Adaptive multilevel stochastic Galerkin FEM for parametric PDE problems

Alex Bespalov University of Birmingham

Joint work with: **Dirk Praetorius** (TU Wien) **Michele Ruggeri** (University of Strathclyde)

Workshop "Interplay of discretization and algebraic solvers: a posteriori error estimates and adaptivity"

INRIA Paris

8 - 10 June 2022

UNIVERSITY^{OF} BIRMINGHAM

What is this talk about...

- * Elliptic PDE problems with random inputs (or, more generally, high-dimensional parametric elliptic PDEs)
- * Stochastic Galerkin finite element method (SGFEM)
- * Multilevel adaptivity for stochastic Galerkin FEM
- * Theoretical convergence and rate optimality analysis
- * Implementation and numerical results

Problem formulation: find $u : D \times \Gamma \to \mathbb{R}$ satisfying $-\nabla_x \cdot (a(x, \mathbf{y})\nabla_x u(x, \mathbf{y})) = f(x) \qquad x \in D, \ \mathbf{y} \in \Gamma,$ $u(x, \mathbf{y}) = 0 \qquad x \in \partial D, \ \mathbf{y} \in \Gamma$

- Domains
 - $D \subset \mathbb{R}^2 \rightsquigarrow \text{physical domain}$
 - $\Gamma := [-1, 1]^{\mathbb{N}} \rightsquigarrow \text{ parameter domain}$

Problem formulation: find $u : D \times \Gamma \to \mathbb{R}$ satisfying $-\nabla_x \cdot (a(x, \mathbf{y})\nabla_x u(x, \mathbf{y})) = f(x) \qquad x \in D, \ \mathbf{y} \in \Gamma,$ $u(x, \mathbf{y}) = 0 \qquad x \in \partial D, \ \mathbf{y} \in \Gamma$

- Domains
 - $D \subset \mathbb{R}^2 \rightsquigarrow \text{physical domain}$
 - $\Gamma := [-1, 1]^{\mathbb{N}} \rightsquigarrow \text{ parameter domain}$

Remark: parameters $y_1, y_2, ...$ can be seen as images (observations) of independent real-valued random variables with cumulative distribution functions $\pi_1(y_1), \pi_2(y_2), ...$ Then, the joint cumulative distribution function is defined as

$$\pi(\mathbf{y}) := \prod_{m=1}^{\infty} \pi_m(y_m), \text{ and } \int_{-1}^{1} \mathrm{d}\pi_m(y_m) = \int_{\Gamma} \mathrm{d}\pi(\mathbf{y}) = 1.$$

Problem formulation: find $u: D \times \Gamma \to \mathbb{R}$ satisfying $-\nabla_x \cdot (a(x, \mathbf{y})\nabla_x u(x, \mathbf{y})) = f(x) \qquad x \in D, \ \mathbf{y} \in \Gamma,$ $u(x, \mathbf{y}) = 0 \qquad x \in \partial D, \ \mathbf{y} \in \Gamma$

- Affine-parametric diffusion coefficient
 - $\Gamma := [-1, 1]^{\mathbb{N}} \rightsquigarrow$ parameter domain

•
$$a(x, \mathbf{y}) = a_0(x) + \sum_{m \in \mathbb{N}} y_m a_m(x)$$
 for $x \in D$, $\mathbf{y} = (y_m)_{m \in \mathbb{N}} \in \Gamma$

Problem formulation: find
$$u: D \times \Gamma \to \mathbb{R}$$
 satisfying
 $-\nabla_x \cdot (a(x, \mathbf{y})\nabla_x u(x, \mathbf{y})) = f(x) \qquad x \in D, \ \mathbf{y} \in \Gamma,$
 $u(x, \mathbf{y}) = 0 \qquad x \in \partial D, \ \mathbf{y} \in \Gamma$

- Affine-parametric diffusion coefficient
 - $\Gamma := [-1, 1]^{\mathbb{N}} \rightsquigarrow$ parameter domain

•
$$a(x, \mathbf{y}) = a_0(x) + \sum_{m \in \mathbb{N}} y_m a_m(x)$$
 for $x \in D$, $\mathbf{y} = (y_m)_{m \in \mathbb{N}} \in \Gamma$

▶
$$0 < a_0^{\min} \le a_0(x) \le a_0^{\max} < \infty$$
 for almost all $x \in D$

$$\bullet \quad \tau := \frac{1}{a_0^{\min}} \left\| \sum_{m \in \mathbb{N}} |a_m| \right\|_{L^{\infty}(D)} < 1 \quad \& \quad \sum_{m \in \mathbb{N}} \|a_m\|_{L^{\infty}(D)} < \infty$$

Remark: $a_0(x)$ typically represents the mean field, i.e., $a_0(x) = \int_{\Gamma} a(x, \mathbf{y}) d\pi(\mathbf{y})$.

Problem formulation: find $u: D \times \Gamma \to \mathbb{R}$ satisfying

$$-\nabla_{x} \cdot (a(x, \mathbf{y})\nabla_{x}u(x, \mathbf{y})) = f(x) \qquad x \in D, \ \mathbf{y} \in \Gamma,$$
$$u(x, \mathbf{y}) = 0 \qquad x \in \partial D, \ \mathbf{y} \in \Gamma$$

• $\mathbb{X} := H^1_0(D), \ \mathbb{P} := L^2_{\pi}(\Gamma), \ \pi(\mathbf{y}) = \prod_{m \in \mathbb{N}} \pi_m(\mathbf{y}_m); \quad \mathbb{V} := L^2_{\pi}(\Gamma; \mathbb{X}) \cong \mathbb{X} \otimes \mathbb{P}$

Problem formulation: find $u: D \times \Gamma \to \mathbb{R}$ satisfying

$$-\nabla_{x} \cdot (a(x, \mathbf{y})\nabla_{x}u(x, \mathbf{y})) = f(x) \qquad x \in D, \ \mathbf{y} \in \Gamma,$$
$$u(x, \mathbf{y}) = 0 \qquad x \in \partial D, \ \mathbf{y} \in \Gamma$$

■ $\mathbb{X} := H^1_0(D), \mathbb{P} := L^2_{\pi}(\Gamma), \pi(\mathbf{y}) = \prod_{m \in \mathbb{N}} \pi_m(\mathbf{y}_m); \mathbb{V} := L^2_{\pi}(\Gamma; \mathbb{X}) \cong \mathbb{X} \otimes \mathbb{P}$ ■ Bilinear forms on \mathbb{V}

$$B_0(u, v) := \int_{\Gamma} \int_{D} a_0(x) \nabla u(x, \mathbf{y}) \cdot \nabla v(x, \mathbf{y}) \, dx \, d\pi(\mathbf{y})$$

$$B(u, v) := B_0(u, v) + \sum_{m \in \mathbb{N}} \int_{\Gamma} y_m \int_{D} a_m(x) \nabla u(x, \mathbf{y}) \cdot \nabla v(x, \mathbf{y}) \, dx \, d\pi(\mathbf{y})$$

Problem formulation: find $u: D \times \Gamma \to \mathbb{R}$ satisfying

$$-\nabla_x \cdot (a(x, \mathbf{y})\nabla_x u(x, \mathbf{y})) = f(x) \qquad x \in D, \ \mathbf{y} \in \Gamma,$$
$$u(x, \mathbf{y}) = 0 \qquad x \in \partial D, \ \mathbf{y} \in \Gamma$$

