June 8-10, 2022 – Inria Workshop 2022

## A-posteriori-steered and adaptive *p*-robust multigrid solvers

## Ani Miraçi

joint work with

#### Jan Papež, Dirk Praetorius, Julian Streitberger, Martin Vohralík



TU Wien Institute for Analysis and Scientific Computing







#### Setting

#### A-posteriori-steered multigrid

Adaptivity in a-posteriori-steered solvers

Adaptive finite element setting

#### Conclusion

# NumPIDES

#### Geometric multigrid solver with error control for high-order discretization:

- polynomial degree p-robustness
   Schöberl, Melenk, Pechstein, and Zaglmayr. IMA J. Numer. Anal. 2008
- number of levels L-robustness
   Chen, Nochetto, Xu. Numer. Math. 2012
- optimal step-sizes
   Heinrichs. J. Comput. Phys. 1988

#### Geometric multigrid solver with error control for high-order discretization:

- polynomial degree p-robustness
   Schöberl, Melenk, Pechstein, and Zaglmayr. IMA J. Numer. Anal. 2008
- number of levels L-robustness
   Chen, Nochetto, Xu. Numer. Math. 2012
- optimal step-sizes
   Heinrichs. J. Comput. Phys. 1988

NumPDFs

#### Geometric multigrid solver with error control for high-order discretization:

- polynomial degree p-robustness
   Schöberl, Melenk, Pechstein, and Zaglmayr. IMA J. Numer. Anal. 2008
- number of levels L-robustness
   Chen, Nochetto, Xu. Numer. Math. 2012
- optimal step-sizes
   Heinrichs. J. Comput. Phys. 1988

NumPDEs

#### Geometric multigrid solver with error control for high-order discretization:

- polynomial degree p-robustness
   Schöberl, Melenk, Pechstein, and Zaglmayr. IMA J. Numer. Anal. 2008
- number of levels L-robustness
   Chen, Nochetto, Xu. Numer. Math. 2012
- optimal step-sizes Heinrichs. J. Comput. Phys. 1988

NumPDEs



## Setting

Ani Miraçi (TU Wien)

A-posteriori-steered and adaptive *p*-robust MG (Inria22)

Fix  $p \ge 1$ , let  $\mathbb{P}_p(\mathcal{T}_L) := \{ v_L \in L^2(\Omega), v_L | _K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_L \}$ Define  $\mathbb{N}^p := \mathbb{P}_p(\mathcal{T}_L) \oplus H^1(\Omega)$ 

**Discrete problem:** Find  $u_L \in \mathbb{V}_L^p$  such that

$$\langle\!\langle u_L, v_L \rangle\!\rangle = (f, v_L) \quad \forall v_L \in \mathbb{V}_L^p$$

By introducing a basis of  $\mathbb{V}_L^p$ :  $A_L \mathbb{U}_L = \mathbb{F}_L$ We work with the *basis-independent* functional formulation (FE)

Algebraic residual functional:  $v_L \mapsto (f, v_L) - \langle\!\!\langle u_L^i, v_L \rangle\!\!\rangle \in \mathbb{R}, \quad v_L \in \mathbb{V}_L^p$ 



Fix 
$$p \ge 1$$
, let  $\mathbb{P}_p(\mathcal{T}_L) := \{ v_L \in L^2(\Omega), v_L |_K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_L \}$   
Define  
 $\mathbb{V}_L^p := \mathbb{P}_p(\mathcal{T}_L) \cap H_0^1(\Omega)$ 

**Discrete problem:** Find  $u_L \in \mathbb{V}_L^p$  such that

$$\langle\!\langle u_L, v_L \rangle\!\rangle = (f, v_L) \quad \forall v_L \in \mathbb{V}_L^p$$

By introducing a basis of  $\mathbb{V}_{L}^{p}$ :  $A_{L}U_{L} = F_{L}$ We work with the *basis-independent* functional formulation (FE)

Algebraic residual functional:  $v_L \mapsto (f, v_L) - \langle\!\!\langle u_L^i, v_L 
angle \in \mathbb{R}, \quad v_L \in \mathbb{V}_L^p$ 



Fix 
$$p \ge 1$$
, let  $\mathbb{P}_p(\mathcal{T}_L) := \{ v_L \in L^2(\Omega), v_L |_K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_L \}$   
Define  
 $\mathbb{V}_I^p := \mathbb{P}_p(\mathcal{T}_L) \cap H_0^1(\Omega)$ 

**Discrete problem:** Find  $u_L \in \mathbb{V}_L^p$  such that

$$\langle\!\langle u_L, v_L \rangle\!\rangle = (f, v_L) \quad \forall v_L \in \mathbb{V}_L^p$$

By introducing a basis of  $\mathbb{V}_{L}^{p}$ :  $A_{L}\mathbf{U}_{L} = \mathbf{F}_{L}$ We work with the *basis-independent* functional formulation (FE)

Algebraic residual functional:  $v_L \mapsto (f, v_L) - \langle\!\langle u_L^i, v_L \rangle\!\rangle \in \mathbb{R}, \quad v_L \in \mathbb{V}_L^p$ 





Fix 
$$p \ge 1$$
, let  $\mathbb{P}_p(\mathcal{T}_L) := \{ v_L \in L^2(\Omega), v_L |_K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_L \}$   
Define  
 $\mathbb{V}_I^p := \mathbb{P}_p(\mathcal{T}_L) \cap H_0^1(\Omega)$ 

**Discrete problem:** Find  $u_L \in \mathbb{V}_L^p$  such that

$$\langle\!\langle u_L, v_L \rangle\!\rangle = (f, v_L) \quad \forall v_L \in \mathbb{V}_L^p$$

By introducing a basis of  $\mathbb{V}_{L}^{p}$ :  $A_{L}U_{L} = F_{L}$ We work with the *basis-independent* functional formulation (FE)

Algebraic residual functional:  $v_L \mapsto (f, v_L) - \langle\!\langle u_L^i, v_L \rangle\!\rangle \in \mathbb{R}, \quad v_L \in \mathbb{V}_L^p$ 



(FE)

Fix 
$$p \ge 1$$
, let  $\mathbb{P}_p(\mathcal{T}_L) := \{ v_L \in L^2(\Omega), v_L |_K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_L \}$   
Define  
 $\mathbb{V}_I^p := \mathbb{P}_p(\mathcal{T}_L) \cap H_0^1(\Omega)$ 

**Discrete problem:** Find  $u_L \in \mathbb{V}_L^p$  such that

$$\langle\!\langle u_L, v_L \rangle\!\rangle = (f, v_L) \quad \forall v_L \in \mathbb{V}_L^p$$

By introducing a basis of  $\mathbb{V}_L^p$ :  $A_L U_L = F_L$ We work with the *basis-independent* functional formulation (FE)

 $\mathsf{Algebraic\ residual\ functional:\ } v_L \mapsto (f, v_L) - \langle\!\!\langle u_L^i\,,\, v_L\rangle\!\!\rangle \in \mathbb{R}, \quad v_L \in \mathbb{V}_L^p$ 



Fix 
$$p \ge 1$$
, let  $\mathbb{P}_p(\mathcal{T}_L) := \{ v_L \in L^2(\Omega), v_L |_K \in \mathbb{P}_p(K) \ \forall K \in \mathcal{T}_L \}$   
Define  
 $\mathbb{V}_I^p := \mathbb{P}_p(\mathcal{T}_L) \cap H_0^1(\Omega)$ 

**Discrete problem:** Find  $u_L \in \mathbb{V}_L^p$  such that

$$\langle\!\langle u_L, v_L \rangle\!\rangle = (f, v_L) \quad \forall v_L \in \mathbb{V}_L^p$$

By introducing a basis of  $\mathbb{V}_L^p$ :  $A_L \mathbb{U}_L = \mathbb{F}_L$ We work with the *basis-independent* functional formulation (FE)

Algebraic residual functional:  $v_L \mapsto (f, v_L) - \langle\!\langle u_L^i, v_L \rangle\!\rangle \in \mathbb{R}, \quad v_L \in \mathbb{V}_L^p$ 



NumPDEs

**Example:** Two different hierarchies with L = 3 refinements

**Assumptions:** The meshes  $\{\mathcal{T}_{\ell}\}_{1 \le \ell \le L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- ( $C_{
  m qu}$ -)quasi-uniform  $\mathcal{T}_0$
- ( $\kappa_{\mathcal{T}}$ -)shape-regularity
- ( $C_{\mathrm{ref}}$ -)maximum strength of refinement

