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Jindřich Nečas Center for Mathematical Modelling
Based on a joint work with
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Hierarchy of linear problems starting at infinite dimension

A problem with bounded invertible operator G on an infinite dimensional
Hilbert space V

G u = f

is approximated on a finite dimensional subspace Vn ⊂ V by a problem with
the finite dimensional operator

Gn un = fn ,

represented, using an appropriate basis of Vn, by the matrix problem

Ax = b .

“There is a continuous operator equation posed in infinite-dimensional spaces that
underlines the linear system of equations [ ... ] awareness of this connection is key
to devising efficient solution strategies for the linear systems.” Hiptmair (2006)
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Krylov subspace methods

(Infinite dimensional) Krylov subspace methods implicitly construct at the step j
the finite dimensional approximation Gj of G which determines the desired
approximate solution uj ∈ u0 +Kj(G, r), r = f − Gu0

uj := u0 + pj−1(G) r ≈ u = G−1f .

Here pj−1(λ) is the associated polynomial of degree at most j − 1 and
Gj is obtained by restricting and projecting G onto the jth Krylov subspace

Kj(G, r) := span
{
r,Gr, . . . ,Gj−1r

}
.

A.N. Krylov (1931), Gantmakher (1934), Hestenes and Stiefel (1952),
Lanczos (1952-53); Karush (1952), Hayes (1954), Stesin (1954), Vorobyev (1958)
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Approximation polynomial

From
rj = f − G uj = r − G pj−1(G) r =: ϕj(G) r

we get the approximation polynomial

ϕj(λ) = 1 − λ pj−1(λ) ,

which is nonlinear both in G (obvious) and f (through the
orthogonality/optimality property defining the particular method).
Clearly

ϕM
n (0) = 1 .

Saad (1981), Greenbaum (1997), Liesen and S (2013)
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Preconditioning goes much beyond conditioning

Operator preconditioning

G = B−1A

where A,B : V → V # are bounded linear operators on an infinite dimensional
Hilbert space V , with its dual V #, and and B is, in addition, also self-adjoint
with respect to the duality pairing and coercive.

Spectral and norm equivalence may guarantee mesh (parameter) independence,
but they do not necessarily provide computational efficiency.

Faber, Manteuffel and Parter (1990), ... , Hiptmair (2006), Málek and S (2015)
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Spectrum and its approximation by the finite dimensional eigenvalues

Consider an infinite dimensional Hilbert space V , its dual V #, and bounded
linear operators A,B : V → V # that are self-adjoint with respect to the duality
pairing, and B is, in addition, also coercive. Consider further a sequence of
subspaces {Vn} of V satisfying the standard approximation property

lim
n→∞

inf
v∈Vn

‖w − v‖ = 0 for all w ∈ V.

Note that this typically yields that Galerkin discretizations of boundary value
problems are convergent.
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Nonuniform convergence of the eigenvalues to all points in the spectrum

Theorem.

Let the sequences of matrices {An} and {Bn} be defined via the standard
Galerkin discretization. Then all points in the spectrum of the preconditioned
operator

B−1A : V → V

are approximated to an arbitrary accuracy by the eigenvalues of the preconditioned
matrices in the sequence {B−1

n An}.

That is, for any point λ ∈ sp(B−1A) and any ε > 0, there exists n∗ such that
for all n ≥ n∗ the preconditioned matrix B−1

n An has an eigenvalue λj(n)

satisfying |λ− λj(n)| < ε.

Descloux, Nassif and Rappaz (1978), Kato (1980), Chatelin (1983),
Gergelits, Nielsen and S (2022)
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Outline

1 Spectral information and convergence of the conjugate gradient method.

2 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

3 Gergelits, Mardal, Nielsen and S, Laplacian preconditioning of elliptic PDEs:
Localization of the eigenvalues of the discrete operator (SINUM, 2019).

4 Gergelits, Nielsen and S, Generalized spectrum of second order elliptic operators
(SINUM, 2020). Back to the infinite dimensional problem, tensor case.

5 Gergelits, Nielsen and S, Numerical approximation of the spectrum of
self-adjoint operators in operator preconditioning (Num. Alg., 2022).

6 Spectral approximation of operators and/or PDE eigenvalue problem.
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1 Spectral representation of the operator and the distribution function

Any self-adjoint operator G defined on V can be expressed in terms of the
Riemann-Stieltjes integral as

G =

∫
λ dE(λ), i.e. (Gu, v) =

∫
λ d(E(λ)u, v) for all u, v ∈ V ,

The spectrum of G is defined as the complement of the resolvent set, i.e.,

sp(G) = {λ ∈ R;λI − G does not have a bounded inverse} .