 $\mathbb{X} := H^1_0(D), \ \mathbb{P} := L^2_{\pi}(\Gamma), \ \pi(\mathbf{y}) = \prod_{m \in \mathbb{N}} \pi_m(\mathbf{y}_m); \quad \mathbb{V} := L^2_{\pi}(\Gamma; \mathbb{X}) \cong \mathbb{X} \otimes \mathbb{P}$ Bilinear forms on \mathbb{V}

$$B_0(u, v) := \int_{\Gamma} \int_{D} a_0(x) \nabla u(x, \mathbf{y}) \cdot \nabla v(x, \mathbf{y}) \, \mathrm{d}x \, \mathrm{d}\pi(\mathbf{y})$$

$$B(u, v) := B_0(u, v) + \sum_{m \in \mathbb{N}} \int_{\Gamma} y_m \int_{D} a_m(x) \nabla u(x, \mathbf{y}) \cdot \nabla v(x, \mathbf{y}) \, \mathrm{d}x \, \mathrm{d}\pi(\mathbf{y})$$

Weak formulation: given $f \in L^2(D)$, find $u \in \mathbb{V}$ such that

$$B(u, v) = F(v) := \int_{\Gamma} \int_{D} f(x) v(x, \mathbf{y}) \, \mathrm{d}x \, \mathrm{d}\pi(\mathbf{y}) \quad \text{for all } v \in \mathbb{V} \tag{(*)}$$

Problem formulation: find $u: D \times \Gamma \to \mathbb{R}$ satisfying

$$-\nabla_x \cdot (a(x, \mathbf{y})\nabla_x u(x, \mathbf{y})) = f(x) \qquad x \in D, \ \mathbf{y} \in \Gamma,$$
$$u(x, \mathbf{y}) = 0 \qquad x \in \partial D, \ \mathbf{y} \in \Gamma$$

 $\mathbb{X} := H^1_0(D), \ \mathbb{P} := L^2_{\pi}(\Gamma), \ \pi(\mathbf{y}) = \prod_{m \in \mathbb{N}} \pi_m(\mathbf{y}_m); \quad \mathbb{V} := L^2_{\pi}(\Gamma; \mathbb{X}) \cong \mathbb{X} \otimes \mathbb{P}$ Bilinear forms on \mathbb{V}

$$B_0(u, v) := \int_{\Gamma} \int_{D} a_0(x) \nabla u(x, \mathbf{y}) \cdot \nabla v(x, \mathbf{y}) \, \mathrm{d}x \, \mathrm{d}\pi(\mathbf{y})$$

$$B(u, v) := B_0(u, v) + \sum_{m \in \mathbb{N}} \int_{\Gamma} y_m \int_{D} a_m(x) \nabla u(x, \mathbf{y}) \cdot \nabla v(x, \mathbf{y}) \, \mathrm{d}x \, \mathrm{d}\pi(\mathbf{y})$$

Weak formulation: given $f \in L^2(D)$, find $u \in \mathbb{V}$ such that

$$B(u, v) = F(v) := \int_{\Gamma} \int_{D} f(x) v(x, \mathbf{y}) \, \mathrm{d}x \, \mathrm{d}\pi(\mathbf{y}) \quad \text{for all } v \in \mathbb{V} \tag{(*)}$$

[Schwab, Gittelson '11]: the assumptions on a(x, y) ensure the wellposedness of (*).

Finite dimensional subspace

$$\mathbb{V}_{\bullet} \subset \mathbb{V} \cong \mathbb{X} \otimes \mathbb{P}$$

Galerkin projection:

find $u_{\bullet} \in \mathbb{V}_{\bullet}$ such that $B(u_{\bullet}, v_{\bullet}) = F(v_{\bullet})$ for all $v \in \mathbb{V}_{\bullet}$

Finite dimensional subspace

$$\mathbb{V}_{\bullet} \subset \mathbb{V} \cong \mathbb{X} \otimes \mathbb{P}$$

Galerkin projection:

find
$$u_{\bullet} \in \mathbb{V}_{\bullet}$$
 such that $B(u_{\bullet}, v_{\bullet}) = F(v_{\bullet})$ for all $v \in \mathbb{V}_{\bullet}$

Galerkin orthogonality

$$B(u - u_{\bullet}, v_{\bullet}) = 0$$
 for all $v_{\bullet} \in \mathbb{V}_{\bullet}$

Best approximation property

$$||| u - u_{\bullet} ||| = \min_{v_{\bullet} \in \mathbb{V}_{\bullet}} ||| u - v_{\bullet} |||, \text{ where } ||| \cdot ||| := B(\cdot, \cdot)^{1/2}$$

Finite dimensional subspace

$$\mathbb{V}_{\bullet} \subset \mathbb{V} \cong \mathbb{X} \otimes \mathbb{P}$$

Galerkin projection:

find
$$u_{\bullet} \in \mathbb{V}_{\bullet}$$
 such that $B(u_{\bullet}, v_{\bullet}) = F(v_{\bullet})$ for all $v \in \mathbb{V}_{\bullet}$

Galerkin orthogonality

$$B(u - u_{\bullet}, v_{\bullet}) = 0$$
 for all $v_{\bullet} \in \mathbb{V}_{\bullet}$

Best approximation property

$$||| u - u_{\bullet} ||| = \min_{v_{\bullet} \in \mathbb{V}_{\bullet}} ||| u - v_{\bullet} |||, \text{ where } ||| \cdot ||| := B(\cdot, \cdot)^{1/2}$$

• Main question: how to choose \mathbb{V}_{\bullet} ?

- $\{P_{\nu} : \nu \in \mathcal{J}\}$ is a countable orthonormal polynomial basis of $\mathbb{P} = L^2_{\pi}(\Gamma)$
- $\mathbb{J} := \{\nu \in \mathbb{N}_0^{\mathbb{N}} : \# \operatorname{supp}(\nu) < \infty\}$ where $\operatorname{supp}(\nu) = \{m \in \mathbb{N} : \nu_m \neq 0\}$

• $\{P_{\nu} : \nu \in \mathcal{I}\}$ is a countable orthonormal polynomial basis of $\mathbb{P} = L^2_{\pi}(\Gamma)$

• $\mathfrak{I} := \{\nu \in \mathbb{N}_0^{\mathbb{N}} : \# \operatorname{supp}(\nu) < \infty\}$ where $\operatorname{supp}(\nu) = \{m \in \mathbb{N} : \nu_m \neq 0\}$

gPC expansion:
$$\mathbb{V} \ni u(x, \mathbf{y}) = \sum_{\nu \in \mathfrak{I}} u_{\nu}(x) P_{\nu}(\mathbf{y})$$
 with unique $u_{\nu} \in \mathbb{X} = H_0^1(D)$

- $\{P_{\nu} : \nu \in \mathcal{I}\}$ is a countable orthonormal polynomial basis of $\mathbb{P} = L^2_{\pi}(\Gamma)$
- $\mathfrak{I} := \{\nu \in \mathbb{N}_0^{\mathbb{N}} : \# \operatorname{supp}(\nu) < \infty\}$ where $\operatorname{supp}(\nu) = \{m \in \mathbb{N} : \nu_m \neq 0\}$
- gPC expansion: $\mathbb{V} \ni u(x, \mathbf{y}) = \sum_{\nu \in \mathbb{J}} u_{\nu}(x) P_{\nu}(\mathbf{y})$ with unique $u_{\nu} \in \mathbb{X} = H_0^1(D)$
- Discretisation in the parameter domain
 - finite index set $\mathcal{P}_{\bullet} \subset \mathcal{I} \implies \mathbb{P}_{\bullet} = \operatorname{span}\{P_{\nu} : \nu \in \mathcal{P}_{\bullet}\} \subset \mathbb{P} = L^{2}_{\pi}(\Gamma)$