For given p and L, choose *increasing* polynomial degrees

Define the space

 $\mathbb{V}_{\ell}^{p_{\ell}} = \mathbb{P}_{p_{\ell}}(\mathcal{T}_{\ell}) \cap H^1_0(\Omega)$ 

Economical choice:  $p_0 = p_1 = \ldots = p_{L-1} = 1, \quad p_L = p_L$ 





NumPIDES

**Example:** Two different hierarchies with L = 3 refinements

**Assumptions:** The meshes  $\{\mathcal{T}_\ell\}_{1 \le \ell \le L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- ( $C_{
  m qu}$ -)quasi-uniform  $\mathcal{T}_0$
- ( $\kappa_{\mathcal{T}}$ -)shape-regularity
- ( $C_{\rm ref}$ -)maximum strength of refinement

For given p and L, choose *increasing* polynomial degrees

Define the space

$$\mathbb{V}_{\ell}^{p_{\ell}} = \mathbb{P}_{p_{\ell}}(\mathcal{T}_{\ell}) \cap H_{0}^{1}(\Omega)$$

Economical choice:  $p_0 = p_1 = \ldots = p_{L-1} = 1, \quad p_L = p_L$ 





**Example:** Two different hierarchies with L = 3 refinements

**Assumptions:** The meshes  $\{\mathcal{T}_{\ell}\}_{1 \leq \ell \leq L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- ( $C_{
  m qu}$ -)quasi-uniform  $\mathcal{T}_0$
- ( $\kappa_{\mathcal{T}}$ -)shape-regularity
- ( $C_{\mathrm{ref}}$ -)maximum strength of refinement

For given p and L, choose *increasing* polynomial degrees

Define the space

$$\mathbb{V}^{p_\ell}_{\ell} = \mathbb{P}_{p_\ell}(\mathcal{T}_\ell) \cap H^1_0(\Omega)$$

*Economical* choice:  $p_0 = p_1 = ... = p_{L-1} = 1$ ,  $p_L = p_1$ 



NumPDEs

**ASC**→**TUWIEN** 



**Example:** Two different hierarchies with L = 3 refinements

**Assumptions:** The meshes  $\{\mathcal{T}_{\ell}\}_{1 \leq \ell \leq L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- ( $C_{\mathrm{qu}}$ -)quasi-uniform  $\mathcal{T}_0$
- ( $\kappa_{\mathcal{T}}$ -)shape-regularity
- ( $C_{\mathrm{ref}}$ -)maximum strength of refinement

For given p and L, choose *increasing* polynomial degrees

Define the space

$$\mathbb{V}_{\ell}^{p_{\ell}} = \mathbb{P}_{p_{\ell}}(\mathcal{T}_{\ell}) \cap H_{0}^{1}(\Omega)$$

*Economical* choice:  $p_0 = p_1 = ... = p_{L-1} = 1$ ,  $p_L = p_1$ 



NumPDEs

**ASC**→**TUWIEN** 



**Example:** Two different hierarchies with L = 3 refinements

**Assumptions:** The meshes  $\{\mathcal{T}_{\ell}\}_{1 \leq \ell \leq L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- ( $C_{\mathrm{qu}}$ -)quasi-uniform  $\mathcal{T}_0$
- ( $\kappa_{\mathcal{T}}$ -)shape-regularity
- ( $C_{ref}$ -)maximum strength of refinement

For given p and L, choose increasing polynomial degrees

Define the spaces

Ani Miraçi (TU Wien)

Economical choice:  $p_0=p_1=\ldots=p_{L-1}=1, \quad p_L=p_L$ 







**Assumptions:** The meshes  $\{\mathcal{T}_{\ell}\}_{1 \leq \ell \leq L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- ( $C_{\mathrm{qu}}$ -)quasi-uniform  $\mathcal{T}_0$
- ( $\kappa_{\mathcal{T}}$ -)shape-regularity
- $(C_{ref})$ maximum strength of refinement

For given p and L, choose *increasing* polynomial degrees

$$1 = p_0 \le p_1 \le p_2 \le \ldots \le p_L = p$$

Define the spaces

$$-p_0 \leq p_1 \leq p_2 \leq \cdots \leq p_L - p$$

*Economical* choice:  $p_0 = p_1 = ... = p_{L-1} = 1$ ,  $p_L = p_1$ 





NumPDEs

**Assumptions:** The meshes  $\{\mathcal{T}_{\ell}\}_{1 \leq \ell \leq L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- ( $C_{
  m qu}$ -)quasi-uniform  $\mathcal{T}_0$
- ( $\kappa_{\mathcal{T}}$ -)shape-regularity
- ( $C_{ref}$ -)maximum strength of refinement

For given p and L, choose *increasing* polynomial degrees

$$1 = p_0 \le p_1 \le p_2 \le \ldots \le p_L = p$$

Define the spaces

$$\mathbb{V}_{\ell}^{p_{\ell}} = \mathbb{P}_{p_{\ell}}(\mathcal{T}_{\ell}) \cap H_{0}^{1}(\Omega)$$

*Economical* choice:  $p_0 = p_1 = \ldots = p_{L-1} = 1$ ,  $p_L = p_1$ 



NumPDEs



NumPI)Es ASC+TUWIEN

**Example:** Two different hierarchies with L = 3 refinements

**Assumptions:** The meshes  $\{\mathcal{T}_{\ell}\}_{1 \leq \ell \leq L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- $(C_{qu})$ -)quasi-uniform  $\mathcal{T}_0$
- $(\kappa_{\tau})$  shape-regularity
- $(C_{ref})$ -)maximum strength of refinement

For given p and L, choose *increasing* polynomial degrees

$$1 = p_0 \le p_1 \le p_2 \le \ldots \le p_L = p,$$

Define the spaces

$$\mathbb{V}^{p_\ell}_\ell = \mathbb{P}_{p_\ell}(\mathcal{T}_\ell) \cap H^1_0(\Omega)$$





NumPI)Es ASC+TUWIEN

**Example:** Two different hierarchies with L = 3 refinements

**Assumptions:** The meshes  $\{\mathcal{T}_{\ell}\}_{1 \leq \ell \leq L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- $(C_{qu})$ -)quasi-uniform  $\mathcal{T}_0$
- $(\kappa_{\tau})$  shape-regularity
- $(C_{ref})$ -)maximum strength of refinement

For given p and L, choose *increasing* polynomial degrees

$$1 = p_0 \leq p_1 \leq p_2 \leq \ldots \leq p_L = p,$$

Define the spaces

$$-p_0 \leq p_1 \leq p_2 \leq \cdots \leq p_L - p,$$
$$\mathbb{V}_{\ell}^{p_{\ell}} = \mathbb{P}_{p_{\ell}}(\mathcal{T}_{\ell}) \cap H_0^1(\Omega)$$





**Assumptions:** The meshes  $\{\mathcal{T}_{\ell}\}_{1 \leq \ell \leq L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- ( $C_{
  m qu}$ -)quasi-uniform  $\mathcal{T}_0$
- ( $\kappa_{\mathcal{T}}$ -)shape-regularity
- ( $C_{ref}$ -)maximum strength of refinement

For given p and L, choose *increasing* polynomial degrees

$$1 = p_0 \leq p_1 \leq p_2 \leq \ldots \leq p_L = p,$$

Define the spaces

$$\mathbb{V}_{\ell}^{p_{\ell}} = \mathbb{P}_{p_{\ell}}(\mathcal{T}_{\ell}) \cap H_{0}^{1}(\Omega)$$

*Economical* choice:  $p_0 = p_1 = \ldots = p_{L-1} = 1$ ,  $p_L = p_1$ 



NumPI)Es



**Assumptions:** The meshes  $\{\mathcal{T}_{\ell}\}_{1 \leq \ell \leq L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- ( $C_{\mathrm{qu}}$ -)quasi-uniform  $\mathcal{T}_0$
- ( $\kappa_{\mathcal{T}}$ -)shape-regularity
- (C<sub>ref</sub>-)maximum strength of refinement

For given p and L, choose *increasing* polynomial degrees

$$1 = p_0 \le p_1 \le p_2 \le \ldots \le p_L = p$$

Define the spaces

$$\mathbb{V}_{\ell}^{p_{\ell}} = \mathbb{P}_{p_{\ell}}(\mathcal{T}_{\ell}) \cap H_0^1(\Omega)$$

