u_{\ell}^{i+1}-u_{\ell}^{i} \|_{1, u_{\ell}^{i}}^{2} .}_{=0, \text { due to Galerkin orthogonality }}
\end{aligned}
$$

- The linerization error is computed directly, we define

$$
\eta_{\operatorname{lin}, \Omega}^{i}:=\| \| u_{\ell}^{i+1}-u_{\ell}^{i}\| \|_{1, u_{\ell}^{i}}
$$

Proof: Since $u_{\ell}^{i+1}-u_{\ell}^{i} \in V_{\ell}$,

$$
\begin{aligned}
& \left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|\left\|_{-1, u_{\ell}^{i}}^{2}=\right\| u_{\ell}^{i}-u_{\ell \ell}^{i+1}\left\|_{1, u_{\ell}^{i}}^{2}=\right\|\left\|\left(u_{\ell}^{i}-u_{\ell}^{i+1}\right)+\left(u_{\ell}^{i+1}-u_{\ell \ell\rangle}^{i+1}\right)\right\|_{1, u_{\ell}^{i}}^{2} \\
& =\| \| u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}\| \|_{1, u_{\ell}^{i}}^{2}+\| \| u_{\ell}^{i+1}-u_{\ell}^{i}\| \|_{1, u_{\ell}^{i}}^{2}+2 \underbrace{\mathfrak{L}\left(u_{\ell}^{i} ; u_{\langle\ell\rangle}^{i+1}-u_{\ell}^{i+1}, u_{\ell}^{i+1}-u_{\ell}^{i}\right)}_{=0, \text { due to Galerkin orthogonality }} \\
& =\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\|_{-1, u_{\ell}^{i}}^{2}+\| \| u_{\ell}^{i+1}-u_{\ell}^{i} \|_{1, u_{\ell}^{i}}^{2} .
\end{aligned}
$$

- The linerization error is computed directly, we define

$$
\eta_{\operatorname{lin}, \Omega}^{i}:=\| \| u_{\ell}^{i+1}-u_{\ell}^{i} \|_{1, u_{\ell}^{i}} .
$$

- For estimating $\left\|\mid \mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\| \|_{-1, u_{\ell}^{i}}$ we introduce $\eta_{\text {disc }, \Omega}^{i}$, following the analysis on robust estimates of singularly perturbed reaction -diffusion problems in [Verfürth (1998)], [Ainsworth \& Vejchodský (2011, 2014)] [Smears \& Vohralík (2020)]

Theorem 2 Reliable, efficient, and robust a posteriori estimates
Global reliability

$$
\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2} \leq\left[\eta_{\Omega}^{i}\right]^{2}:=\sum_{K \in \mathcal{T}_{\ell}}\left(\left[\eta_{\text {disc }, K}^{i}\right]^{2}+\left[\eta_{\text {lin }, K}^{i}\right]^{2}\right) .
$$

Theorem 2 Reliable, efficient, and robust a posteriori estimates
Global reliability

$$
\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2} \leq\left[\eta_{\Omega}^{i}\right]^{2}:=\sum_{K \in \mathcal{T}_{\ell}}\left(\left[\eta_{\text {disc }, K}^{i}\right]^{2}+\left[\eta_{\text {lin }, K}^{i}\right]^{2}\right) .
$$

Global efficiency

$$
\left[\eta_{\Omega}^{i}\right]^{2} \lesssim\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2}+\text { (data oscillation terms). }
$$

Theorem 2 Reliable, efficient, and robust a posteriori estimates
Global reliability

$$
\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2} \leq\left[\eta_{\Omega}^{i}\right]^{2}:=\sum_{K \in \mathcal{T}_{\ell}}\left(\left[\eta_{\text {disc }, K}^{i}\right]^{2}+\left[\eta_{\text {lin }, K}^{i}\right]^{2}\right) .
$$

Global efficiency

$$
\left[\eta_{\Omega}^{i}\right]^{2} \lesssim\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2}+\text { (data oscillation terms) } .
$$

