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Nonlinear elliptic problems
For d ∈ N, let Ω ⊂ Rd be an open and bounded polytope. Let u ∈ H1

0 (Ω)
solve the nonlinear elliptic operator equation: for R : H1

0 (Ω) → H−1(Ω),

⟨R(u), φ⟩ = 0 ∀ φ ∈ H1
0 (Ω).

Assumption 1 R is monotone & Lipschitz⋆

For a numerical approximation uℓ ∈ H1
0 (Ω), and constants λM > λm > 0,

λm dist(uℓ, u) ≤ sup
φ∈H1

0 (Ω)

⟨R(uℓ) − R(u), φ⟩
∥∇φ∥

≤ λM dist(uℓ, u).
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1 Dual norm of the residual estimate | 3

Reliable, and locally efficient a posteriori error estimates robust with
respect to the strength of the nonlinearity λM/λm

∥R(uℓ)∥H−1(Ω) ≤ η(uℓ) ≤ C∥R(uℓ)∥H−1(Ω)

[Chaillou & Suri (2006), El Alaoui et al (2011), Ern & Vohraĺık (2013),
Blechta et al (2018)]

▶ The dual norm of the residual might be too weak an error measure
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1 A linear example | 4

Consider the diffusion eq: ⟨R(u), φ⟩ := (f , φ) − (D∇u, ∇φ) = 0.
Let λm |y |2 ≤ yTDy ≤ λM |y |2, for all y ∈ Rd .

If uℓ ∈ Vℓ ⊂ H1
0 (Ω) is the

FE solution of the problem then Cea’s lemma gives

∥∇(u − uℓ)∥ ≤ λM
λm

∥∇(u − φℓ)∥ ∀ φℓ ∈ Vℓ.

In this case ∥R(uℓ)∥H−1(Ω) can be estimated robustly, but might be too
weak an error measure.
However, defining the energy norm |||φ|||1,D = ∥D 1

2 ∇φ∥ one has

|||u − uℓ|||1,D ≤ |||u − φℓ|||1,D, ∀ φℓ ∈ Vℓ.

This motivates rather the error measure

|||R(uℓ)|||−1,D := sup
φ∈H1

0 (Ω)

⟨R(uℓ), φ⟩
∥φ∥1,D

= |||u − uℓ|||1,D

which also results in robust estimates
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1 Moving to the nonlinear case | 5

Example (nonlinear diffusion): ⟨R(u), φ⟩ := (f , φ) − (D(u)∇u, ∇φ) = 0.

Then |||R(·)|||−1,D(u) cannot be defined since u ∈ H1
0 (Ω) is unknown.
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Linearization iterations
We generally solve nonlinear equations by linearization iterations, i.e., by
finding a sequence {ui

ℓ}i∈N ⊂ Vℓ ⊂ H1
0 (Ω).

Example (Fixed point iteration) For each i ∈ N and ui
ℓ ∈ Vℓ, let

ui+1
ℓ ∈ Vℓ solve (D(ui

ℓ)∇ui+1
ℓ , ∇φℓ) = (f , φℓ) for all φℓ ∈ Vℓ.

This is the FE approximation of ui+1
⟨ℓ⟩ ∈ H1

0 (Ω) solving the linear problem

⟨Rui
ℓ

lin(ui+1
⟨ℓ⟩ ), φ⟩ := (f , φ) − (D(ui

ℓ)∇ui+1
⟨ℓ⟩ , ∇φ) = 0 ∀φ ∈ H1

0 (Ω).

Then defining the iteration-dependent energy norm{
|||φ|||1,ui

ℓ
:= ∥D(ui

ℓ)
1
2 ∇φ∥ for φ ∈ H1

0 (Ω),
|||ς|||−1,ui

ℓ
= supφ∈H1

0 (Ω)⟨ς, φ⟩/|||φ|||1,ui
ℓ

for ς ∈ H−1(Ω),

we have (under conditions) robust estimates of∣∣∣∣∣∣∣∣∣Rui
ℓ

lin(ui+1
ℓ )

∣∣∣∣∣∣∣∣∣
−1,ui

ℓ

=
∣∣∣∣∣∣∣∣∣ui+1

⟨ℓ⟩ − ui+1
ℓ

∣∣∣∣∣∣∣∣∣
1,ui
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∣∣∣∣∣∣
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Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations
{ui