*Economical* choice:  $p_0 = p_1 = \ldots = p_{L-1} = 1$ ,  $p_L = p_1$ 







**Assumptions:** The meshes  $\{\mathcal{T}_{\ell}\}_{1 \leq \ell \leq L}$  can be generated through *uniform* or *adaptive* refinement, satisfying

- ( $C_{\mathrm{qu}}$ -)quasi-uniform  $\mathcal{T}_0$
- ( $\kappa_{\mathcal{T}}$ -)shape-regularity
- (C<sub>ref</sub>-)maximum strength of refinement

For given p and L, choose *increasing* polynomial degrees

$$1 = p_0 \leq p_1 \leq p_2 \leq \ldots \leq p_L = p_2$$

Define the spaces

$$\mathbb{V}_{\ell}^{p_{\ell}} = \mathbb{P}_{p_{\ell}}(\mathcal{T}_{\ell}) \cap H_0^1(\Omega)$$

Economical choice:  $p_0 = p_1 = \ldots = p_{L-1} = 1$ ,  $p_L = p$ 

NumPI)Fs





NumPIDES

Let  $\mathcal{V}_\ell$  be the set of vertices of  $\mathcal{T}_\ell$ 

Given a vertex  $\mathbf{a}\!\in\!\mathcal{V}_\ell$  , we denote

- $\mathcal{T}_{\ell}^{\mathbf{a}}$  the patch of elements sharing vertex  $\mathbf{a}$
- $\omega_{\ell}^{\mathbf{a}}$  the corresponding patch subdomain
- $\mathbb{V}_{\ell}^{\mathbf{a}} = \mathbb{P}_{p_{\ell}}(\mathcal{T}_{\ell}) \cap H_0^1(\omega_{\ell}^{\mathbf{a}})$  the associated local space









- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level
- level-wise step-sizes in multigrid error correction stage: optimally chosen by line search



• V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing

zero pre- and one single post-smoothing step

#### • cheapest $\mathbb{P}^1$ coarse solve

- additive Schwarz / block Jacobi smoothing: fully parallel on each level
- level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

ASC **→**TUWIEN



- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level
- level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

ASC **•** TUWIEN



- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level
- level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

ASC **→**TUWIEN



- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level
- level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

ASC **→**TUWIEN



- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level
- level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

ASC **→**TUWIEN



- V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing
- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level

level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

**ASC →TUWIEN** 



- V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing
- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level

level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

**ASC →TUWIEN** 



- V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing
- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level

level-wise step-sizes in multigrid error correction stage: optimally chosen by line search
**ASC →TUWIEN** 



- V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing
- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level

level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

**ASC →TUWIEN** 



- V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing
- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level

level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

ASC→TUWIEN



- V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing
- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level

level-wise step-sizes in multigrid error correction stage: optimally chosen by line search.

ASC **→**TUWIEN



- V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing
- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level
- level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

ASC **→**TUWIEN



- V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing
- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level
- level-wise step-sizes in multigrid error correction stage: optimally chosen by line search.

ASC→TUWIEN



- V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing
- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level
- level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

ASC+TUWIEN



- V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing
- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level
- level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

ASC **→**TUWIEN



- V-cycle of geometric multigrid: coarse grid solve and level-wise smoothing
- zero pre- and one single post-smoothing step
- cheapest  $\mathbb{P}^1$  coarse solve
- additive Schwarz / block Jacobi smoothing: fully parallel on each level
- level-wise step-sizes in multigrid error correction stage: optimally chosen by line search

NumPDEs

### Let $u_L^i \in \mathbb{V}_L^p$ be arbitrary.

**oarse solve:** Define  $\rho_0^* \in \mathbb{V}_0^+$  by:

$$\underbrace{\rho_0^i, v_0}_{\text{obal lifting}} = \underbrace{(f, v_0) - \langle\!\langle u_L^i, v_0 \rangle\!\rangle}_{\text{global algebraic residual}}, \quad \forall v_0 \in \mathbb{V}_0^1 \text{ and set } \lambda_0^i := 1$$

Level-wise local solves: For 
$$\ell = 1:L$$
, for all  $\mathbf{a} \in \mathcal{V}_{\ell}$ , define  $\rho_{\ell,\mathbf{a}} \in \mathbb{V}_{\ell}^{\mathbf{a}}$  by  

$$\underbrace{\langle\!\langle \rho_{\ell,\mathbf{a}}, v_{\ell,\mathbf{a}} \rangle\!\rangle_{\omega_{\ell}^{\mathbf{a}}}}_{\text{local lifting}} = \underbrace{(f, v_{\ell,\mathbf{a}})_{\omega_{\ell}^{\mathbf{a}}} - \langle\!\langle u_{L}^{i}, v_{\ell,\mathbf{a}} \rangle\!\rangle_{\omega_{\ell}^{\mathbf{a}}} - \sum_{k=0}^{\ell-1} \lambda_{k}^{i} \langle\!\langle \rho_{k}^{i}, v_{\ell,\mathbf{a}} \rangle\!\rangle_{\omega_{\ell}^{\mathbf{a}}}, \quad \forall v_{\ell,\mathbf{a}} \in \mathbb{V}_{\ell}^{\mathbf{a}}$$

$$\underbrace{| ocal algebraic residual} = \underbrace{(f, v_{\ell,\mathbf{a}})_{\omega_{\ell}^{\mathbf{a}}} - \langle\!\langle u_{L}^{i}, v_{\ell,\mathbf{a}} \rangle\!\rangle_{\omega_{\ell}^{\mathbf{a}}} - \sum_{k=0}^{\ell-1} \lambda_{k}^{i} \langle\!\langle \rho_{k}^{i}, v_{\ell,\mathbf{a}} \rangle\!\rangle_{\omega_{\ell}^{\mathbf{a}}}, \quad \forall v_{\ell,\mathbf{a}} \in \mathbb{V}_{\ell}^{\mathbf{a}}$$

 $\ell$ -level update (correction direction): Define  $\rho_{\ell}^{i} \in \mathbb{V}_{\ell}^{p_{\ell}}$  by:  $\rho_{\ell}^{i} := \sum_{\mathbf{a} \in \mathcal{V}_{\ell}} \rho_{\ell, \mathbf{a}}$ 

Level-wise step-sizes by line search: Set  $\lambda_{\ell}^i := \frac{(f, \rho_{\ell}^i) - \langle\!\!\langle u_L^i + \sum_{k=0}^{\ell-1} \lambda_k^i \rho_k^i, \rho_{\ell}^i \rangle\!\!\rangle}{\| \rho_{\ell}^i \|^2}$ 

NumPDEs

### Let $u_L^i \in \mathbb{V}_L^p$ be arbitrary.

**Coarse solve:** Define 
$$\rho_0^i \in \mathbb{V}_0^1$$
 by:  $\underbrace{\langle\!\langle \rho_0^i, v_0 \rangle\!\rangle}_{\text{global lifting}} = \underbrace{(f, v_0) - \langle\!\langle u_L^i, v_0 \rangle\!\rangle}_{\text{global algebraic residual}}, \quad \forall v_0 \in \mathbb{V}_0^1 \text{ and set } \lambda_0^i := 1$   
**Level-wise local solves:** For  $\ell = 1:L$ , for all  $\mathbf{a} \in \mathcal{V}_\ell$ , define  $\rho_{\ell, \mathbf{a}} \in \mathbb{V}_\ell^{\mathbf{a}}$  by  
 $\underbrace{\langle\!\langle \rho_{\ell, \mathbf{a}}, v_{\ell, \mathbf{a}} \rangle\!\rangle_{\omega_\ell^a}}_{\text{local lifting}} = \underbrace{(f, v_{\ell, \mathbf{a}})_{\omega_\ell^a} - \langle\!\langle u_L^i, v_{\ell, \mathbf{a}} \rangle\!\rangle_{\omega_\ell^a} - \sum_{k=0}^{\ell-1} \lambda_k^i \langle\!\langle \rho_k^k, v_{\ell, \mathbf{a}} \rangle\!\rangle_{\omega_\ell^a}, \quad \forall v_{\ell, \mathbf{a}} \in \mathbb{V}_\ell^{\mathbf{a}}$ 

 $\ell\text{-level update (correction direction): Define } \rho_\ell^i \in \mathbb{V}_\ell^{p_\ell} \text{ by: } \rho_\ell^i := \sum_{\mathbf{a} \in \mathcal{V}_\ell} \rho_{\ell,\mathbf{a}}$ 

Level-wise step-sizes by line search: Set  $\lambda_{\ell}^i := \frac{(f, \rho_{\ell}^i) - \langle\!\!\langle u_L^i + \sum_{k=0}^{\ell-1} \lambda_k^i \rho_k^i, \rho_{\ell}^i \rangle\!\!\rangle}{\|\rho_{\ell}^i\|^2}$ 

NumPDEs

Let  $u_L^i \in \mathbb{V}_L^p$  be arbitrary.