- $\{P_{\nu} : \nu \in \mathcal{I}\}$ is a countable orthonormal polynomial basis of $\mathbb{P} = L^2_{\pi}(\Gamma)$
- $\mathfrak{I} := \{\nu \in \mathbb{N}_0^{\mathbb{N}} : \# \operatorname{supp}(\nu) < \infty\}$ where $\operatorname{supp}(\nu) = \{m \in \mathbb{N} : \nu_m \neq 0\}$
- gPC expansion: $\mathbb{V} \ni u(x, \mathbf{y}) = \sum_{\nu \in \mathfrak{I}} u_{\nu}(x) P_{\nu}(\mathbf{y})$ with unique $u_{\nu} \in \mathbb{X} = H_0^1(D)$
- Discretisation in the parameter domain
 - finite index set $\mathcal{P}_{\bullet} \subset \mathcal{I} \implies \mathbb{P}_{\bullet} = \operatorname{span}\{P_{\nu} : \nu \in \mathcal{P}_{\bullet}\} \subset \mathbb{P} = L^{2}_{\pi}(\Gamma)$
 - semidiscrete approximation via truncation of gPC expansion

$$u(x, \mathbf{y}) \approx \sum_{\nu \in \mathcal{P}_{\bullet}} u_{\nu}(x) P_{\nu}(\mathbf{y}) \in \mathbb{X} \otimes \mathbb{P}_{\bullet} \text{ with coefficients } u_{\nu} \in \mathbb{X} = H^{1}_{0}(D)$$

- $\{P_{\nu} : \nu \in \mathcal{I}\}$ is a countable orthonormal polynomial basis of $\mathbb{P} = L^2_{\pi}(\Gamma)$
- $\mathcal{I} := \{ \nu \in \mathbb{N}_0^{\mathbb{N}} : \# \operatorname{supp}(\nu) < \infty \}$ where $\operatorname{supp}(\nu) = \{ m \in \mathbb{N} : \nu_m \neq 0 \}$
- gPC expansion: $\mathbb{V} \ni u(x, \mathbf{y}) = \sum_{\nu \in \mathfrak{I}} u_{\nu}(x) P_{\nu}(\mathbf{y})$ with unique $u_{\nu} \in \mathbb{X} = H_0^1(D)$
- Discretisation in the parameter domain
 - finite index set $\mathcal{P}_{\bullet} \subset \mathcal{I} \implies \mathbb{P}_{\bullet} = \operatorname{span}\{P_{\nu} : \nu \in \mathcal{P}_{\bullet}\} \subset \mathbb{P} = L^{2}_{\pi}(\Gamma)$
 - semidiscrete approximation via truncation of gPC expansion

$$u(x, \mathbf{y}) \approx \sum_{\nu \in \mathcal{P}_{\bullet}} u_{\nu}(x) P_{\nu}(\mathbf{y}) \in \mathbb{X} \otimes \mathbb{P}_{\bullet} \text{ with coefficients } u_{\nu} \in \mathbb{X} = H_0^1(D)$$

Discretisation in the physical domain (multilevel SGFEM)

- $\{P_{\nu} : \nu \in \mathcal{J}\}$ is a countable orthonormal polynomial basis of $\mathbb{P} = L^2_{\pi}(\Gamma)$
- $\mathcal{I} := \{\nu \in \mathbb{N}_0^{\mathbb{N}} : \# \operatorname{supp}(\nu) < \infty\}$ where $\operatorname{supp}(\nu) = \{m \in \mathbb{N} : \nu_m \neq 0\}$
- gPC expansion: $\mathbb{V} \ni u(x, \mathbf{y}) = \sum_{\nu \in \mathbb{J}} u_{\nu}(x) P_{\nu}(\mathbf{y})$ with unique $u_{\nu} \in \mathbb{X} = H_0^1(D)$
- Discretisation in the parameter domain
 - finite index set $\mathcal{P}_{\bullet} \subset \mathcal{I} \implies \mathbb{P}_{\bullet} = \operatorname{span}\{P_{\nu} : \nu \in \mathcal{P}_{\bullet}\} \subset \mathbb{P} = L^{2}_{\pi}(\Gamma)$
 - semidiscrete approximation via truncation of gPC expansion

$$u(x, \mathbf{y}) \approx \sum_{\nu \in \mathcal{P}_{\bullet}} u_{\nu}(x) P_{\nu}(\mathbf{y}) \in \mathbb{X} \otimes \mathbb{P}_{\bullet} \text{ with coefficients } u_{\nu} \in \mathbb{X} = H^{1}_{0}(D)$$

- Discretisation in the physical domain (multilevel SGFEM)
 - a hierarchy of meshes $\rightsquigarrow \{\mathcal{T}_{\bullet\nu}\}_{\nu\in\mathcal{P}_{\bullet}}$

•
$$u_{\bullet}(x, \mathbf{y}) = \sum_{\nu \in \mathfrak{P}_{\bullet}} u_{\bullet\nu}(x) P_{\nu}(\mathbf{y})$$
 with $u_{\bullet\nu} \in \mathbb{X}_{\bullet\nu} = \mathcal{S}_0^1(\mathcal{T}_{\bullet\nu})$ for all $\nu \in \mathfrak{P}_{\bullet}$

- $\{P_{\nu} : \nu \in \mathcal{J}\}$ is a countable orthonormal polynomial basis of $\mathbb{P} = L^2_{\pi}(\Gamma)$
- $\mathfrak{I} := \{\nu \in \mathbb{N}_0^{\mathbb{N}} : \# \operatorname{supp}(\nu) < \infty\}$ where $\operatorname{supp}(\nu) = \{m \in \mathbb{N} : \nu_m \neq 0\}$
- gPC expansion: $\mathbb{V} \ni u(x, \mathbf{y}) = \sum_{\nu \in \mathbb{J}} u_{\nu}(x) P_{\nu}(\mathbf{y})$ with unique $u_{\nu} \in \mathbb{X} = H_0^1(D)$
- Discretisation in the parameter domain
 - finite index set $\mathcal{P}_{\bullet} \subset \mathcal{I} \implies \mathbb{P}_{\bullet} = \operatorname{span}\{P_{\nu} : \nu \in \mathcal{P}_{\bullet}\} \subset \mathbb{P} = L^{2}_{\pi}(\Gamma)$
 - semidiscrete approximation via truncation of gPC expansion

$$u(x, \mathbf{y}) \approx \sum_{\nu \in \mathcal{P}_{\bullet}} u_{\nu}(x) P_{\nu}(\mathbf{y}) \in \mathbb{X} \otimes \mathbb{P}_{\bullet} \text{ with coefficients } u_{\nu} \in \mathbb{X} = H^{1}_{0}(D)$$

- Discretisation in the physical domain (multilevel SGFEM)
 - a hierarchy of meshes $\rightsquigarrow \{\mathcal{T}_{\bullet\nu}\}_{\nu\in\mathcal{P}_{\bullet}}$

•
$$u_{\bullet}(x, \mathbf{y}) = \sum_{\nu \in \mathcal{P}_{\bullet}} u_{\bullet\nu}(x) P_{\nu}(\mathbf{y})$$
 with $u_{\bullet\nu} \in \mathbb{X}_{\bullet\nu} = \mathcal{S}_0^1(\mathcal{T}_{\bullet\nu})$ for all $\nu \in \mathcal{P}_{\bullet}$