ℓ}i∈N ⊂ Vℓ are generated by FE approximations of ui
⟨ℓ⟩ ∈ H1

0 (Ω) solving

⟨Rui
ℓ

lin(ui+1
⟨ℓ⟩ ), φ⟩ := −L(ui

ℓ; ui+1
⟨ℓ⟩ − ui

ℓ, φ) + ⟨R(ui
ℓ), φ⟩ = 0 ∀ φ ∈ H1

0 (Ω)

and i ≥ 0, for a symmetric, bounded, coercive, bilinear form L(ui
ℓ, ·, ·),

and

|||φ|||1,ui
ℓ

:= L(ui
ℓ; φ, φ) 1

2 , |||ς|||−1,ui
ℓ

:= sup
φ∈H1

0 (Ω)

⟨ς, φ⟩
|||φ|||1,ui

ℓ

,
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,

Remark We would consider L : H1
0 (Ω) × H1

0 (Ω) 7→ R corresponding to
linear reaction-diffusion problems, i.e,

L(ui
ℓ; v , w) := (L(x, ui

ℓ) v , w) + (a(x, ui
ℓ)∇v , ∇w).︸ ︷︷ ︸

known
reaction coeff.

︸ ︷︷ ︸
known

diffusion coeff.
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Theorem 1 Decomposition of the total error

Under Assumption 1, provided that the linearization iterations
{ui

ℓ}i∈N ⊂ Vℓ are generated by FE approximations of ui
⟨ℓ⟩ ∈ H1

0 (Ω) solving
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ℓ

lin(ui+1
⟨ℓ⟩ ), φ⟩ := −L(ui
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0 (Ω)
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⟨ς, φ⟩
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ℓ
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Proof: Since ui+1
ℓ − ui

ℓ ∈ Vℓ,∣∣∣∣∣∣R(ui
ℓ)

∣∣∣∣∣∣2
−1,ui

ℓ

=
∣∣∣∣∣∣ui

ℓ − ui+1
⟨ℓ⟩

∣∣∣∣∣∣2
1,ui

ℓ

=
∣∣∣∣∣∣(ui

ℓ − ui+1
ℓ ) + (ui+1

ℓ − ui+1
⟨ℓ⟩ )

∣∣∣∣∣∣2
1,ui

ℓ

=
∣∣∣∣∣∣ui+1

⟨ℓ⟩ − ui+1
ℓ

∣∣∣∣∣∣2
1,ui

ℓ

+
∣∣∣∣∣∣ui+1

ℓ − ui
ℓ

∣∣∣∣∣∣2
1,ui

ℓ

+ 2L(ui
ℓ; ui+1

⟨ℓ⟩ − ui+1
ℓ , ui+1

ℓ − ui
ℓ)︸ ︷︷ ︸

=0, due to Galerkin orthogonality
=

∣∣∣∣∣∣∣∣∣Rui
ℓ

lin(ui+1
ℓ )

∣∣∣∣∣∣∣∣∣2

−1,ui
ℓ

+
∣∣∣∣∣∣ui+1

ℓ − ui
ℓ

∣∣∣∣∣∣2
1,ui

ℓ

.

▶ The linerization error is computed directly, we define

ηi
lin,Ω :=

∣∣∣∣∣∣ui+1
ℓ − ui

ℓ

∣∣∣∣∣∣
1,ui

ℓ

.

▶ For estimating
∣∣∣∣∣∣∣∣∣Rui

ℓ

lin(ui+1
ℓ )

∣∣∣∣∣∣∣∣∣
−1,ui

ℓ

we introduce ηi
disc,Ω, following the

analysis on robust estimates of singularly perturbed reaction
-diffusion problems in [Verfürth (1998)], [Ainsworth & Vejchodský
(2011, 2014)] [Smears & Vohraĺık (2020)]
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2 A posteriori error estimates | 8

Theorem 2 Reliable, efficient, and robust a posteriori estimates

Global reliability∣∣∣∣∣∣R(ui
ℓ)

∣∣∣∣∣∣2
−1,ui

ℓ

≤ [ηi
Ω
]2 :=

∑
K∈Tℓ

([ηi
disc,K ]2 + [ηi

lin,K ]2).