Level-wise local solves: For  $\ell = 1:L$ , for all  $\mathbf{a} \in \mathcal{V}_{\ell}$ , define  $\rho_{\ell,\mathbf{a}} \in \mathbb{V}_{\ell}^{\mathbf{a}}$  by

$$\underbrace{\langle\!\langle \rho_{\ell,\mathbf{a}}\,,\,v_{\ell,\mathbf{a}}\rangle\!\rangle_{\omega_{\ell}^{\mathbf{a}}}}_{\text{local lifting}} = \underbrace{(f,\!v_{\ell,\mathbf{a}})_{\omega_{\ell}^{\mathbf{a}}} - \langle\!\langle u_{L}^{i}\,,\,v_{\ell,\mathbf{a}}\rangle\!\rangle_{\omega_{\ell}^{\mathbf{a}}} - \sum_{k=0}^{\ell-1} \lambda_{k}^{i} \langle\!\langle \rho_{k}^{i}\,,\,v_{\ell,\mathbf{a}}\rangle\!\rangle_{\omega_{\ell}^{\mathbf{a}}}, \quad \forall v_{\ell,\mathbf{a}} \in \mathbb{V}_{\ell}^{\mathbf{a}}$$

 $\ell$ -level update (correction direction): Define  $ho_\ell^i \in \mathbb{V}_\ell^{p_\ell}$  by:  $ho_\ell^i := \sum_{\mathbf{a} \in \mathcal{V}_\ell} 
ho_{\ell, \mathbf{a}}$ 

Level-wise step-sizes by line search: Set  $\lambda_{\ell}^{i} := \frac{(f, \rho_{\ell}^{i}) - \langle\!\langle u_{L}^{i} + \sum_{k=0}^{\ell-1} \lambda_{k}^{i} \rho_{k}^{i}, \rho_{\ell}^{i} \rangle\!\rangle}{\|\rho_{\ell}^{i}\|^{2}}$ 

NumPI)Es

Let  $u_L^i \in \mathbb{V}_L^p$  be arbitrary.

**Level-wise local solves:** For  $\ell = 1:L$ , for all  $\mathbf{a} \in \mathcal{V}_{\ell}$ , define  $\rho_{\ell,\mathbf{a}} \in \mathbb{V}_{\ell}^{\mathbf{a}}$  by

$$\underbrace{\langle\!\langle \boldsymbol{\rho}_{\ell,\mathbf{a}}\,,\,\boldsymbol{v}_{\ell,\mathbf{a}}\rangle\!\rangle_{\boldsymbol{\omega}_{\ell}^{\mathbf{a}}}}_{\text{local lifting}} = \underbrace{(f,\!\boldsymbol{v}_{\ell,\mathbf{a}})_{\boldsymbol{\omega}_{\ell}^{\mathbf{a}}} - \langle\!\langle \boldsymbol{u}_{L}^{i}\,,\,\boldsymbol{v}_{\ell,\mathbf{a}}\rangle\!\rangle_{\boldsymbol{\omega}_{\ell}^{\mathbf{a}}} - \sum_{k=0}^{\ell-1} \lambda_{k}^{i} \langle\!\langle \boldsymbol{\rho}_{k}^{i}\,,\,\boldsymbol{v}_{\ell,\mathbf{a}}\rangle\!\rangle_{\boldsymbol{\omega}_{\ell}^{\mathbf{a}}}, \quad \forall \boldsymbol{v}_{\ell,\mathbf{a}} \in \mathbb{V}_{\ell}^{\mathbf{a}}$$

 $\ell$ -level update (correction direction): Define  $\rho_{\ell}^{i} \in \mathbb{V}_{\ell}^{p_{\ell}}$  by:  $\rho_{\ell}^{i} := \sum_{\mathbf{a} \in \mathcal{V}_{\ell}} \rho_{\ell, \mathbf{a}}$ 

Level-wise step-sizes by line search: Set  $\lambda_{\ell}^i := \frac{(f, \rho_{\ell}^i) - \langle\!\!\langle u_L^i + \sum_{k=0}^{\ell-1} \lambda_k^i \rho_k^i, \rho_\ell^i \rangle\!\!\rangle}{\|\rho_{\ell}^i\|^2}$ 

NumPDEs

Let  $u_L^i \in \mathbb{V}_L^p$  be arbitrary.

**Level-wise local solves:** For  $\ell = 1:L$ , for all  $\mathbf{a} \in \mathcal{V}_{\ell}$ , define  $\rho_{\ell,\mathbf{a}} \in \mathbb{V}_{\ell}^{\mathbf{a}}$  by

$$\underbrace{\langle\!\langle \boldsymbol{\rho}_{\ell,\mathbf{a}}\,,\,\boldsymbol{v}_{\ell,\mathbf{a}}\rangle\!\rangle_{\boldsymbol{\omega}_{\ell}^{\mathbf{a}}}}_{\text{local lifting}} = \underbrace{(f,\boldsymbol{v}_{\ell,\mathbf{a}})_{\boldsymbol{\omega}_{\ell}^{\mathbf{a}}} - \langle\!\langle \boldsymbol{u}_{L}^{i}\,,\,\boldsymbol{v}_{\ell,\mathbf{a}}\rangle\!\rangle_{\boldsymbol{\omega}_{\ell}^{\mathbf{a}}} - \sum_{k=0}^{\ell-1} \lambda_{k}^{i} \langle\!\langle \boldsymbol{\rho}_{k}^{i}\,,\,\boldsymbol{v}_{\ell,\mathbf{a}}\rangle\!\rangle_{\boldsymbol{\omega}_{\ell}^{\mathbf{a}}}, \quad \forall \boldsymbol{v}_{\ell,\mathbf{a}} \in \mathbb{V}_{\ell}^{\mathbf{a}}$$

 $\ell$ -level update (correction direction): Define  $\rho_{\ell}^{i} \in \mathbb{V}_{\ell}^{p_{\ell}}$  by:  $\rho_{\ell}^{i} := \sum_{\mathbf{a} \in \mathcal{V}_{\ell}} \rho_{\ell,\mathbf{a}}$ 

Level-wise step-sizes by line search: Set  $\lambda_{\ell}^i := \frac{(f, \rho_{\ell}^i) - \langle\!\!\langle u_L^i + \sum_{k=0}^{\ell-1} \lambda_k^i \rho_k^i, \rho_{\ell}^i \rangle\!\!\rangle}{\|\rho_{\ell}^i\|^2}$ 

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be the next iterate constructed from  $u_L^i$  by our solver.

$$\underbrace{\|\!\|\boldsymbol{u}_{L} - \boldsymbol{u}_{L}^{i+1}\|\!\|^{2}}_{new \ error} = \underbrace{\|\!\|\boldsymbol{u}_{J} - \boldsymbol{u}_{J}^{i}\|\!\|^{2}}_{old \ error} - \underbrace{\sum_{j=0}^{J} \left(\lambda_{\ell}^{i}\|\!\|\boldsymbol{\rho}_{\ell}^{i}\|\!\|\right)^{2}}_{= \left(\eta_{\mathrm{alg}}^{i}\right)^{2} \frac{\operatorname{computable}}{\operatorname{error} \ decrease}}$$

$$\begin{aligned} \| u_L - u_L^{i+1} \|^2 &= \left\| \| u_L - \left( u_L^i + \sum_{\ell=0}^L \lambda_\ell^i \rho_\ell^i \right) \right\|^2 \\ &= \left\| \| u_L - u_L^i - \sum_{\ell=0}^{L-1} \lambda_\ell^i \rho_\ell^i \right\|^2 - 2\lambda_L^i \\ &= \left\| \| u_L - u_L^i - \sum_{\ell=0}^{L-1} \lambda_\ell^i \rho_\ell^i \right\|^2 - \left( \lambda_L^i \| \rho_L^i \| \right)^2 = \dots = \| u_L - u_L^i \|^2 - \sum_{\ell=0}^L \left( \lambda_\ell^i \| \rho_\ell^i \| \right)^2 \end{aligned}$$