The distribution function ω(λ) is defined by G and the normalized initial
residual r, ‖r‖ = 1 as

(Gr, r) =

∫
λ d(E(λ)r, r) =

∫
λ dω(λ) .
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1 Distribution functions for the discretized matrix problems

{λi,yi} are the eigenpairs of A , ωi = |(yi,w1)|2 , (w1 = r0/‖r0‖)

...

0

1

ω1

ω2

ω3

ω4

ωn
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. . . . . . λn
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1 The key concept: CG as the Gauss-Christoffel quadrature.

At any iteration step j , CG represents the matrix formulation of the j-point
Gauss quadrature of the Riemann-Stieljes integral determined by A and r0 ,

∫ ∞
0

φ(λ) dω(λ) =

j∑
i=1

ω
(j)
i φ(θ

(j)
i ) + Rj(φ) .

For the function φ(λ) ≡ λ−1 ,

‖x− x0‖2A
‖r0‖2

= j-point Gauss quadrature +
‖x− xj‖2A
‖r0‖2

.

Consequence: For the discretized problem, CG convergence behavior is determined
by the approximations of the distribution function given by A, r0 via the
sequence of the Gauss-Christoffel step-wise distribution functions {ω(j)(λ)}.
But this should be linked to the infinite dimensional distribution function ω(λ)
determined by G, r.
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1 CG (Lanczos) in finite precision arithmetic?

Rounding errors seemingly irreparably destroy the underlying mathematical
structure that is based on orthogonality, and therefore the link with
Gauss-Christoffel quadrature seems to be irreparably lost as well. However,

Lanczos (with small inaccuracy also CG) in finite precision arithmetic can be seen
as the exact arithmetic Lanczos (CG) for the problem with the slightly modified
distribution function with single eigenvalues replaced by tight clusters.

Paige (1971-80), Greenbaum (1989),
Parlett (1990), S (1991), Greenbaum and S (1992), Notay (1993), ... , Druskin,
Kniznermann, Zemke, Wülling, Meurant, ...

Reviews and updates in Meurant and S, Acta Numerica (2006); Meurant (2006);
Liesen and S (2013).
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1 Distribution function (spectrum) and its finite approximations

1 What is the relationship between the distribution function of the problem
defined on the infinite dimensional Hilbert space and the stepwise distribution
functions defined by the associated discretized problems?

2 Or, what is, at least, the relationship between the spectrum of the infinite
dimensional (non-compact) operator G and the spectra of the associated
(sequence of) matrices arising from (adaptively refined) discretizations?

3 Can we a priori say anything about the spectra of these matrices arising from
discretizations?
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2 Stimulating work that formulated an open problem (2009)

1 Spectral information and convergence of the conjugate gradient method.

2 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

3 Gergelits, Mardal, Nielsen and S, Laplacian preconditioning of elliptic PDEs:
Localization of the eigenvalues of the discrete operator (2019).

4 Gergelits, Nielsen and S, Generalized spectrum of second order elliptic operators
(2020). Back to the infinite dimensional problem, tensor case.

5 Gergelits, Nielsen and S, Numerical approximation of the spectrum of
self-adjoint operators and operator preconditioning (Num. Alg.,2022).

6 Spectral approximation of operators and/or PDE eigenvalue problem.
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2 Image of the domain under k(x) is a part of the spectrum of L−1A

Theorem.

Consider open and bounded Lipschitz domain Ω ∈ R2 and the operator
∇ · (k(x)∇u), where k(x) : Ω→ R is a scalar real valued bounded and uniformly
positive function. Then for all x ∈ Ω at which k(x) is continuous,

k(x) ∈ sp(L−1A),

i.e., the image of the domain under a continuous coefficient function k(x)
is a subset of the spectrum of the preconditioned operator L−1A , where

A : H1
0 (Ω) 7→ H−1(Ω), 〈Au, v〉 =

∫
Ω

k(x)∇u · ∇v, u, v ∈ H1
0 (Ω),

L : H1
0 (Ω) 7→ H−1(Ω), 〈Lu, v〉 =

∫
Ω

∇u · ∇v, u, v ∈ H1
0 (Ω).
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2 Open problems formulated in the paper

Numerical experiments suggest that:

1 k(Ω) yields a good approximation of the whole spectrum of L−1A ;

2 this infinite dimensional spectrum (possibly including its continuous part) is
well approximated by the eigenvalues of matrices arising from discretization.
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3 Discrete version - a priori localization of all matrix eigenvalues

1 Spectral information and convergence of the conjugate gradient method.

2 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

3 Gergelits, Mardal, Nielsen and S, Laplacian preconditioning of elliptic PDEs:
Localization of the eigenvalues of the discrete operator (2019).

4 Gergelits, Nielsen and S, Generalized spectrum of second order elliptic operators
(2020). Back to the infinite dimensional problem, tensor case.