Local efficiency
For $\omega \subset \Omega$, there exists a neighbourhood $\mathfrak{T}_{\omega} \subseteq \Omega$ such that

$$
\left[\eta_{\omega}^{i}\right]^{2} \lesssim\left\|\mathcal{R}\left(u_{\ell}^{i+1}\right)\right\|_{-1, u_{\ell}^{i}, \mathfrak{F}_{\omega}}^{2}+\left[\eta_{\operatorname{lin}, \mathfrak{F}_{\omega}}^{i}\right]^{2}+(\text { data oscillation terms }) .
$$

(1) Introduction
(2) Main analytical results
(3) Scope of the results

Gradient-dependent diffusivity Gradient-independent diffusivity
(4) Numerical results
$\triangle \mid$ UHASSELT KWO

Class 1: gradient-dependent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-(\sigma(x, \nabla u), \nabla \varphi)
$$

-	UHASSELT
TWO	

Class 1: gradient-dependent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-(\sigma(\boldsymbol{x}, \nabla u), \nabla \varphi)
$$

Assumption 1 is satisfied if $f(\boldsymbol{x}, \cdot), \boldsymbol{\sigma}(\boldsymbol{x}, \cdot)$ are monotone and Lipschitz

$$
\begin{gathered}
(\sigma(x, y)-\sigma(x, z)) \cdot(\boldsymbol{y}-\boldsymbol{z}) \geq \lambda_{\mathrm{m}}|\boldsymbol{y}-\boldsymbol{z}|^{2} \quad \text { for } \boldsymbol{x} \in \Omega \text { and } \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{d}, \\
|\sigma(\boldsymbol{x}, \boldsymbol{y})-\sigma(\boldsymbol{x}, \boldsymbol{z})| \leq \lambda_{\mathrm{M}}|\boldsymbol{y}-\boldsymbol{z}| \quad \text { for } \boldsymbol{x} \in \Omega \text { and } \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{d} .
\end{gathered}
$$

with

$$
\operatorname{dist}(u, v)=\|\nabla(u-v)\|
$$

Class 1: gradient-dependent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-(\sigma(x, \nabla u), \nabla \varphi)
$$

Assumption 1 is satisfied if $f(\boldsymbol{x}, \cdot), \boldsymbol{\sigma}(\boldsymbol{x}, \cdot)$ are monotone and Lipschitz

$$
\begin{gathered}
(\sigma(\boldsymbol{x}, \boldsymbol{y})-\boldsymbol{\sigma}(\boldsymbol{x}, \boldsymbol{z})) \cdot(\boldsymbol{y}-\boldsymbol{z}) \geq \lambda_{\mathrm{m}}|\boldsymbol{y}-\boldsymbol{z}|^{2} \quad \text { for } \boldsymbol{x} \in \Omega \text { and } \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{d}, \\
|\sigma(\boldsymbol{x}, \boldsymbol{y})-\sigma(\boldsymbol{x}, \boldsymbol{z})| \leq \lambda_{\mathrm{M}}|\boldsymbol{y}-\boldsymbol{z}| \quad \text { for } \boldsymbol{x} \in \Omega \text { and } \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^{d} .
\end{gathered}
$$

with

$$
\operatorname{dist}(u, v)=\|\nabla(u-v)\|
$$

Example (Mean curvature flow) For $a(\cdot)$ satisfying ellipticity condition and $b(\cdot)>0: \sigma(\boldsymbol{x}, \boldsymbol{y})=a(\boldsymbol{x})+\frac{b(x) \boldsymbol{y}}{\left(1+|\boldsymbol{y}|^{2}\right)^{\frac{1}{2}}}$

Linearization operator
Considering the linearization operator

$$
\mathfrak{L}\left(u_{\ell}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \nabla v, \nabla w\right),
$$

the coefficient functions for commonly used linearization schemes are

Scheme	$L(\boldsymbol{x}, v)$	$\mathfrak{a}(\boldsymbol{x}, v) / \tau$
Kačanov (fixed point)	$\partial_{\xi} f(\boldsymbol{x}, v)$	$A(\boldsymbol{x},\|\nabla v\|)$
Zarantonello	0	$\Lambda($ constant $)>0$

Class 2: gradient-independent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-\tau(\overline{\mathbf{K}}(\boldsymbol{x})(\mathcal{D}(\boldsymbol{x}, u) \nabla u+\boldsymbol{q}(\boldsymbol{x}, u)), \nabla \varphi)
$$