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be the next iterate constructed from  $u_L^i$  by our solver.

$$\underbrace{\| u_L - u_L^{i+1} \|^2}_{new \ error} = \underbrace{\| u_J - u_J^i \|^2}_{old \ error} - \underbrace{\sum_{j=0}^J \left(\lambda_\ell^i \| \rho_\ell^i \|\right)^2}_{= \left(\eta_{alg}^i\right)^2 \begin{array}{c} computable \\ error \ decrease \end{array}}$$

**Proof:** From finest to coarsest level and by the optimal step-sizes  $\lambda_{\ell}^i := \frac{(f, \rho_{\ell}^i) - (u_L^i + \sum_{k=0}^{c-1} \lambda_k^i \rho_k^i, \rho_{\ell}^i)}{\|\rho_{\ell}^i\|^2}$ :

$$\begin{aligned} \| \boldsymbol{u}_{L} - \boldsymbol{u}_{L}^{i+1} \|^{2} &= \left\| \| \boldsymbol{u}_{L} - \left( \boldsymbol{u}_{L}^{i} + \sum_{\ell=0}^{L} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right) \right\|^{2} \\ &= \left\| \| \boldsymbol{u}_{L} - \boldsymbol{u}_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - 2\lambda_{L}^{i} \\ &= \left\| \| \boldsymbol{u}_{L} - \boldsymbol{u}_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - \left( \lambda_{L}^{i} \| \rho_{L}^{i} \| \right)^{2} = \dots = \| \boldsymbol{u}_{L} - \boldsymbol{u}_{L}^{i} \|^{2} - \sum_{\ell=0}^{L} \left( \lambda_{\ell}^{i} \| \rho_{\ell}^{i} \| \right)^{2} \end{aligned}$$

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be the next iterate constructed from  $u_L^i$  by our solver.

$$\underbrace{\| u_L - u_L^{i+1} \|^2}_{\text{new error}} = \underbrace{\| u_J - u_J^i \|^2}_{\text{old error}} - \underbrace{\sum_{j=0}^J \left(\lambda_\ell^i \| \rho_\ell^i \|\right)^2}_{= \left(\eta_{\text{alg}}^i\right)^2 \underbrace{\text{computable}}_{\text{error decrease}}}$$

$$\begin{aligned} \| u_L - u_L^{i+1} \|^2 &= \left\| \| u_L - \left( u_L^i + \sum_{\ell=0}^L \lambda_\ell^i \rho_\ell^i \right) \right\|^2 \\ &= \left\| \| u_L - u_L^i - \sum_{\ell=0}^{L-1} \lambda_\ell^i \rho_\ell^i \right\|^2 - 2\lambda_L^i \\ &= \left\| \| u_L - u_L^i - \sum_{\ell=0}^{L-1} \lambda_\ell^i \rho_\ell^i \right\|^2 - \left( \lambda_L^i \| \rho_L^i \| \right)^2 = \dots = \| u_L - u_L^i \|^2 - \sum_{\ell=0}^{L} \left( \lambda_\ell^i \| \rho_\ell^i \| \right)^2 \end{aligned}$$

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be the next iterate constructed from  $u_L^i$  by our solver.

$$\underbrace{\left\| u_{L} - u_{L}^{i+1} \right\|^{2}}_{new \ error} = \underbrace{\left\| u_{J} - u_{J}^{i} \right\|^{2}}_{old \ error} - \underbrace{\sum_{j=0}^{J} \left( \lambda_{\ell}^{i} \left\| p_{\ell}^{j} \right\| \right)^{2}}_{= \left( \eta_{\mathrm{alg}}^{i} \right)^{2} \begin{array}{c} \text{computable} \\ error \ decrease \end{array}}$$

$$\begin{aligned} \| \boldsymbol{u}_{L} - \boldsymbol{u}_{L}^{i+1} \| ^{2} &= \left\| \| \boldsymbol{u}_{L} - \left( \boldsymbol{u}_{L}^{i} + \sum_{\ell=0}^{L} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right) \right\| ^{2} \\ &= \left\| \| \boldsymbol{u}_{L} - \boldsymbol{u}_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\| ^{2} - 2\lambda_{L}^{i} \\ &= \left\| \| \boldsymbol{u}_{L} - \boldsymbol{u}_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\| ^{2} - \left( \lambda_{L}^{i} \| \rho_{L}^{i} \| \right) ^{2} = \dots = \| \boldsymbol{u}_{L} - \boldsymbol{u}_{L}^{i} \| ^{2} - \sum_{\ell=0}^{L} \left( \lambda_{\ell}^{i} \| \rho_{\ell}^{i} \| \right) ^{2} \end{aligned}$$

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be the next iterate constructed from  $u_L^i$  by our solver.

$$\underbrace{\| u_L - u_L^{i+1} \|^2}_{\text{new error}} = \underbrace{\| u_J - u_J^i \|^2}_{\text{old error}} - \underbrace{\sum_{j=0}^J \left(\lambda_\ell^i \| \rho_\ell^i \|\right)^2}_{= \left(\eta_{\text{alg}}^i\right)^2 \underbrace{\text{computable}}_{\text{error decrease}}$$

$$\begin{aligned} \| u_L - u_L^{i+1} \|^2 &= \left\| \left\| u_L - \left( u_L^i + \sum_{\ell=0}^L \lambda_\ell^i \rho_\ell^i \right) \right\|^2 \\ &= \left\| \left\| u_L - u_L^i - \sum_{\ell=0}^{L-1} \lambda_\ell^i \rho_\ell^i \right\|^2 - 2\lambda_L^i \\ &= \left\| \left\| u_L - u_L^i - \sum_{\ell=0}^{L-1} \lambda_\ell^i \rho_\ell^i \right\|^2 - \left( \lambda_L^i \| \rho_L^i \| \right)^2 = \dots = \| u_L - u_L^i \|^2 - \sum_{\ell=0}^{L} \left( \lambda_\ell^i \| \rho_\ell^i \| \right)^2 \end{aligned}$$

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be the next iterate constructed from  $u_L^i$  by our solver.

$$\underbrace{\| u_L - u_L^{i+1} \|^2}_{new \ error} = \underbrace{\| u_J - u_J^i \|^2}_{old \ error} - \underbrace{\sum_{\substack{j=0\\ j=0}}^J \left(\lambda_\ell^i \| \rho_\ell^i \| \right)^2}_{= \left(\eta_{alg}^i\right)^2 \ error \ decrease}$$

$$\begin{split} \| u_{L} - u_{L}^{i+1} \|^{2} &= \left\| \left\| u_{L} - \left( u_{L}^{i} + \sum_{\ell=0}^{L} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right) \right\|^{2} \\ &= \left\| \left\| u_{L} - u_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - 2\lambda_{L}^{i} \left( \left\| u_{L} , \rho_{L}^{i} \right\| - \left\| u_{L}^{i} + \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} , \rho_{L}^{i} \right\| \right) + \left( \lambda_{L}^{i} \left\| \rho_{L}^{i} \right\| \right)^{2} \\ &= \left\| \left\| u_{L} - u_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - \left( \lambda_{L}^{i} \left\| \rho_{L}^{i} \right\| \right)^{2} = \dots = \left\| u_{L} - u_{L}^{i} \right\|^{2} - \sum_{\ell=0}^{L} \left( \lambda_{\ell}^{i} \left\| \rho_{\ell}^{i} \right\| \right)^{2} \end{split}$$

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be the next iterate constructed from  $u_L^i$  by our solver.