5 Gergelits, Nielsen and S, Numerical approximation of the spectrum of
self-adjoint operators in operator preconditioning (Num. Alg., 2022).

6 Spectral approximation of operators and/or PDE eigenvalue problem.
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3 Each cell in the mesh is assigned a different eigenvalue (2019)

Theorem.

Consider discretization via conforming FEM with the basis functions
φj , j = 1, · · · , N. Let A,L be the matrix representations of the discrete operators.
Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λN be the eigenvalues of L−1A . Let k(x) be
uniformly positive, bounded and piecewise continuous.

Then there exists a (possibly non-unique) permutation π such that the
eigenvalues of the matrix L−1A satisfy

λπ(j) ∈ k(Tj), j = 1, . . . , N,

where

k(Tj) ≡ [ inf
x∈Tj

k(x), sup
x∈Tj

k(x)] , Tj = supp(φj) , j = 1, . . . , N.

Proof:
Constructive perturbation argument and the Hall’s theorem on bipartite graphs.
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3 Numerical illustration, 4 problems, nodal values, N = 81
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3 Remark and open problems

Let k(Tj) be constant over a patch of the discretization supports.
Then we know the associated eigenvalue exactly including the multiplicity.

Other approach by Ladecký, Pultarová and Zeman (Appl. of Math., 2020).

Open questions:

Can the whole spectrum of the infinite dimensional preconditioned operator
L−1A be determined as k(Ω) ?

Generalizations to tensors, more general preconditioning, indefinite problems?

3D? Ivana Pultarová, unpublished note.

20 / 34



3 Remark and open problems

Let k(Tj) be constant over a patch of the discretization supports.
Then we know the associated eigenvalue exactly including the multiplicity.
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4 Determining a priori the operator spectrum

1 Spectral information and convergence of the conjugate gradient method.

2 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

3 Gergelits, Mardal, Nielsen and S, Laplacian preconditioning of elliptic PDEs:
Localization of the eigenvalues of the discrete operator (2019).

4 Gergelits, Nielsen and S, Generalized spectrum of second order elliptic operators
(2020). Back to the infinite dimensional problem, tensor case.

5 Gergelits, Nielsen and S, Numerical approximation of the spectrum of
self-adjoint operators and operator preconditioning (Num. Alg., 2022).

6 Spectral approximation of operators and/or PDE eigenvalue problem.
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4 Infinite dimensional operator with symmetric tensor

Consider the operator ∇ · (K(x)∇u) with the real valued tensor function
K(x) : Ω→ R2×2 being symmetric with its entries being bounded Lebesgue
integrable functions, and with the spectral decomposition

K(x) = Q(x) Λ(x)QT (x) , x ∈ Ω ,

where

Λ(x) =

[
κ1(x) 0

0 κ2(x)

]
, QQT = QTQ = I .
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4 Spectrum as the maximal interval, including a possible gap (2020)

Theorem.

Let the symmetric tensor K(x) be continuous throughout the closure Ω .
Then the spectrum of the operator L−1A is given by the interval

sp(L−1A) = Conv(κ1(Ω) ∪ κ2(Ω)) ,

where

Conv(κ1(Ω) ∪ κ2(Ω)) = [ inf
x∈Ω

min
i=1,2

κi(x)} , sup
x∈Ω

max
i=1,2

κi(x)} ] .

Assuming only that the symmetric tensor K(x) is continuous at least at a single
point in Ω and (WLOG) supx∈Ω κ1(x) < infx∈Ω κ2(x) , then the following
closed interval belongs to the spectrum of L−1A,

[sup
x∈Ω

κ1(x), inf
x∈Ω

κ2(x)] ⊂ sp(L−1A).
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4 Eigenvalues of the discretized problems P1 – P3 in the paper

0 100 200 300

2

4

6

8

10

(P1)

(P2)

(P3)

P1: constant κ1 6= κ2

P2: non overlapping κ1(Ω) and κ2(Ω)
P3: overlapping κ1(Ω) and κ2(Ω)

24 / 34



4 Remaining questions

Spectrum of the infinite dimensional preconditioned operator is the complement
of the resolvent set. How do the spectra of matrices that represent discretized
preconditioned operators approximate the spectral interval of the infinite
dimensional preconditioned operator?

More general preconditioning? (Instead of approximating the distribution
function, here we deal only with approximating the spectrum).

Here we do not ask about numerical approximation of the eigenvalues of the infinite
dimensional (PDE) operator, which represents a fundamentally different problem.
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5 Convergence of the matrix eigenvalues towards the whole spectrum

1 Spectral information and convergence of the conjugate gradient method.

2 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

3 Gergelits, Mardal, Nielsen and S, Laplacian preconditioning of elliptic PDEs:
Localization of the eigenvalues of the discrete operator (2019).