Multilevel methods

- Multilevel methods in UQ
 - Multilevel Monte Carlo
 [Giles '08], [Cliffe, Giles, Scheichl, Teckentrup '11], [Giles '15]
 - Multilevel quasi-Monte Carlo [Kuo, Schwab, Sloan '15]
 - Multilevel stochastic collocation [Teckentrup, Jantsch, Webster, Gunzburger '15]
 [Lang, Scheichl, Silvester '20]

Multilevel methods

- Multilevel methods in UQ
 - Multilevel Monte Carlo [Giles '08], [Cliffe, Giles, Scheichl, Teckentrup '11], [Giles '15]
 - Multilevel quasi-Monte Carlo [Kuo, Schwab, Sloan '15]
 - Multilevel stochastic collocation [Teckentrup, Jantsch, Webster, Gunzburger '15]
 [Lang, Scheichl, Silvester '20]
 - Multilevel stochastic Galerkin FEM
 - theoretical benchmarks for convergence analysis
 [Cohen, DeVore, Schwab '10, '11], [Gittelson '13]
 - practical realisations
 [Eigel, Gittelson, Schwab, Zander '14], [Crowder, Powell, B. '19]

Multilevel methods

- Multilevel methods in UQ
 - Multilevel Monte Carlo [Giles '08], [Cliffe, Giles, Scheichl, Teckentrup '11], [Giles '15]
 - Multilevel quasi-Monte Carlo [Kuo, Schwab, Sloan '15]
 - Multilevel stochastic collocation [Teckentrup, Jantsch, Webster, Gunzburger '15]
 [Lang, Scheichl, Silvester '20]
 - Multilevel stochastic Galerkin FEM
 - theoretical benchmarks for convergence analysis
 [Cohen, DeVore, Schwab '10, '11], [Gittelson '13]
 - practical realisations
 [Eigel, Gittelson, Schwab, Zander '14], [Crowder, Powell, B. '19]
 - − optimal convergence rates for practical realisations → open problem...

- Why hierarchical error estimates?
 - \blacktriangleright provide effective error estimation in the energy norm (eff. indices \approx 1)
 - ▶ provide reliable and efficient estimates of the error reduction; error reduction indicators → key to adaptivity
 - facilitate convergence analysis of adaptive algorithms

- Why hierarchical error estimates?
 - provide effective error estimation in the energy norm (eff. indices \approx 1)
 - ► provide reliable and efficient estimates of the error reduction; error reduction indicators → key to adaptivity
 - facilitate convergence analysis of adaptive algorithms
- Main ideas
 - use an enhanced approximation $\hat{u}_{\bullet} \in \hat{V}_{\bullet} \supset V_{\bullet}$ to estimate

$$\| u - u_{\bullet} \| \approx \underbrace{\| \widehat{u}_{\bullet} - u_{\bullet} \|}_{\text{computable}}$$

- the enhanced approximation is based on 'uniform refinement'
- ► avoiding the computation of û via a decomposition of V in the spirit of [Bank, Weiser '85]

- Enhancement of approximations in physical domain
 - ▶ initial mesh T₀
 - ▶ add new vertices to $\mathcal{T}_{\bullet\nu} \rightsquigarrow$ mesh refinement
 - mesh refinement by newest vertex bisection (NVB)
 - $\widehat{\mathcal{T}}_{\bullet\nu} \rightsquigarrow$ uniform refinement of $\mathcal{T}_{\bullet\nu}$

- Enhancement of approximations in physical domain
 - ▶ initial mesh T₀
 - ▶ add new vertices to $\mathcal{T}_{\bullet\nu} \rightsquigarrow$ mesh refinement
 - mesh refinement by newest vertex bisection (NVB)
 - $\widehat{\mathcal{T}}_{\bullet\nu} \rightsquigarrow$ uniform refinement of $\mathcal{T}_{\bullet\nu}$

- Enhancement of approximations in physical domain
 - ▶ initial mesh T₀
 - ▶ add new vertices to $\mathcal{T}_{\bullet\nu} \rightsquigarrow$ mesh refinement
 - mesh refinement by newest vertex bisection (NVB)
 - $\widehat{\mathcal{T}}_{\bullet\nu} \rightsquigarrow$ uniform refinement of $\mathcal{T}_{\bullet\nu}$

- Enhancement of approximations in the parameter domain
 - add new indices to \mathcal{P}_{\bullet}
 - ▶ finite set $Q_{\bullet} \subset \mathcal{I} \setminus \mathcal{P}_{\bullet} \rightsquigarrow$ detail index set ('boundary' of \mathcal{P}_{\bullet})

•
$$\widehat{\mathcal{P}}_{\bullet} = \mathcal{P}_{\bullet} \cup \mathcal{Q}_{\bullet} \rightsquigarrow$$
 uniform enrichment of \mathcal{P}_{\bullet}

$$\widehat{\mathbb{P}}_{\bullet} = \operatorname{span}\{P_{\nu} : \nu \in \widehat{\mathbb{P}}_{\bullet}\} \supset \mathbb{P}_{\bullet}$$

Example

▶
$$\mathcal{P}_{\bullet} = \{(0, 0, ...); (1, 0, ...); (0, 1, 0, ...)\}$$

⇒ $\mathcal{Q}_{\bullet} = \{(2, 0, ...); (1, 1, 0, ...); (0, 2, 0, ...); (0, 0, 1, 0, ...)\}$

- Enhancement of approximations in physical domain
 - initial mesh \mathcal{T}_0
 - ▶ add new vertices to $\mathcal{T}_{\bullet\nu} \rightsquigarrow$ mesh refinement
 - mesh refinement by newest vertex bisection (NVB)
 - $\widehat{\mathcal{T}}_{\bullet\nu} \rightsquigarrow$ uniform refinement of $\mathcal{T}_{\bullet\nu}$

- Enhancement of approximations in the parameter domain
 - add new indices to \mathcal{P}_{\bullet}
 - ▶ finite set $Q_{\bullet} \subset \mathcal{I} \setminus \mathcal{P}_{\bullet} \rightsquigarrow$ detail index set ('boundary' of \mathcal{P}_{\bullet})

•
$$\widehat{\mathcal{P}}_{\bullet} = \mathcal{P}_{\bullet} \cup \mathcal{Q}_{\bullet} \rightsquigarrow$$
 uniform enrichment of \mathcal{P}_{\bullet}

$$\widehat{\mathbb{P}}_{\bullet} = \operatorname{span}\{P_{\nu} : \nu \in \widehat{\mathbb{P}}_{\bullet}\} \supset \mathbb{P}_{\bullet}$$

- Local error indicators
 - ▶ local spatial indicators $\eta_{\bullet}(\nu, \xi)$ for each $\nu \in \mathcal{P}_{\bullet}$ and for each $\xi \in \mathcal{N}_{\bullet\nu}^+$
 - individual parametric indicators $\eta_{\bullet}(\nu)$ for each $\nu \in Q_{\bullet}$

Total error estimate (for multilevel SGFEM) $\eta_{\bullet}^{2} = (\text{estim. } \mathbb{X}\text{-error})^{2} + (\text{estim. } \mathbb{P}\text{-error})^{2} = \sum_{\nu \in \mathcal{P}_{\bullet}} \sum_{\xi \in \mathcal{N}_{\bullet,\nu}^{+}} \eta_{\bullet}^{2}(\nu, \xi) + \sum_{\nu \in \Omega_{\bullet}} \eta_{\bullet}^{2}(\nu)$