$$\underbrace{\| u_L - u_L^{i+1} \| ^2}_{new \ error} = \underbrace{\| u_J - u_J^i \| ^2}_{old \ error} - \underbrace{\sum_{j=0}^J \left(\lambda_\ell^i \| \rho_\ell^i \| \right)^2}_{= \left(\eta_{alg}^i\right)^2 \ error \ decrease}$$

$$\begin{split} \| u_{L} - u_{L}^{i+1} \|^{2} &= \left\| \left\| u_{L} - \left( u_{L}^{i} + \sum_{\ell=0}^{L} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right) \right\|^{2} \\ &= \left\| \left\| u_{L} - u_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - 2\lambda_{L}^{i} \left( \left( f, \rho_{L}^{i} \right) - \left\langle \! \left\langle u_{L}^{i} + \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i}, \rho_{L}^{i} \right\rangle \! \right\rangle \right) + \left( \lambda_{L}^{i} \| \rho_{L}^{i} \| \right)^{2} \\ &= \left\| \left\| u_{L} - u_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - \left( \lambda_{L}^{i} \| \rho_{L}^{i} \| \right)^{2} = \dots = \left\| u_{L} - u_{L}^{i} \right\|^{2} - \sum_{\ell=0}^{L} \left( \lambda_{\ell}^{i} \| \rho_{\ell}^{i} \| \right)^{2} \end{split}$$

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be the next iterate constructed from  $u_L^i$  by our solver.

$$\underbrace{\| u_L - u_L^{i+1} \| ^2}_{new \ error} = \underbrace{\| u_J - u_J^i \| ^2}_{old \ error} - \underbrace{\sum_{j=0}^J \left(\lambda_\ell^i \| \rho_\ell^i \| \right)^2}_{= \left(\eta_{alg}^i\right)^2 \ error \ decrease}$$

$$\begin{split} \| u_{L} - u_{L}^{i+1} \|^{2} &= \left\| \left\| u_{L} - \left( u_{L}^{i} + \sum_{\ell=0}^{L} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right) \right\|^{2} \\ &= \left\| \left\| u_{L} - u_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - 2\lambda_{L}^{i} \left( \left( f, \rho_{L}^{i} \right) - \left\langle \! \left\langle u_{L}^{i} + \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i}, \rho_{L}^{i} \right\rangle \! \right\rangle \right) + \left( \lambda_{L}^{i} \| \rho_{L}^{i} \| \right)^{2} \\ &= \left\| \left\| u_{L} - u_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - \left( \lambda_{L}^{i} \| \rho_{L}^{i} \| \right)^{2} = \dots = \left\| u_{L} - u_{L}^{i} \right\|^{2} - \sum_{\ell=0}^{L} \left( \lambda_{\ell}^{i} \| \rho_{\ell}^{i} \| \right)^{2} \end{split}$$

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be the next iterate constructed from  $u_L^i$  by our solver.

$$\underbrace{\| u_L - u_L^{i+1} \| ^2}_{\text{new error}} = \underbrace{\| u_J - u_J^i \| ^2}_{\text{old error}} - \underbrace{\sum_{j=0}^J \left( \lambda_\ell^i \| \rho_\ell^i \| \right)^2}_{= \left( \eta_{\text{alg}}^i \right)^2 \underbrace{\text{computable}}_{\text{error decrease}}$$

$$\begin{split} \| u_{L} - u_{L}^{i+1} \|^{2} &= \left\| \left\| u_{L} - \left( u_{L}^{i} + \sum_{\ell=0}^{L} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right) \right\|^{2} \\ &= \left\| \left\| u_{L} - u_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - 2\lambda_{L}^{i} \left( \left( f, \rho_{L}^{i} \right) - \left\| u_{L}^{i} + \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i}, \rho_{L}^{i} \right\| \right) + \left( \lambda_{L}^{i} \| \rho_{L}^{i} \| \right)^{2} \\ &= \left\| \left\| u_{L} - u_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - \left( \lambda_{L}^{i} \| \rho_{L}^{i} \| \right)^{2} = \dots = \left\| u_{L} - u_{L}^{i} \right\|^{2} - \sum_{\ell=0}^{L} \left( \lambda_{\ell}^{i} \| \rho_{\ell}^{i} \| \right)^{2} \end{split}$$

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be the next iterate constructed from  $u_L^i$  by our solver.

$$\underbrace{\| u_L - u_L^{i+1} \| \|^2}_{\text{new error}} = \underbrace{\| u_J - u_J^i \| \|^2}_{\text{old error}} - \underbrace{\sum_{j=0}^J \left(\lambda_\ell^i \| \rho_\ell^j \| \right)^2}_{= \left(\eta_{\text{alg}}^i\right)^2 \underbrace{\text{computable}}_{\text{error decrease}}$$

$$\begin{aligned} \| u_L - u_L^{i+1} \|^2 &= \left\| \| u_L - \left( u_L^i + \sum_{\ell=0}^L \lambda_\ell^i \rho_\ell^i \right) \right\|^2 \\ &= \left\| \| u_L - u_L^i - \sum_{\ell=0}^{L-1} \lambda_\ell^i \rho_\ell^i \right\|^2 - 2\lambda_L^i \left( (f, \rho_L^i) - \left\langle \! \left\langle u_L^i + \sum_{\ell=0}^{L-1} \lambda_\ell^i \rho_\ell^i , \rho_L^i \right\rangle \! \right\rangle \right) + \left( \lambda_L^i \| \rho_L^i \| \right)^2 \\ &= \left\| \| u_L - u_L^i - \sum_{\ell=0}^{L-1} \lambda_\ell^i \rho_\ell^i \right\|^2 - \left( \lambda_L^i \| \rho_L^i \| \right)^2 = \dots = \| u_L - u_L^i \|^2 - \sum_{\ell=0}^L \left( \lambda_\ell^i \| \rho_\ell^i \| \right)^2 \\ &= \| u_L - u_L^i \|^2 - \left( \eta_{\text{alg}}^i \right)^2 \end{aligned}$$

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be the next iterate constructed from  $u_L^i$  by our solver.

$$\underbrace{\| u_L - u_L^{i+1} \| ^2}_{\text{new error}} = \underbrace{\| u_J - u_J^i \| ^2}_{\text{old error}} - \underbrace{\sum_{j=0}^J \left( \lambda_\ell^i \| \rho_\ell^i \| \right)^2}_{= \left( \eta_{\text{alg}}^i \right)^2 \underbrace{\text{computable}}_{\text{error decrease}}$$

$$\begin{split} \|\|u_{L} - u_{L}^{i+1}\|\|^{2} &= \left\| \|u_{L} - \left(u_{L}^{i} + \sum_{\ell=0}^{L} \lambda_{\ell}^{i} \rho_{\ell}^{i}\right) \right\|^{2} \\ &= \left\| \|u_{L} - u_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - 2\lambda_{L}^{i} \left( \left(f, \rho_{L}^{i}\right) - \left\langle \!\! \left\langle u_{L}^{i} + \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i}, \rho_{L}^{i} \right\rangle \!\! \right\rangle \right) + \left(\lambda_{L}^{i} \|\|\rho_{L}^{i}\|\|\right)^{2} \\ &= \left\| \|u_{L} - u_{L}^{i} - \sum_{\ell=0}^{L-1} \lambda_{\ell}^{i} \rho_{\ell}^{i} \right\|^{2} - \left(\lambda_{L}^{i} \|\|\rho_{L}^{i}\|\|\right)^{2} = \dots = \|u_{L} - u_{L}^{i}\|\|^{2} - \sum_{\ell=0}^{L} \left(\lambda_{\ell}^{i} \|\|\rho_{\ell}^{i}\|\|\right)^{2} \\ &= \left\| \|u_{L} - u_{L}^{i}\|\|^{2} - \left(\eta_{alg}^{i}\right)^{2} \end{split}$$

### Main results

NumPDEs

### Theorem (*p*-robust reliable and efficient bound on the algebraic error)

Let  $u_L^i \in \mathbb{V}_L^p$  be arbitrary. Let  $\eta_{alg}^i$  be the associated estimator of the algebraic error.  $\implies \||u_L - u_L^i||| \ge \eta_{alg}^i \quad \text{and} \quad \eta_{alg}^i \ge \beta |||u_L - u_L^i||| \quad \text{with} \quad 0 < \beta(\kappa_T, L, d, \mathbf{K}) < 1$ 

Theorem (*p*-robust error contraction of the multilevel solver)

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_\ell^{i+1} \in \mathbb{V}_L^p$  be constructed from  $u_L^i$  using one step of the solver.  $\implies \qquad |||u_L - u_\ell^{i+1}||| \le \alpha |||u_L - u_L^i||| \quad \text{with} \quad \alpha = \sqrt{1 - \beta^2}$ 

Remark:

- $\beta$  is independent of the polynomial degree p
- The dependence on L is at most *linear* under minimal  $H^1$ -regularity
- Complete *independence* from L is obtained in  $H^2$ -regularity setting

$$\| u_L - u_L^{i+1} \| ^2 = \| u_L - u_L^i \| ^2 - (\eta_{\text{alg}}^i)^2$$

NumPDEs

### Theorem (*p*-robust reliable and efficient bound on the algebraic error)

 $\begin{array}{l} \text{Let } u_L^i \in \mathbb{V}_L^p \text{ be arbitrary. Let } \eta_{\mathrm{alg}}^i \text{ be the associated estimator of the algebraic error.} \\ \implies \quad \| u_L - u_L^i \| \geq \eta_{\mathrm{alg}}^i \quad \text{and} \quad \eta_{\mathrm{alg}}^i \geq \beta \| \| u_L - u_L^i \| \quad \text{with} \quad 0 < \beta(\kappa_{\mathcal{T}}, L, d, \mathbf{K}) < 1 \\ \end{array}$ 

Theorem (*p*-robust error contraction of the multilevel solver)

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_\ell^{i+1} \in \mathbb{V}_L^p$  be constructed from  $u_L^i$  using one step of the solver.