Global efficiency

[ηi
Ω
]2 ≲

∣∣∣∣∣∣R(ui
ℓ)

∣∣∣∣∣∣2
−1,ui

ℓ

+ (data oscillation terms).

Local efficiency
For ω ⊂ Ω, there exists a neighbourhood Tω ⊆ Ω such that

[ηi
ω]2 ≲

∣∣∣∣∣∣R(ui+1
ℓ )

∣∣∣∣∣∣2
−1,ui

ℓ
,Tω

+ [ηi
lin,Tω

]2 + (data oscillation terms).
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3 Outline | 9

1 Introduction

2 Main analytical results

3 Scope of the results
Gradient-dependent diffusivity
Gradient-independent diffusivity

4 Numerical results



3 Class of problems | 9

Class 1: gradient-dependent diffusivity problems
For all φ ∈ H1

0 (Ω), R : H1
0 (Ω) → H−1(Ω) is defined as

⟨R(u), φ⟩ := ⟨f (x, u), φ⟩ − (σ(x, ∇u), ∇φ)

Assumption 1 is satisfied if f (x, ·), σ(x, ·) are monotone and Lipschitz

(σ(x, y) − σ(x, z)) · (y − z) ≥ λm|y − z|2 for x ∈ Ω and y , z ∈ Rd ,

|σ(x, y) − σ(x, z)| ≤ λM|y − z| for x ∈ Ω and y , z ∈ Rd .

with
dist(u, v) = ∥∇(u − v)∥

Example (Mean curvature flow) For a(·) satisfying ellipticity condition
and b(·) > 0: σ(x, y) = a(x) + b(x)y

(1+|y|2)
1
2
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3 Linearization schemes: practical examples | 10

Linearization operator
Considering the linearization operator

L(ui
ℓ; v , w) := (L(x, ui

ℓ) v , w) + (a(x, ui
ℓ)∇v , ∇w),

the coefficient functions for commonly used linearization schemes are

Scheme L(x, v) a(x, v)/τ

Kačanov (fixed point) ∂ξf (x, v) A(x, |∇v |)
Zarantonello 0 Λ (constant) > 0
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Class 2: gradient-independent diffusivity problems
For all φ ∈ H1

0 (Ω), R : H1
0 (Ω) → H−1(Ω) is defined as

⟨R(u), φ⟩ := ⟨f (x, u), φ⟩ − τ(K̄(x)(D(x, u)∇u + q(x, u)), ∇φ)

Assumption 1 is satisfied if τ > 0 is small and

▶ D : Ω × R → R+ is bounded and Lipschitz
▶ K̄ : Ω → Rd×d is symmetric positive definite
▶ f : Ω × R → R is monotone and Lipschitz upto the boundary
▶ q : Ω × R → Rd is bounded and satisfies a Lipschitz condition⋆

with

dist(u, v) =
∥∥∥∥K̄ 1

2 ∇
v
∫
u

D
∥∥∥∥
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Class 2: gradient-independent diffusivity problems
For all φ ∈ H1

0 (Ω), R : H1
0 (Ω) → H−1(Ω) is defined as

⟨R(u), φ⟩ := ⟨f (x, u), φ⟩ − τ(K̄(x)(D(x, u)∇u + q(x, u)), ∇φ)

Semilinear equations −∆u = f (x, u)
Such equations pop up in quantum mechanics (special solutions
to nonlinear Klein–Gordon equations), gravitation influences on stars,
membrane buckling problems...

Time-discrete nonlinear advection-reaction-diffusion equations
with time-step τ > 0, the following evolutions equations reduce to this case
poro-Fischer equations: ∂tu = ∆um + λ u (1 − u)
the Richards equation: ∂tS(u) = ∇ · [K̄(x)κ(S(u))(∇u + g)] + f (x, u)
biofilm equations: ∂tuk = µk∆Φk(uk) + fk((uk)n

k=1)



3 Linearization schemes: practical examples | 12

Abstract linearization
Considering the linearization operator

L(ui
ℓ; v , w) := (L(x, ui

ℓ) v , w) + (a(x, ui
ℓ)∇v , ∇w),

the coefficient functions for commonly used linearization schemes are

Scheme L(x, v) a(x, v)/τ

Picard (fixed point) ∂ξf (x, v) K̄(x) D(x, v)