4 Gergelits, Nielsen and S, Generalized spectrum of second order elliptic operators
(2020). Back to the infinite dimensional problem, tensor case.

5 Gergelits, Nielsen and S, Numerical approximation of the spectrum of
self-adjoint operators and operator preconditioning (Num. Alg., 2022).

6 Spectral approximation of operators and/or PDE eigenvalue problem.
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5 Indefinite problems and more general preconditioners (2022)

Infinite-dimensional spectrum:

Theorem.

Consider an open and bounded Lipschitz domain Ω ⊂ R2, and the operators
∇ · (k(x)∇u), and ∇ · (g(x)∇u) . Assume that the scalar functions g(x) and k(x)
are continuous throughout the closure Ω and that g(x) is, in addition, uniformly
positive. Then the spectrum of the operator B−1A equals

sp(B−1A) =

[
inf
x∈Ω

k(x)

g(x)
, sup
x∈Ω

k(x)

g(x)

]
.
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5 Indefinite problems and more general preconditioners (2022)

Eigenvalues of the discretized matrices:

Theorem.

Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of B−1
n An. Let g(x) and k(x)

be bounded and piecewise continuous functions, and g(x) be, in addition,
uniformly positive. Then there exists a (possibly non-unique) permutation π such
that the eigenvalues of the matrix B−1

n An satisfy

λπ(j) ∈

[
inf
x∈Tj

k(x)

g(x)
, sup
x∈Tj

k(x)

g(x)

]
, j = 1, . . . , n,

where Tj represents the support of the jth FEM basis function.
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5 Important point and a question

For the specific cases we get both lower and upper semicontinuity of the spectrum.
For the abstract setting we get only lower semicontinuity (see Theorem in part 1).

Here we approximate the spectrum of the bounded and continuously invertible
operator B−1A : V → V on the infinite dimensional Hilbert space.

Puzzling question:

When the whole spectrum of the infinite dimensional operator is in the limit
approximated by the eigenvalues of the associated matrices, and the whole
spectrum is a large interval, does it mean that for refined discretizations the
performance of CG applied to the discretized problems significantly deteriorates
with the mesh refinement? Not necessarily! Motivating example in Gergelits,
Mardal, Nilesen and S (2019) offers an explanation.
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6 Spectral operator theory and PDE eigenvalue problems

1 Spectral information and convergence of the conjugate gradient method.

2 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

3 Gergelits, Mardal, Nielsen and S, Laplacian preconditioning of elliptic PDEs:
Localization of the eigenvalues of the discrete operator (2019).

4 Gergelits, Nielsen and S, Generalized spectrum of second order elliptic operators
(2020). Back to the infinite dimensional problem, tensor case.

5 Gergelits, Nielsen and S, Numerical approximation of the spectrum of
self-adjoint operators and operator preconditioning (Num. Alg., 2022).

6 Spectral approximation of operators and/or PDE eigenvalue problem.
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6 Compact PDE setting and bounded continuously invertible operators

PDE eigenvalue problem is based on construction of compact solution
operators. Babuška - Osborn theory.

The set of compact operators is closed wrt the norm-wise (uniform)
convergence.

Spectrum of an infinite dimensional compact operator is composed of isolated
eigenvalues with a single accumulation point.

Bounded continuously invertible operator on an infinite dimensional Hilbert
space is not compact.

Convergence of matrix eigenvalues to eigenvalues of a compact operator
is a different problem than approximation of the whole spectrum of invertible
operators. The later, not the former, is relevant to the operator
preconditioning.
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6 Remark

The presented line of development does not allow to approximate the distribution
function ω(λ) . Assuming that all eigenspaces contribute to the finite dimensional
distribution functions equally, we get the so-called cummulative spectral density,
which is important in physics dealing with the so-called density of states; see, e.g.,
Lin, Saad and Yang, (SIREV, 2016). For the given class of problems we can cheaply
approximate this, but the infinite dimensional case is approached only as a limit of
the refinements of the discrete cases.

An amazingly beautiful results that do alow to compute (not only) the cumulative
spectral density of wide class of infinite dimensional operators are presented in the
PhD Thesis by Colbrook (Cambridge U, 2020) and in the several recent related
papers; see, in particular, the paper by Colbrook, Horning and Townsend (SIREV,
2021).
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6 Lanczos, Why Mathematics (1966)

“We will go on pondering and meditating, the great mysteries still ahead of us, we
will err and stumble on the way, and if we win a little victory, we will be jubilant
and thankful, without claiming, however, that we have done something that can
eliminate the contribution of all the millenia before us.”
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6 Wallis, Arithmetica Infinitorium (1656) (see Khruschev 2008)

“There remains this: we beech the skilled in these things, that we thought worth
showing, they will think openly receiving, an whatever it hides, worth imparting
more properly by themselves to the wider mathematical community.”

Thank you for your kind attention!
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