 $\implies$ 

 $\|\!|\!| u_L - u_\ell^{i+1} |\!|\!|\!| \le \alpha \|\!|\!| u_L - u_L^i |\!|\!|\!| \quad \text{with} \quad \alpha = \sqrt{1 - \beta^2}$ 

Remark:

- $\beta$  is independent of the polynomial degree p
- The dependence on L is at most *linear* under minimal  $H^1$ -regularity
- Complete *independence* from L is obtained in  $H^2$ -regularity setting

$$\| u_L - u_L^{i+1} \| ^2 = \| u_L - u_L^i \| ^2 - (\eta_{\text{alg}}^i)^2$$

NumPIDES

### Theorem (*p*-robust reliable and efficient bound on the algebraic error)

 $\begin{array}{l} \text{Let } u_L^i \in \mathbb{V}_L^p \text{ be arbitrary. Let } \eta_{\mathrm{alg}}^i \text{ be the associated estimator of the algebraic error.} \\ \implies \quad \| u_L - u_L^i \| \geq \eta_{\mathrm{alg}}^i \quad \text{and} \quad \eta_{\mathrm{alg}}^i \geq \beta \| u_L - u_L^i \| \quad \text{with} \quad 0 < \beta(\kappa_{\mathcal{T}}, L, d, \mathbf{K}) < 1 \\ \end{array}$ 

Theorem (*p*-robust error contraction of the multilevel solver)

For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_\ell^{i+1} \in \mathbb{V}_L^p$  be constructed from  $u_L^i$  using one step of the solver.

# $\implies$

### Remark:

- ${\ensuremath{\, \rm \bullet}}\ \beta$  is independent of the polynomial degree p
- The dependence on L is at most *linear* under minimal  $H^1$ -regularity
- Complete *independence* from L is obtained in  $H^2$ -regularity setting

$$\| \| u_L - u_L^{i+1} \| \|^2 = \| \| u_L - u_L^i \| \|^2 - (\eta_{\text{alg}}^i)^2$$

 $\| u_L - u_\ell^{i+1} \| \leq \alpha \| u_L - u_L^i \|$  with  $\alpha = \sqrt{1 - \beta^2}$ 



Stopping criterion:

$$\frac{\|\mathbf{F}_L - A_L \mathbf{U}_L^{i_s}\|}{\|\mathbf{F}_L\|} \le 10^{-5} \frac{\|\mathbf{F}_L - A_L \mathbf{U}_L^0\|}{\|\mathbf{F}_L\|}.$$

The mesh hierarchies here are obtained from L uniform refinements of an initial Delaunay mesh  $\mathcal{T}_0$ 

|   |   |          | Sine                 | Peak                 | L-shape              | Ch                   | eckerboard                          | Skyscraper                       |                                     |  |  |  |  |
|---|---|----------|----------------------|----------------------|----------------------|----------------------|-------------------------------------|----------------------------------|-------------------------------------|--|--|--|--|
|   |   |          | $\mathbf{K} = I$     | $\mathbf{K} = I$     | $\mathbf{K} = I$     | $\mathbf{K} = I$     | $\mathcal{J}(\mathbf{K}) = O(10^6)$ | $\mathcal{J}(\mathbf{K}) = O(1)$ | $\mathcal{J}(\mathbf{K}) = O(10^7)$ |  |  |  |  |
|   |   |          | $1 \rightarrow 1, p$                | $1 \rightarrow 1, p$             | $1 \rightarrow 1, p$                |  |  |  |  |
| L | p | DoF      | $i_{s}$              | $i_{s}$              | $i_{ m s}$           | $i_{s}$              | $i_{s}$                             | $i_{ m s}$                       | $i_{s}$                             |  |  |  |  |
| 3 | 1 | $2e^4$   | 19                   | 19                   | 21                   | 18                   | 18                                  | 19                               | 19                                  |  |  |  |  |
|   | 3 | $1e^5$   | 29                   | 28                   | 29                   | 27                   | 28                                  | 31                               | 31                                  |  |  |  |  |
|   | 6 | $6e^5$   | 30                   | 30                   | 26                   | 24                   | 24 25 28                            |                                  | 28                                  |  |  |  |  |
|   | 9 | $1e^{6}$ | 31                   | 30                   | 23                   | 23                   | 23                                  | 26                               | 26                                  |  |  |  |  |
| 4 | 1 | $6e^4$   | 21                   | 20                   | 21                   | 19                   | 19                                  | 19                               | 19                                  |  |  |  |  |
|   | 3 | $6e^5$   | 29                   | 29                   | 28                   | 26                   | 27                                  | 30                               | 30                                  |  |  |  |  |
|   | 6 | $2e^{6}$ | 31                   | 30                   | 25                   | 24                   | 24                                  | 27                               | 27                                  |  |  |  |  |
|   | 9 | $5e^{6}$ | 32                   | 31                   | 23                   | 22                   | 23                                  | 25                               | 25                                  |  |  |  |  |

Numerical  ${f K}$ - and L-robustness is observed even in low-regularity cases

Stopping criterion:

$$\frac{\|\mathbf{F}_L - A_L \mathbf{U}_L^{i_{\mathrm{S}}}\|}{\|\mathbf{F}_L\|} \le 10^{-5} \frac{\|\mathbf{F}_L - A_L \mathbf{U}_L^0\|}{\|\mathbf{F}_L\|}.$$

The mesh hierarchies here are obtained from L uniform refinements of an initial Delaunay mesh  $\mathcal{T}_0$ 

|   |   |          |                      | $H^2$ -regu          | lar                  |                      |                                     |                                  |                                     |  |  |  |
|---|---|----------|----------------------|----------------------|----------------------|----------------------|-------------------------------------|----------------------------------|-------------------------------------|--|--|--|
|   |   |          | Sine                 | Peak                 | L-shape              | Ch                   | eckerboard                          | Skyscraper                       |                                     |  |  |  |
|   |   |          | $\mathbf{K} = I$     | $\mathbf{K} = I$     | $\mathbf{K} = I$     | $\mathbf{K} = I$     | $\mathcal{J}(\mathbf{K}) = O(10^6)$ | $\mathcal{J}(\mathbf{K}) = O(1)$ | $\mathcal{J}(\mathbf{K}) = O(10^7)$ |  |  |  |
|   |   |          | $1 \rightarrow 1, p$                | $1 \rightarrow 1, p$             | $1 \rightarrow 1, p$                |  |  |  |
| L | p | DoF      | $i_{s}$              | $i_{s}$              | $i_{ m s}$           | $i_{s}$              | $i_{s}$                             | $i_{ m s}$                       | $i_{s}$                             |  |  |  |
| 3 | 1 | $2e^4$   | 19                   | 19                   | 21                   | 18                   | 18                                  | 19                               | 19                                  |  |  |  |
|   | 3 | $1e^5$   | 29                   | 28                   | 29                   | 27                   | 28                                  | 31                               | 31                                  |  |  |  |
|   | 6 | $6e^5$   | 30                   | 30                   | 26                   | 24                   | 25                                  | 28                               | 28                                  |  |  |  |
|   | 9 | $1e^{6}$ | 31                   | 30                   | 23                   | 23                   | 23                                  | 26                               | 26                                  |  |  |  |
| 4 | 1 | $6e^4$   | 21                   | 20                   | 21                   | 19                   | 19                                  | 19                               | 19                                  |  |  |  |
|   | 3 | $6e^5$   | 29                   | 29                   | 28                   | 26                   | 27                                  | 30                               | 30                                  |  |  |  |
|   | 6 | $2e^{6}$ | 31                   | 30                   | 25                   | 24                   | 24                                  | 27                               | 27                                  |  |  |  |
|   | 9 | $5e^6$   | 32                   | 31                   | 23                   | 22                   | 23                                  | 25                               | 25                                  |  |  |  |