Total error estimate (for multilevel SGFEM) $\eta_{\bullet}^{2} = (\text{estim. } \underline{\mathbb{X}}\text{-error})^{2} + (\text{estim. } \underline{\mathbb{P}}\text{-error})^{2} = \sum_{\nu \in \mathcal{P}_{\bullet}} \sum_{\xi \in \mathcal{N}_{\bullet}^{+} \nu} \eta_{\bullet}^{2}(\nu, \xi) + \sum_{\nu \in \Omega_{\bullet}} \eta_{\bullet}^{2}(\nu)$

Theorem 1 [B., Praetorius, Ruggeri; SIAM/ASA JUQ '21]

- $\bullet \quad \eta_{\bullet} \simeq ||| \, \widehat{u}_{\bullet} u_{\bullet} \, |||$
- $||| u u_{\bullet} ||| \gtrsim \eta_{\bullet}$ (efficiency)
- ▶ saturation assumption $\implies ||| u u_{\bullet} ||| \lesssim \eta_{\bullet}$ (reliability)

INPUT: initial mesh \mathcal{T}_0 , initial index set $\mathcal{P}_0 = \{(0, 0, \dots)\}$, tolerance tol FOR $\ell = 0, 1, 2, 3, \dots$ DO:

- SOLVE: compute $u_{\ell} \in \mathbb{V}_{\ell}$ for index set \mathcal{P}_{ℓ} and meshes $\mathcal{T}_{\ell,\nu}$ $(\nu \in \mathcal{P}_{\ell})$
- ESTIMATE: compute *local* error indicators and the *total* error estimate
 - ► spatial & parametric indicators $\{\eta_{\ell}(\nu,\xi); \xi \in \mathcal{N}_{\ell,\nu}^+, \nu \in \mathcal{P}_{\ell}\}$ & $\{\eta_{\ell}(\nu); \nu \in \mathcal{Q}_{\ell}\}$
 - energy error estimate η_{ℓ}
 - ▶ IF $\eta_\ell < ext{tol}$ THEN STOP

MARK: mark certain vertices $\mathcal{M}_{\ell,\nu} \subseteq \mathcal{N}^+_{\ell,\nu}$ $(\nu \in \mathcal{P}_{\ell})$ and indices $\mathcal{R}_{\ell} \subseteq \mathcal{Q}_{\ell}$

- REFINE: enhance approximation space
 - ▶ mesh refinement (NVB) $\rightsquigarrow \mathcal{T}_{\ell+1,\nu} = \text{refine}(\mathcal{T}_{\ell,\nu}, \mathcal{M}_{\ell,\nu}) \quad \forall \nu \in \mathcal{P}_{\ell}$
 - ▶ parametric enrichment $\rightsquigarrow \mathcal{P}_{\ell+1} = \mathcal{P}_{\ell} \cup \mathcal{R}_{\ell}, \ \mathcal{T}_{\ell,\nu} = \mathcal{T}_0 \ \forall \nu \in \mathcal{R}_{\ell}$

OUTPUT: stochastic Galerkin approximations $\{u_{\ell}\}$ and error estimates $\{\eta_{\ell}\}$

Marking strategy

• MARK: mark certain vertices $\mathcal{M}_{\ell\nu} \subseteq \mathcal{N}^+_{\ell\nu}$ ($\nu \in \mathcal{P}_{\ell}$) and indices $\mathcal{R}_{\ell} \subseteq Q_{\ell}$

Marking strategy

• MARK: mark certain vertices $\mathcal{M}_{\ell\nu} \subseteq \mathcal{N}^+_{\ell\nu} \ (\nu \in \mathfrak{P}_\ell)$ and indices $\mathfrak{R}_\ell \subseteq \mathfrak{Q}_\ell$

• Recall the error estimate:
$$\eta_{\ell}^2 = \sum_{\nu \in \mathcal{P}_{\ell}} \sum_{\xi \in \mathcal{N}_{\ell,\nu}^+} \eta_{\ell}^2(\nu,\xi) + \sum_{\nu \in \Omega_{\ell}} \eta_{\ell}^2(\nu)$$

- Separate marking/enrichment of spatial and parametric components
 - ▶ two independent marking thresholds $\theta_{\mathbb{X}} \in (0, 1]$ and $\theta_{\mathbb{P}} \in (0, 1]$

Marking strategy

- MARK: mark certain vertices $\mathcal{M}_{\ell\nu} \subseteq \mathcal{N}^+_{\ell\nu}$ ($\nu \in \mathcal{P}_{\ell}$) and indices $\mathcal{R}_{\ell} \subseteq Q_{\ell}$
- Recall the error estimate: $\eta_{\ell}^2 = \sum_{\nu \in \mathcal{P}_{\ell}} \sum_{\xi \in \mathcal{N}_{\ell,\nu}^+} \eta_{\ell}^2(\nu,\xi) + \sum_{\nu \in \mathcal{Q}_{\ell}} \eta_{\ell}^2(\nu)$

Separate marking/enrichment of spatial and parametric components

- ▶ two independent marking thresholds $\theta_{\mathbb{X}} \in (0, 1]$ and $\theta_{\mathbb{P}} \in (0, 1]$
- Combined marking/enrichment of spatial and parametric components
 - use Dörfler marking for

 $\{\eta_{\ell}(\nu,\xi); \nu \in \mathcal{P}_{\ell}, \xi \in \mathcal{N}_{\ell,\nu}^+\} \cup \{\eta_{\ell}(\nu); \nu \in \mathcal{Q}_{\ell}\}$

with $\theta \in (0, 1]$ yields $\mathcal{M}_{\ell, \nu} \subseteq \mathcal{N}^+_{\ell, \nu}$ ($\nu \in \mathcal{P}_{\ell}$) and $\mathcal{R}_{\ell} \subseteq \mathcal{Q}_{\ell}$ satisfying

$$\theta \eta_{\ell}^2 \leq \sum_{\nu \in \mathfrak{P}_{\ell}} \sum_{\xi \in \mathcal{M}_{\ell,\nu}} \eta_{\ell}^2(\nu,\xi) + \sum_{\nu \in \mathfrak{R}_{\ell}} \eta_{\ell}^2(\nu)$$

too costly for the single-level SGFEM

Convergence of adaptive algorithm (1/2)

Single-level SGFEM: [B., Praetorius, Rocchi, Ruggeri; SINUM '19] Multilevel SGFEM: [B., Praetorius, Ruggeri; IMANUM (appeared online)]

Theorem 2 (plain convergence)

For any $\theta_{\mathbb{X}}, \ \theta_{\mathbb{P}} \in (0, 1] \ (\text{resp.}, \ \theta \in (0, 1]) \Longrightarrow \lim_{\ell \to \infty} \eta_{\ell} = 0.$

Convergence of adaptive algorithm (1/2)

Single-level SGFEM: [B., Praetorius, Rocchi, Ruggeri; SINUM '19] Multilevel SGFEM: [B., Praetorius, Ruggeri; IMANUM (appeared online)]

Theorem 2 (plain convergence)

```
For any \theta_{\mathbb{X}}, \ \theta_{\mathbb{P}} \in (0, 1] \ (\text{resp.}, \ \theta \in (0, 1]) \Longrightarrow \lim_{\ell \to \infty} \eta_{\ell} = 0.
```

Remarks

- Theorem 2 provides a theoretical guarantee that the adaptive algorithm terminates after a finite number of iterations
- No assumptions on the Galerkin approximations generated by the algorithm
- The result extends to more general marking criteria and to $D \subset \mathbb{R}^3$

Proof of Theorem 2

Energy error estimate:
$$\eta_{\ell}^2 = \sum_{\nu \in \mathcal{P}_{\ell}} \sum_{\xi \in \mathcal{N}_{\ell,\nu}^+} \eta_{\ell}^2(\nu,\xi) + \sum_{\nu \in \Omega_{\ell}} \eta_{\ell}^2(\nu)$$

Proof of Theorem 2

Energy error estimate:
$$\eta_{\ell}^2 = \sum_{\nu \in \mathcal{P}_{\ell}} \sum_{\xi \in \mathcal{N}_{\ell,\nu}^+} \eta_{\ell}^2(\nu,\xi) + \sum_{\nu \in \Omega_{\ell}} \eta_{\ell}^2(\nu)$$

Proposition 1 (Extension of the results in [Morin, Siebert, Veeser '08])

The multilevel spatial refinement that follows Dörfler marking strategy along a subsequence $(\ell_k)_{k\in\mathcal{N}_0}$ guarantees convergence of spatial error estimates along this subsequence, i.e., $\sum_{\nu\in\mathcal{P}_{\ell_k}}\sum_{\xi\in\mathcal{N}_{\ell_\nu}^+}\eta_{\ell_k}(\nu,\xi)^2 \to 0$ as $k \to \infty$.

