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Interplay of discretization and algebraic solvers:

a posteriori error estimates and adaptivity,

9 June 2022
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The Poisson problem



Poisson problem

Consider a Lipschitz polyhedral domain Ω and f ∈ L2(Ω).

Our first model problem is to find u ∈ H1
0 (Ω) such that

(∇u,∇v)Ω = (f , v)Ω

for all v ∈ H1
0 (Ω).

uh is the Lagrange FEM approximation of u with degree p + 1.

For the sake of simplicity, I will assume that f = f h ∈ Pp(Th).
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The idea of flux equilibration

Assume that we have a field σh ∈ H(div,Ω) such that

∇ · σh = f h in Ω

at our disposal.

Then, we have

(∇(u − uh),∇v)Ω = (f h, v)Ω − (∇uh,∇v)

= (∇ · σh, v)Ω − (∇uh,∇v)

= −(σh + ∇uh,∇v),

for all v ∈ H1
0 (Ω) and in particular

‖∇(u − uh)‖Ω ≤ ‖σh + ∇uh‖Ω.

3



Prager-Synge theorem

Equilibrated flux

σh ∈ H(div,Ω); ∇ · σh = f h in Ω

Error estimate

‖∇(u − uh)‖Ω ≤ ‖σh + ∇uh‖Ω.

W. Prager and J.L. Synge, 1947

The particular choice σ := −∇u saturates the bound.
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Local flux constructions

The idea flux would be σ := −∇u.

Let’s characterize it locally and cook up a discrete computable version.

Let us set

σa := ψaσ

where ψa is the “hat function” associated with the vertex a, so that

σ =
∑
a∈Vh

σa.
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Characterization of the local contributions

We know that σa := −ψa∇u. So that in particular

σa ∈ H0(div, ωa)

where ωa is the set of tetrahedra K ∈ Th sharing the vertex a, and

∇ · σa = ψaf h −∇ψa ·∇u.

As a result, we have the characterization

σa = arg min
v∈H0(div,ωa)

∇·v=ψa f h−∇ψa·∇u

‖v + ψa∇u‖ωa ,

since the minimum is zero and achieved when v = −ψa∇u.
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Discrete construction

Recall that

σa = arg min
v∈H0(div,ωa)

∇·v=ψa f h−∇ψa·∇u

‖v + ψa∇u‖ωa .

As a discrete counterpart, we set

σa
h := arg min

vh∈RT p+1(T a
h )∩H0(div,ωa)

∇·vh=ψa f h−∇ψa·∇uh

‖vh + ψa∇uh‖ωa .

This is indeed well-defined since

(ψaf −∇ψa ·∇uh, 1)ωa = (f , ψa)Ω − (∇uh,∇ψa)Ω = 0

whenever a /∈ ∂Ω.

The presence of the “correction” θa
h := −∇ψa ·∇uh is crucial!
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Reliability and efficiency

Summation provides an equilibrated flux:

σh :=
∑
a∈Vh

σa
h,

and reliability follows from the Prager–Synge theorem.

Efficiency

‖σh + ∇uh‖K . ‖∇(u − uh)‖K̃

The hidden constant does not depend on p.

D. Braess, V. Pillwein and J. Schöberl, 2009

A. Ern and M. Vohraĺık, 2020
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The curl–curl problem



The curl–curl problem

For the sake of simplicity, assume that Ω is simply connected,

and consider a divergence-free right-hand side Jh ∈ RT p(Th).

Our model problem is then to find A ∈ H0(curl,Ω) such that

(∇× A,∇× v)Ω = (Jh, v)Ω, (A,∇q)Ω = 0,

for all v ∈ H0(curl,Ω) and q ∈ H1
0 (Ω).

Ah ∈ Np(Th) ∩H0(curl,Ω) is the Nédélec approximation of A.
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Prager-Synge theorem

Equilibrated flux

Bh ∈ H(curl,Ω); ∇× Bh = Jh

Error estimate

‖∇× (A− Ah)‖Ω ≤ ‖Bh −∇× Ah‖Ω

The “ideal” flux B := ∇× A saturates the bound.
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The issue with localization (1/2)

We follow the same steps than for the Poisson problem.

The ideal flux is B := ∇× A. If we set Ba := ψa∇× A, then

∇× Ba = ψaJh + ∇ψa ×∇× A,

so that

Ba = arg min
v∈H0(curl,ωa)

∇×v=ψaJh+∇ψa×∇×A

‖v − ψa∇× A‖ωa .
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The issue with localization (2/2)

Recall that

Ba = arg min
v∈H0(curl,ωa)

∇×v=ψaJh+∇ψa×∇×A

‖v − ψa∇× A‖ωa .