-	UHASSELT
TWO	

Class 2: gradient-independent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-\tau(\overline{\mathbf{K}}(\boldsymbol{x})(\mathcal{D}(\boldsymbol{x}, u) \nabla u+\boldsymbol{q}(\boldsymbol{x}, u)), \nabla \varphi)
$$

Assumption 1 is satisfied if $\tau>0$ is small and

- $\mathcal{D}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}^{+}$is bounded and Lipschitz
- $\overline{\mathrm{K}}: \Omega \rightarrow \mathbb{R}^{d \times d}$ is symmetric positive definite
- $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is monotone and Lipschitz upto the boundary
- $\boldsymbol{q}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is bounded and satisfies a Lipschitz condition* with

$$
\operatorname{dist}(u, v)=\left\|\overline{\mathbf{K}}^{\frac{1}{2}} \nabla \int_{u}^{v} \mathcal{D}\right\|
$$

Class 2: gradient-independent diffusivity problems
For all $\varphi \in H_{0}^{1}(\Omega), \mathcal{R}: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is defined as

$$
\langle\mathcal{R}(u), \varphi\rangle:=\langle f(\boldsymbol{x}, u), \varphi\rangle-\tau(\overline{\mathbf{K}}(\boldsymbol{x})(\mathcal{D}(\boldsymbol{x}, u) \nabla u+\boldsymbol{q}(\boldsymbol{x}, u)), \nabla \varphi)
$$

Semilinear equations $-\Delta u=f(x, u)$
Such equations pop up in quantum mechanics (special solutions to nonlinear Klein-Gordon equations), gravitation influences on stars, membrane buckling problems...

Time-discrete nonlinear advection-reaction-diffusion equations
with time-step $\tau>0$, the following evolutions equations reduce to this case poro-Fischer equations: $\quad \partial_{t} u=\Delta u^{m}+\lambda u(1-u)$
the Richards equation: $\quad \partial_{t} S(u)=\nabla \cdot[\overline{\mathbf{K}}(\boldsymbol{x}) \kappa(S(u))(\nabla u+\boldsymbol{g})]+f(\boldsymbol{x}, u)$
biofilm equations: $\quad \partial_{t} u_{k}=\mu_{k} \Delta \Phi_{k}\left(u_{k}\right)+f_{k}\left(\left(u_{k}\right)_{k=1}^{n}\right)$

Abstract linearization
Considering the linearization operator

$$
\mathfrak{L}\left(u_{\ell}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \nabla v, \nabla w\right),
$$

the coefficient functions for commonly used linearization schemes are

Scheme	$L(\boldsymbol{x}, v)$	$\mathfrak{a}(\boldsymbol{x}, v) / \tau$
Picard (fixed point)	$\partial_{\xi} f(\boldsymbol{x}, v)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
Jäger-Kačur	$\max _{\xi \in \mathbb{R}}\left(\frac{f(\boldsymbol{x}, \xi)-f(\boldsymbol{x}, v)}{\xi-v}\right)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
L-scheme	$L($ constant $) \geq \frac{1}{2} \sup \partial_{\xi} f$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$
M-scheme	$\partial_{\xi} f(\boldsymbol{x}, v)+M \tau($ constant $)$	$\overline{\mathbf{K}}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, v)$

(1) Introduction
(2) Main analytical results
(3) Scope of the results
(4) Numerical results

Gradient-independent diffusivity The Newton scheme

4 Adaptive linearization \& effectivity of estimates

Effectivity indices
Global effectivity index: Eff. Ind. $:=\eta_{\Omega}^{i} /\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\| \|_{-1, u_{\ell}^{i}}$
Local effectivity index: (Eff. Ind. $)_{K}:=\eta_{K}^{i} /\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\| \|_{-1, u_{\ell}^{i}, K}, \quad K \in \mathcal{T}_{\ell}$,

4 Adaptive linearization \& effectivity of estimates

Effectivity indices
Global effectivity index: Eff. Ind. $:=\eta_{\Omega}^{i} /\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\| \|_{-1, u_{\ell}^{i}}$
Local effectivity index: (Eff. Ind. $)_{K}:=\eta_{K}^{i} /\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\| \|_{-1, u_{\ell}^{i}, K}, \quad K \in \mathcal{T}_{\ell}$,