Proof of Theorem 2

Energy error estimate:
$$\eta_{\ell}^2 = \sum_{\nu \in \mathcal{P}_{\ell}} \sum_{\xi \in \mathcal{N}_{\ell,\nu}^+} \eta_{\ell}^2(\nu, \xi) + \sum_{\nu \in \Omega_{\ell}} \eta_{\ell}^2(\nu)$$

Proposition 1 (Extension of the results in [Morin, Siebert, Veeser '08])

The multilevel spatial refinement that follows Dörfler marking strategy along a subsequence $(\ell_k)_{k\in\mathcal{N}_0}$ guarantees convergence of spatial error estimates along this subsequence, i.e., $\sum_{\nu\in\mathcal{P}_{\ell_k}}\sum_{\xi\in\mathcal{N}_{\ell_\nu}^+}\eta_{\ell_k}(\nu,\xi)^2 \to 0$ as $k \to \infty$.

Proposition 2

The parametric enrichment that follows the Dörfler marking strategy along a subsequence $(\mathcal{P}_{\ell_k})_{k\in\mathcal{N}_0} \subset (\mathcal{P}_{\ell})_{\ell\in\mathcal{N}_0}$ guarantees convergence of the whole sequence of parametric error estimates, i.e., $\sum_{\nu\in\Omega_\ell} \eta_\ell(\nu)^2 \to 0$ as $\ell \to \infty$.

Convergence of adaptive algorithm (2/2)

Single-level SGFEM: [B., Praetorius, Rocchi, Ruggeri; SINUM '19] Multilevel SGFEM: [B., Praetorius, Ruggeri; IMANUM (appeared online)]

Theorem 3 (linear convergence)

Saturation assumption \implies linear converg. for any θ_X , $\theta_P \in (0, 1]$ (resp., $\theta \in (0, 1]$):

 $\exists q_{\text{lin}} \in (0, 1) \text{ s.t. } ||| u - u_{\ell+1} ||| \le q_{\text{lin}} ||| u - u_{\ell} ||| \quad \forall \ell \in \mathbb{N}_0$

Numerical results: cookie problem

[B., Praetorius, Ruggeri; IMANUM (appeared online)]

• $-\nabla \cdot (a\nabla u) = f$ in $D \times \Gamma$, u = 0 on $\partial D \times \Gamma$

•
$$a(x, \mathbf{y}) = a_0(x) + \sum_{m \in \mathbb{N}} y_m a_m(x)$$

• $D = (0, 1)^2 \rightsquigarrow$ square domain

• nine circular inclusions $D_m \subset D$ (m = 1, ..., 9)

• Expansion coefficients $\{a_m\}_{m \in \mathbb{N}_0}$

•
$$a_0 \equiv 1$$

•
$$a_m = 0.5 \chi_{D_m}$$
 for $m = 1, 3, 7, 9$

•
$$a_m = 0.7 \chi_{D_m}$$
 for $m = 2, 4, 6, 8$

•
$$a_m = 0.9 \chi_{D_m}$$
 for $m = 5$

• $a_m \equiv 0$ for m > 9

f ≡ 1

•
$$d\pi_m(y_m) = \frac{1}{2} dy_m \rightsquigarrow$$
 uniform probability measure on [-1, 1]

Numerical results: locally refined meshes in multilevel SGFEM

- [B., Praetorius, Ruggeri; IMANUM (appeared online)]
 - Concept of 'multilevel structure' $\rightsquigarrow \mathbb{P}_{\bullet} = [\mathcal{P}_{\bullet}, (\mathcal{T}_{\bullet\nu})_{\nu \in \mathcal{P}_{\bullet}}], \ \#\mathbb{P}_{\bullet} \simeq \dim \mathbb{V}_{\bullet}$

- [B., Praetorius, Ruggeri; IMANUM (appeared online)]
 - Concept of 'multilevel structure' $\rightsquigarrow \mathbb{P}_{\bullet} = [\mathcal{P}_{\bullet}, (\mathcal{T}_{\bullet\nu})_{\nu \in \mathcal{P}_{\bullet}}], \ \#\mathbb{P}_{\bullet} \simeq \dim \mathbb{V}_{\bullet}$
 - Concept of 'multilevel refinement' $\rightsquigarrow \mathbb{P}_{\circ} = \mathbb{REFINE}(\mathbb{P}_{\bullet}, \mathbb{M}_{\bullet})$

[B., Praetorius, Ruggeri; IMANUM (appeared online)]

- Concept of 'multilevel structure' $\rightsquigarrow \mathbb{P}_{\bullet} = [\mathcal{P}_{\bullet}, (\mathcal{T}_{\bullet\nu})_{\nu \in \mathcal{P}_{\bullet}}], \ \#\mathbb{P}_{\bullet} \simeq \dim \mathbb{V}_{\bullet}$
- Concept of 'multilevel refinement' $\rightsquigarrow \mathbf{P}_{\circ} = \mathbb{REFINE}(\mathbf{P}_{\bullet}, \mathbf{M}_{\bullet})$
- Concept of optimality \rightsquigarrow approximation class \mathbb{A}_s (s > 0)

 $w \in \mathbb{A}_s \quad \Longleftrightarrow \quad \exists \left\{ \mathbf{P}_{\ell}^{\star} \right\}_{\ell \in \mathbb{N}_0} \text{ such that } ||| w - w_{\ell}^{\star} ||| = \mathcal{O}\left(\left(\dim \mathbb{V}_{\ell}^{\star} \right)^{-s} \right)$

[B., Praetorius, Ruggeri; IMANUM (appeared online)]

- Concept of 'multilevel structure' $\rightsquigarrow \mathbb{P}_{\bullet} = [\mathcal{P}_{\bullet}, (\mathcal{T}_{\bullet\nu})_{\nu \in \mathcal{P}_{\bullet}}], \ \#\mathbb{P}_{\bullet} \simeq \dim \mathbb{V}_{\bullet}$
- Concept of 'multilevel refinement' $\rightsquigarrow \mathbb{P}_{\circ} = \mathbb{REFINE}(\mathbb{P}_{\bullet}, \mathbb{M}_{\bullet})$
- Concept of optimality \rightsquigarrow approximation class \mathbb{A}_s (s > 0)

$$w \in \mathbb{A}_s \quad \Longleftrightarrow \quad \exists \left\{ \mathbf{P}_{\ell}^{\star} \right\}_{\ell \in \mathbb{N}_0} \text{ such that } ||| w - w_{\ell}^{\star} ||| = \mathcal{O}\big((\dim \mathbb{V}_{\ell}^{\star})^{-s} \big)$$