Jäger–Kačur maxξ∈R

(
f (x,ξ)−f (x,v)

ξ−v

)
K̄(x) D(x, v)

L-scheme L (constant) ≥ 1
2 sup ∂ξf K̄(x) D(x, v)

M-scheme ∂ξf (x, v) + Mτ (constant) K̄(x) D(x, v)



4 Outline | 13

1 Introduction

2 Main analytical results

3 Scope of the results

4 Numerical results
Gradient-independent diffusivity
The Newton scheme



4 Adaptive linearization & effectivity of estimates | 13

Effectivity indices
Global effectivity index: Eff. Ind. := ηi

Ω
/
∣∣∣∣∣∣R(ui

ℓ)
∣∣∣∣∣∣

−1,ui
ℓ

Local effectivity index: (Eff. Ind.)K := ηi
K /

∣∣∣∣∣∣R(ui
ℓ)

∣∣∣∣∣∣
−1,ui

ℓ
,K , K ∈ Tℓ,
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4 Gradient-independent diffusivity case: the Richards equation | 14

For Ω = (0, 1) × (0, 1) we study

⟨R(uℓ), φ⟩ = (S(ū) − S(uℓ), φ)
−τ(K̄κ(S(uℓ))[∇uℓ − g ], ∇φ)

where the van Genuchten
parametrization for S, κ is used:S(ξ) :=

(
1 + (2 − ξ)

1
1−λ

)−λ

,

κ(s) :=
√

s
(

1 − (1 − s 1
λ )λ

)2
,

with λ = 0.5, u0
ℓ = 0,

K̄ =
[

1 0.2
0.2 1

]
, and g =

(
1
0

)



4 Robustness with respect to λM/λm represented by 1/τ | 14
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4 Distribution of error vs. estimates | 16

Error Estimate



4 Local effectivity | 16



4 Error with linearization iterations | 17
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Adaptive iteration stopping criteria:
ηi
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For the Newton scheme, the linearization operator

L(ui
ℓ; v , w) := (L(x, ui

ℓ) v , w) + (a(x, ui
ℓ)∇v , ∇w) + (w(x, ui

ℓ)v , ∇w),

is non-symmetric.

However, if for some CN ∈ [0, 2) we have

w(x, ui
ℓ) a−1(x, ui

ℓ) w(x, ui
ℓ) ≤ C2

N L(x, ui
ℓ), ∀ x ∈ Ω, and i ∈ N,

then,

Cm(CN)
[∣∣∣∣∣∣∣∣∣Rui

ℓ

lin(ui+1
ℓ )

∣∣∣∣∣∣∣∣∣2

−1,ui
ℓ

+
∣∣∣∣∣∣ui+1

ℓ − ui
ℓ

∣∣∣∣∣∣2
1,ui

ℓ

]
≤

∣∣∣∣∣∣R(ui
ℓ)

∣∣∣∣∣∣2
−1,ui

ℓ

≤ CM(CN)
[∣∣∣∣∣∣∣∣∣Rui

ℓ

lin(ui+1
ℓ )

∣∣∣∣∣∣∣∣∣2

−1,ui
ℓ

+
∣∣∣∣∣∣ui+1

ℓ − ui
ℓ

∣∣∣∣∣∣2
1,ui

ℓ

]
with Cm(CN), CM(CN) → 1 if CN ↘ 0.
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For gradient independent diffusivity case, we have

1 2 3 4 5 6 7

1

1.5

2

2.5

1 2 3 4 5 6 7

1

1.5

2

2.5

Global Effectivity Local Effectivity

1 2 3 4 5 6 7

-10

-8

-6

-4

-2

0

1 2 3 4 5 6 7

-10

-8

-6

-4

-2

0

Error with iterations



4 Thank you for your time | 20


	Introduction
	Main analytical results
	Decomposition of error
	A posteriori error estimates

	Scope of the results
	Gradient-dependent diffusivity 
	Gradient-independent diffusivity 

	Numerical results
	Gradient-independent diffusivity
	The Newton scheme