4 Gradient-independent diffusivity case: the Richards equation 114
For $\Omega=(0,1) \times(0,1)$ we study

$$
\begin{array}{r}
\left\langle\mathcal{R}\left(u_{\ell}\right), \varphi\right\rangle=\left(S(\bar{u})-S\left(u_{\ell}\right), \varphi\right) \\
-\tau\left(\overline{\mathbf{K}} \kappa\left(S\left(u_{\ell}\right)\right)\left[\nabla u_{\ell}-\boldsymbol{g}\right], \nabla \varphi\right)
\end{array}
$$

where the van Genuchten parametrization for S, κ is used:

$\triangle \mid$ UHASSELT KWO

4 Robustness with respect to $\lambda_{\mathrm{M}} / \lambda_{\mathrm{m}}$ represented by $1 / \tau$

4 Global effectivity

Picard $\tau=0.01$

M-Scheme $\tau=0.01$

L-Scheme $\tau=0.01$

4 Distribution of error vs. estimates

Error

Error MS $\mathrm{l}=2, \tau=0.01, \mathrm{i}=5$ Isovalue

Estimate

4 Local effectivity

IsoValue
MS $1=1, \tau=0.01, i=5$

Adaptive iteration stopping criteria:

$$
\eta_{\operatorname{lin}, \Omega}^{i} \leq 0.05\left[\eta_{\Omega}^{i}\right] .
$$

For the Newton scheme, the linearization operator

$$
\mathfrak{L}\left(u_{\ell}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \nabla v, \nabla w\right)+\left(\boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, \nabla w\right),
$$

is non-symmetric.

For the Newton scheme, the linearization operator

$$
\mathfrak{L}\left(u_{\ell}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \nabla v, \nabla w\right)+\left(\boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, \nabla w\right)
$$

is non-symmetric. However, if for some $C_{N} \in[0,2)$ we have

$$
\boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \mathfrak{a}^{-1}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \leq C_{N}^{2} L\left(\boldsymbol{x}, u_{\ell}^{i}\right), \quad \forall \boldsymbol{x} \in \Omega, \text { and } i \in \mathbb{N},
$$

For the Newton scheme, the linearization operator

$$
\mathfrak{L}\left(u_{\ell}^{i} ; v, w\right):=\left(L\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, w\right)+\left(\mathfrak{a}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \nabla v, \nabla w\right)+\left(\boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) v, \nabla w\right)
$$

is non-symmetric. However, if for some $C_{N} \in[0,2)$ we have

$$
\boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \mathfrak{a}^{-1}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \boldsymbol{w}\left(\boldsymbol{x}, u_{\ell}^{i}\right) \leq C_{N}^{2} L\left(\boldsymbol{x}, u_{\ell}^{i}\right), \quad \forall \boldsymbol{x} \in \Omega, \text { and } i \in \mathbb{N},
$$

then,

$$
\begin{gathered}
C_{\mathrm{m}}\left(C_{N}\right)\left[\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\|_{-1, u_{\ell}^{i}}^{2}+\| \| u_{\ell}^{i+1}-u_{\ell}^{i} \|_{1, u_{\ell}^{i}}^{2}\right] \leq\left\|\mathcal{R}\left(u_{\ell}^{i}\right)\right\|_{-1, u_{\ell}^{i}}^{2} \\
\quad \leq C_{\mathrm{M}}\left(C_{N}\right)\left[\left\|\mathcal{R}_{\operatorname{lin}}^{u_{\ell}^{i}}\left(u_{\ell}^{i+1}\right)\right\|_{-1, u_{\ell}^{i}}^{2}+\left\|u_{\ell}^{i+1}-u_{\ell}^{i}\right\|_{1, u_{\ell}^{i}}^{2}\right]
\end{gathered}
$$

with $C_{\mathrm{m}}\left(C_{N}\right), C_{\mathrm{M}}\left(C_{N}\right) \rightarrow 1$ if $C_{N} \searrow 0$.

For gradient independent diffusivity case, we have