Theorem 4 (rate optimality)

Strong saturation assumption \implies optimal convergence for sufficiently small θ , i.e., if s > 0 and $u \in \mathbb{A}_s$, then

$$\begin{split} \sup_{\ell \in \mathbb{N}_0} (\#\mathbb{P}_{\ell} - \#\mathbb{P}_0 + 1)^s ||| \ u - u_{\ell} ||| &\leq C \, || u ||_{\mathbb{A}_s}, \\ \text{where } \| u \|_{\mathbb{A}_s} := \sup_{N \in \mathbb{N}_0} (N+1)^s \min_{\substack{\mathbb{P}_{\mathrm{opt}} \in \mathbb{R} \mathbb{E} \mathbb{F} | \mathbb{N} \mathbb{E}(\mathbb{P}_0) \ v_{\mathrm{opt}} \in \mathbb{V}_{\mathrm{opt}}} \| u - v_{\mathrm{opt}} \|| \\ \#\mathbb{P}_{\mathrm{opt}} - \#\mathbb{P}_0 \leq N \end{split}$$

Saturation assumption vs. strong saturation assumption

- Saturation assumption
 - ▶ SGFEM solution $u_{\bullet} \in \mathbb{V}_{\bullet}$
 - Enhanced (uniformly refined) SGFEM solution $\hat{u}_{\bullet} \in \widehat{\mathbb{V}}_{\bullet}$
 - There exist a constant $q_{\text{sat}} \in (0, 1)$ s.t. $||| u \widehat{u}_{\bullet} ||| \le q_{\text{sat}} ||| u u_{\bullet} |||$

 $\bullet \quad \widehat{\mathbb{V}}_{\bullet} = \widehat{\mathbb{X}}_{\bullet} \otimes \widehat{\mathbb{P}}_{\bullet} \Longrightarrow q_{\mathrm{sat}} = q_{\mathrm{sat},\mathbb{X}} \cdot q_{\mathrm{sat},\mathbb{P}} \in (0,1) \text{ if } q_{\mathrm{sat},\mathbb{X}} < 1 \text{ or } q_{\mathrm{sat},\mathbb{P}} < 1$

Saturation assumption vs. strong saturation assumption

- Saturation assumption
 - ▶ SGFEM solution $u_{\bullet} \in \mathbb{V}_{\bullet}$
 - Enhanced (uniformly refined) SGFEM solution $\widehat{u}_{\bullet} \in \widehat{\mathbb{V}}_{\bullet}$
 - ▶ There exist a constant $q_{\text{sat}} \in (0, 1)$ s.t. $||| u \widehat{u}_{\bullet} ||| \le q_{\text{sat}} ||| u u_{\bullet} |||$

$$\bullet \quad \widehat{\mathbb{V}}_{\bullet} = \widehat{\mathbb{X}}_{\bullet} \otimes \widehat{\mathbb{P}}_{\bullet} \Longrightarrow q_{\mathrm{sat}} = q_{\mathrm{sat},\mathbb{X}} \cdot q_{\mathrm{sat},\mathbb{P}} \in (0,1) \text{ if } q_{\mathrm{sat},\mathbb{X}} < 1 \text{ or } q_{\mathrm{sat},\mathbb{P}} < 1$$

- Strong saturation assumption
 - ▶ $\mathbf{P}_{\bullet} \in \mathbb{REFINE}(\mathbf{P}_{0}) \iff$ any multilevel structure obtained from \mathbf{P}_{0}
 - ▶ $\mathbb{P}_{\star} \in \mathbb{REFINE}(\mathbb{P}_{\bullet}) \iff a \text{ refined multilevel structure obtained from } \mathbb{P}_{\bullet}$
 - ▶ P₀ := ℝEFINE(P₀, M₀) → a multilevel structure obtained from P₀ by one step of multilevel refinement towards P_{*}
 - There exist constants $0 < \kappa_{\mathrm{sat}} \leq q_{\mathrm{sat}} < 1$ such that

 $||| u - u_{\star} ||| \leq \kappa_{\mathrm{sat}} ||| u - u_{\bullet} ||| \implies || u - u_{\circ} ||| \leq q_{\mathrm{sat}} ||| u - u_{\bullet} |||$

linear algebra

$$\mathbf{A} = (\mathbf{A}_{\nu\mu})_{\nu,\mu\in\mathcal{P}_{\bullet}}, \quad \mathbf{A}_{\nu\mu} = \sum_{m=0}^{\infty} [G_m]_{\nu\mu} K_m^{\nu\mu} = \sum_{m=0}^{M} [G_m]_{\nu\mu} K_m^{\nu\mu}$$

with

$$[G_m]_{\nu\mu} = \begin{cases} \delta_{\nu\mu} & \text{if } m = 0, \\ \int_{\Gamma} y_m P_{\mu}(\mathbf{y}) P_{\nu}(\mathbf{y}) \ d\pi(\mathbf{y}) & \text{if } m \in \mathbb{N}, \end{cases}$$

$$[\mathcal{K}_m^{\nu\mu}]_{ij} = \int_D a_m(x) \nabla \varphi_{\bullet\mu,z_j}(x) \cdot \nabla \varphi_{\bullet\nu,z_i}(x) \, dx$$

$$\begin{aligned} \mathcal{K}_{m}^{\nu\mu}]_{ij} &= \int_{D} a_{m}(x) \nabla \varphi_{\bullet\mu,z_{j}}(x) \cdot \nabla \varphi_{\bullet\nu,z_{i}}(x) \, dx \\ &= \sum_{T_{\nu} \in \mathcal{T}_{\bullet\nu}} \sum_{\substack{T_{\mu} \in \mathcal{T}_{\bullet\mu} \\ |T_{\mu} \cap T_{\nu}| \neq 0}} \left(\nabla \varphi_{\bullet\mu,z_{j}} |_{T_{\mu}} \cdot \nabla \varphi_{\bullet\nu,z_{i}} |_{T_{\nu}} \right) \int_{T_{\mu} \cap T_{\nu}} a_{m}(x) \, dx \end{aligned}$$

computation of non-square stiffness matrices

$$\begin{aligned} \mathcal{K}_{m}^{\nu\mu}]_{ij} &= \int_{D} a_{m}(x) \nabla \varphi_{\bullet\mu,z_{j}}(x) \cdot \nabla \varphi_{\bullet\nu,z_{i}}(x) \, dx \\ &= \sum_{T_{\nu} \in \mathcal{T}_{\bullet\nu}} \sum_{\substack{T_{\mu} \in \mathcal{T}_{\bullet\mu} \\ |T_{\mu} \cap T_{\nu}| \neq 0}} \left(\nabla \varphi_{\bullet\mu,z_{j}} |_{T_{\mu}} \cdot \nabla \varphi_{\bullet\nu,z_{i}} |_{T_{\nu}} \right) \int_{T_{\mu} \cap T_{\nu}} a_{m}(x) \, dx \end{aligned}$$