Unfortunately, we can not set

Ba
h := arg min

vh∈Np+1(T a
h )∩H0(curl,ωa)

∇×vh=ψaJh+∇ψa×∇×Ah

‖vh − ψa∇× Ah‖ωa

as the minimization set is empty: the field

ψaJh + ∇ψa ×∇× Ah

is not divergence-free!
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Possible solutions

An initial idea for lowest-order elements:

D. Braess and J. Schöberl, 2008

Recently developped extensions:

J. Gedicke, S. Geevers and I. Perugia, 2019

J. Gedicke, S. Geevers, I. Perugia and J. Schöberl, 2020

T. Chaumont-Frelet and M. Vohraĺık, 2021

Here, I will detail the last construction.
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The idea (1/2)

Let θa := ∇ψa ×∇× A. There are two important properties:∑
a∈Vh

θa = 0, ∇ · θa = −∇ψa · Jh.

At the discrete level, we have∑
a∈Vh

(∇ψa ×∇× Ah) = 0, ∇ · (∇ψa ×∇× Ah) 6= −∇ψa · Jh.

It is tempting to set

θa
h := arg min

v∈RT p(T a
h )∩H0(div,ωa)

∇·v=−∇ψa·Jh

‖v −∇ψa ×∇× Ah‖ωa ,

but it does not sum up to zero.
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The idea (2/2)

If we set

θ̂
a
h := arg min

v∈RT p(T a
h )∩H0(div,ωa)

∇·v=−∇ψa·Jh

‖v −∇ψa ×∇× Ah‖ωa ,

then

θ̂h :=
∑
a∈Vh

θ̂
a
h 6= 0 but ∇ · θ̂h = 0.

If we had an alternative decomposition

θ̂h :=
∑
a∈Vh

θ̃
a
h with ∇ · θ̃

a
h = 0,

then the correction θa
h := θ̂

a
h − θ̃

a
h would work!

Unfortunately, divergence-free Raviart-Thomas basis are complicated.
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Trick #1: Over-constrained minimization

We instead set

θ̂
a
h := arg min

v∈RT p(T a
h )∩H0(div,ωa)

(v−∇ψa×∇×Ah,r)ωa =0 ∀r∈P0(T a
h )

∇·v=−∇ψa·Jh

‖v −∇ψa ×∇× Ah‖ωa ,

where the mean-value constrain works because Ah solves the discrete

problem. We then set

θ̂h :=
∑
a∈Vh

θ̂
a
h.

Importantly, we have

(θ̂h, r)Ω = 0 ∀r ∈ P0(Th).
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Trick #2: Divergence-free decomposition of θ̂ (1/2)

The θ̂
a
h have the correct divergence, but does not sum up to zero.

We need a divergence-free decomposition of θ̂h into contributions θ̃
a
h.

We set for each a ∈ Vh and K ∈ T a
h

θ̃
a
h|K := arg min

vh∈RT p+1(K)
∇·vh=0

vh·nK =ψa θ̂h·nK on ∂K

‖vh − ψaθ̂h‖K

This is indeed well-posed since

(ψaθ̂h · nK , 1)∂K = (ψa, θ̂h · nK )∂K

= (∇ψa, θ̂h)K + (∇ · θ̂h, ψa)K

= 0.
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Trick #2: Divergence-free decomposition of θ̂ (2/2)

We can then actually show that∑
a∈Vh

θ̃
a
h = θ̂h,

so that setting

θa
h := θ̂

a
h − θ̃

a
h ∈ H0(div, ωa),

we have

∇ · θa
h = −∇ψa · Jh,

∑
a∈Vh

θa
h = 0.
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Local flux contruction and efficiency

Since the θa
h have all the required properties, we can now set

Ba
h := arg min

vh∈Np+1(T a
h )∩H0(curl,ωa)

∇×vh=ψaJh+θa
h

‖vh − ψa∇× Ah‖ωa ,

and we construct an equilibrated flux as

Bh :=
∑
a∈Vh

Ba
h.

Efficiency

‖Bh −∇× Ah‖K . ‖∇× (A− Ah)‖K̃

The hidden constant does not depend on p.

T. Chaumont-Frelet, A. Ern and M. Vohraĺık, 2021
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Concluding remarks



A quick landscape

p-robustness in H(curl)

T. Chaumont-Frelet, A. Ern and M. Vohraĺık, 2020: single element

T. Chaumont-Frelet, A. Ern and M. Vohraĺık, 2021: edge patch

T. Chaumont-Frelet, M. Vohraĺık, in preparation: vertex patch

Equilibration strategies for H(curl)

T. Chaumont-Frelet, A. Ern and M. Vohraĺık, 2021: broken patchwise

T. Chaumont-Frelet, M. Vohraĺık, 2021: Prager-Synge

T. Chaumont-Frelet, 2021: alternative equilibration

Commuting quasi-interpolation under minimal regularity

T. Chaumont-Frelet, M. Vohraĺık, in preparation
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