• key observation: $\mathcal{T}_{\bullet,\nu}$ and $\mathcal{T}_{\bullet,\mu}$ are NVB refinements of the same \mathcal{T}_0 ; \rightsquigarrow exploit the binary tree structure of the NVB refinement

$$\begin{aligned} \mathcal{K}_{m}^{\nu\mu}]_{ij} &= \int_{D} a_{m}(x) \nabla \varphi_{\bullet\mu,z_{j}}(x) \cdot \nabla \varphi_{\bullet\nu,z_{i}}(x) \, dx \\ &= \sum_{T_{\nu} \in \mathcal{T}_{\bullet\nu}} \sum_{\substack{T_{\mu} \in \mathcal{T}_{\bullet\mu} \\ |T_{\mu} \cap T_{\nu}| \neq 0}} \left(\nabla \varphi_{\bullet\mu,z_{j}} |_{T_{\mu}} \cdot \nabla \varphi_{\bullet\nu,z_{i}} |_{T_{\nu}} \right) \int_{T_{\mu} \cap T_{\nu}} a_{m}(x) \, dx \end{aligned}$$

- key observation: *T*_{•,ν} and *T*_{•,μ} are NVB refinements of the same *T*₀;
 → exploit the binary tree structure of the NVB refinement
- $T_{\mu} \cap T_{\nu}$ is either T_{μ} , or T_{ν} , or a set of measure zero.

$$\begin{aligned} \mathcal{K}_{m}^{\nu\mu}]_{ij} &= \int_{D} a_{m}(x) \nabla \varphi_{\bullet\mu,z_{j}}(x) \cdot \nabla \varphi_{\bullet\nu,z_{i}}(x) \, dx \\ &= \sum_{T_{\nu} \in \mathcal{T}_{\bullet\nu}} \sum_{\substack{T_{\mu} \in \mathcal{T}_{\bullet\mu} \\ |T_{\mu} \cap T_{\nu}| \neq 0}} \left(\nabla \varphi_{\bullet\mu,z_{j}} |_{T_{\mu}} \cdot \nabla \varphi_{\bullet\nu,z_{i}} |_{T_{\nu}} \right) \int_{T_{\mu} \cap T_{\nu}} a_{m}(x) \, dx \end{aligned}$$

- key observation: $\mathcal{T}_{\bullet,\nu}$ and $\mathcal{T}_{\bullet,\mu}$ are NVB refinements of the same \mathcal{T}_0 ; \rightsquigarrow exploit the binary tree structure of the NVB refinement
- $T_{\mu} \cap T_{\nu}$ is either T_{μ} , or T_{ν} , or a set of measure zero.
- naive implementation $\rightsquigarrow \mathcal{O}((\#\mathcal{T}_{\bullet\nu})(\#\mathcal{T}_{\bullet\mu}))$ complexity, BUT...

$$\begin{aligned} \mathcal{K}_{m}^{\nu\mu}]_{jj} &= \int_{D} a_{m}(x) \nabla \varphi_{\bullet\mu, z_{j}}(x) \cdot \nabla \varphi_{\bullet\nu, z_{i}}(x) \, dx \\ &= \sum_{T_{\nu} \in \mathcal{T}_{\bullet\nu}} \sum_{\substack{T_{\mu} \in \mathcal{T}_{\bullet\mu} \\ |T_{\mu} \cap T_{\nu}| \neq 0}} \left(\nabla \varphi_{\bullet\mu, z_{j}} |_{T_{\mu}} \cdot \nabla \varphi_{\bullet\nu, z_{i}} |_{T_{\nu}} \right) \int_{T_{\mu} \cap T_{\nu}} a_{m}(x) \, dx \end{aligned}$$

- key observation: $\mathcal{T}_{\bullet,\nu}$ and $\mathcal{T}_{\bullet,\mu}$ are NVB refinements of the same \mathcal{T}_0 ; \rightsquigarrow exploit the binary tree structure of the NVB refinement
- $T_{\mu} \cap T_{\nu}$ is either T_{μ} , or T_{ν} , or a set of measure zero.
- naive implementation $\rightsquigarrow \mathcal{O}((\#\mathcal{T}_{\bullet\nu})(\#\mathcal{T}_{\bullet\mu}))$ complexity, BUT...
- the binary search tree algorithm $\rightarrow \mathcal{O}(\#\mathcal{T}_{\bullet\nu} + \#\mathcal{T}_{\bullet\mu})$ complexity (tbc...)

linear algebra

$$\mathbf{A} = (\mathbf{A}_{\nu\mu})_{\nu,\mu\in\mathfrak{P}_{\bullet}}, \quad \mathbf{A}_{\nu\mu} = \sum_{m=0}^{\infty} [G_m]_{\nu\mu} K_m^{\nu\mu} = \sum_{m=0}^{M} [G_m]_{\nu\mu} K_m^{\nu\mu}$$

with

$$[G_m]_{\nu\mu} = \begin{cases} \delta_{\nu\mu} & \text{if } m = 0, \\ \int_{\Gamma} y_m P_{\mu}(\mathbf{y}) P_{\nu}(\mathbf{y}) \ d\pi(\mathbf{y}) & \text{if } m \in \mathbb{N}, \end{cases}$$

$$[\mathcal{K}_m^{\nu\mu}]_{ij} = \int_D a_m(x) \nabla \varphi_{\bullet\mu,z_j}(x) \cdot \nabla \varphi_{\bullet\nu,z_i}(x) \, dx$$

solver: preconditioned MINRES or CG

linear algebra

$$\mathbf{A} = (\mathbf{A}_{\nu\mu})_{\nu,\mu\in\mathfrak{P}_{\bullet}}, \quad \mathbf{A}_{\nu\mu} = \sum_{m=0}^{\infty} [G_m]_{\nu\mu} K_m^{\nu\mu} = \sum_{m=0}^{M} [G_m]_{\nu\mu} K_m^{\nu\mu}$$

with

$$[G_m]_{\nu\mu} = \begin{cases} \delta_{\nu\mu} & \text{if } m = 0, \\ \int_{\Gamma} y_m P_{\mu}(\mathbf{y}) P_{\nu}(\mathbf{y}) \ d\pi(\mathbf{y}) & \text{if } m \in \mathbb{N}, \end{cases}$$

$$[\mathcal{K}_m^{\nu\mu}]_{ij} = \int_D a_m(x) \nabla \varphi_{\bullet\mu,z_j}(x) \cdot \nabla \varphi_{\bullet\nu,z_i}(x) \, dx$$

- solver: preconditioned MINRES or CG
- preconditioner: mean-based preconditioner with diagonal blocks $K_0^{\nu\nu}$

Concluding remarks

What have we achieved?

- Design of adaptive algorithms for single-level and multilevel SGFEM
- Theoretical analysis
 - convergence of the adaptive algorithm
 - linear convergence (under the saturation assumption)
 - rate-optimality of adaptive multilevel SGFEM (under the strong saturation assumption)
- Implementation: Stochastic T-IFISS http://web.mat.bham.ac.uk/A.Bespalov/software/

Concluding remarks

What have we achieved?

- Design of adaptive algorithms for single-level and multilevel SGFEM
- Theoretical analysis
 - convergence of the adaptive algorithm
 - linear convergence (under the saturation assumption)
 - rate-optimality of adaptive multilevel SGFEM (under the strong saturation assumption)
- Implementation: Stochastic T-IFISS http://web.mat.bham.ac.uk/A.Bespalov/software/

References

- AB, D. Praetorius, L. Rocchi, M. Ruggeri, *Convergence of adaptive stochastic Galerkin FEM*, SIAM J. Numer. Anal., Vol. 57 (2019), pp. 2359–2382.
- AB, D. Praetorius, M. Ruggeri, *Two-level a posteriori error estimation for adaptive multilevel stochastic Galerkin FEM*, SIAM/ASA J. Uncertain. Quantif., Vol.9 (2021), pp. 1184–1216.
- AB, D. Praetorius, M. Ruggeri, Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM, IMA J. Numer. Anal. (appeared online).