Numerical **K**- and *L*-robustness is observed even in low-regularity cases

NumPDEs

**ASC**→**TUWIEN** 



$$\frac{\|\mathbf{F}_L - A_L \mathbf{U}_L^{i_{\mathrm{S}}}\|}{\|\mathbf{F}_L\|} \le 10^{-5} \frac{\|\mathbf{F}_L - A_L \mathbf{U}_L^0\|}{\|\mathbf{F}_L\|}.$$

The mesh hierarchies here are obtained from L uniform refinements of an initial Delaunay mesh  $\mathcal{T}_0$ 

|   |   |          |                      | $H^2$ -regu          | lar                  | $H^{1}$ -regular                                        |                      |                                  |                                     |  |  |  |
|---|---|----------|----------------------|----------------------|----------------------|---------------------------------------------------------|----------------------|----------------------------------|-------------------------------------|--|--|--|
|   |   |          | Sine                 | Peak                 | L-shape              | Ch                                                      | eckerboard           | Skyscraper                       |                                     |  |  |  |
|   |   |          | $\mathbf{K} = I$     | $\mathbf{K} = I$     | $\mathbf{K} = I$     | $\mathbf{K} = I \mid \mathcal{J}(\mathbf{K}) = O(10^6)$ |                      | $\mathcal{J}(\mathbf{K}) = O(1)$ | $\mathcal{J}(\mathbf{K}) = O(10^7)$ |  |  |  |
|   |   |          | $1 \rightarrow 1, p$                                    | $1 \rightarrow 1, p$ | $1 \rightarrow 1, p$             | $1 \rightarrow 1, p$                |  |  |  |
| L | p | DoF      | $i_{s}$              | $i_s$                | $i_{s}$              | $i_{s}$                                                 | $i_{s}$              | $i_{ m s}$                       | $i_{s}$                             |  |  |  |
| 3 | 1 | $2e^4$   | 19                   | 19                   | 21                   | 18                                                      | 18                   | 19                               | 19                                  |  |  |  |
|   | 3 | $1e^5$   | 29                   | 28                   | 29                   | 27                                                      | 28                   | 31                               | 31                                  |  |  |  |
|   | 6 | $6e^5$   | 30                   | 30                   | 26                   | 24 25                                                   |                      | 28                               | 28                                  |  |  |  |
|   | 9 | $1e^{6}$ | 31                   | 30                   | 23                   | 23                                                      | 23                   | 26                               | 26                                  |  |  |  |
| 4 | 1 | $6e^4$   | 21                   | 20                   | 21                   | 19                                                      | 19                   | 19                               | 19                                  |  |  |  |
|   | 3 | $6e^5$   | 29                   | 29                   | 28                   | 26                                                      | 27                   | 30                               | 30                                  |  |  |  |
|   | 6 | $2e^{6}$ | 31                   | 30                   | 25                   | 24                                                      | 24                   | 27                               | 27                                  |  |  |  |
|   | 9 | $5e^6$   | 32                   | 31                   | 23                   | 22                                                      | 23                   | 25                               | 25                                  |  |  |  |

Numerical **K**- and *L*-robustness is observed even in low-regularity cases

NumPDEs

**ASC**→**TUWIEN** 



Stopping criterion:

$$\frac{\|\mathbf{F}_L - A_L \mathbf{U}_L^{i_s}\|}{\|\mathbf{F}_L\|} \le 10^{-5} \frac{\|\mathbf{F}_L - A_L \mathbf{U}_L^0\|}{\|\mathbf{F}_L\|}.$$

The mesh hierarchies here are obtained from L uniform refinements of an initial Delaunay mesh  $\mathcal{T}_0$ 

|   |   |          |                      | $H^2$ -regu                          | lar                  | $H^{1}$ -regular     |                                     |                                  |                                     |  |  |  |
|---|---|----------|----------------------|--------------------------------------|----------------------|----------------------|-------------------------------------|----------------------------------|-------------------------------------|--|--|--|
|   |   |          | Sine                 | Peak                                 | L-shape              | Ch                   | eckerboard                          | Skyscraper                       |                                     |  |  |  |
|   |   |          | $\mathbf{K} = I$     | $\mathbf{K} = I$                     | $\mathbf{K} = I$     | $\mathbf{K} = I$     | $\mathcal{J}(\mathbf{K}) = O(10^6)$ | $\mathcal{J}(\mathbf{K}) = O(1)$ | $\mathcal{J}(\mathbf{K}) = O(10^7)$ |  |  |  |
|   |   |          | $1 \rightarrow 1, p$ | $1 \!\! \rightarrow \!\! 1 \!\! , p$ | $1 \rightarrow 1, p$ | $1 \rightarrow 1, p$ | $1 \rightarrow 1, p$                | $1 \rightarrow 1, p$             | $1 \rightarrow 1, p$                |  |  |  |
| L | p | DoF      | $i_{s}$              | $i_{s}$                              | $i_{s}$              | $i_{s}$              | $i_{s}$                             | $i_{s}$                          | $i_{s}$                             |  |  |  |
| 3 | 1 | $2e^4$   | 19                   | 19                                   | 21                   | 18                   | 18                                  | 19                               | 19                                  |  |  |  |
|   | 3 | $1e^5$   | 29                   | 28                                   | 29                   | 27                   | 28                                  | 31                               | 31                                  |  |  |  |
|   | 6 | $6e^5$   | 30                   | 30                                   | 26                   | 24                   | 25                                  | 28                               | 28                                  |  |  |  |
|   | 9 | $1e^{6}$ | 31                   | 30                                   | 23                   | 23                   | 23                                  | 26                               | 26                                  |  |  |  |
| 4 | 1 | $6e^4$   | 21                   | 20                                   | 21                   | 19                   | 19                                  | 19                               | 19                                  |  |  |  |
|   | 3 | $6e^5$   | 29                   | 29                                   | 28                   | 26                   | 27                                  | 30                               | 30                                  |  |  |  |
|   | 6 | $2e^{6}$ | 31                   | 30                                   | 25                   | 24                   | 24                                  | 27                               | 27                                  |  |  |  |
|   | 9 | $5e^{6}$ | 32                   | 31                                   | 23                   | 22                   | 23                                  | 25                               | 25                                  |  |  |  |

Numerical K- and L-robustness is observed even in low-regularity cases

### p-robustness: iteration numbers for graded meshes

NumPDEs



Low-regularity tests: indicate *linear L-dependence* in accordance with the theory





### p-robustness: iteration numbers for graded meshes

NumPIDES



Low-regularity tests: indicate *linear L*-*dependence* in accordance with the theory





# Comparison with other multilevel solvers

NumPIDES

We compare our methods with solvers from literature in terms of the number of iterations (and CPU times).

Antonietti et al. J. Sci. Comput. 2017

Botti et al. J. Comput. Phys. 2017

Schöberl. Tech. report. 2014



#### We compare our methods with solvers from literature in terms of the number of iterations (and CPU times).

|   |   | ~MG(0,1)<br>-bJ |         | ~MG(0,adapt)<br>-bJ (wRAS) |         | PCG(MG<br>(3,3)-bJ) |         | MG(1,1)-<br>PCG(iChol) |         | MG(0,1)-<br>bGS |         | М              | G(3,3)-<br>GS |
|---|---|-----------------|---------|----------------------------|---------|---------------------|---------|------------------------|---------|-----------------|---------|----------------|---------------|
|   |   | $1,p \to p$     |         | $1 \nearrow p$             |         | $p \rightarrow p$   |         | $1 \nearrow p$         |         | $1 \to 1, p$    |         | $1 \nearrow p$ |               |
| L | p | $i_{s}$         | time    | $i_{s}$                    | time    | $i_{s}$             | time    | $i_s$                  | time    | $i_{s}$         | time    | $i_s$          | time          |
| 4 | 1 | 19              | 0.12 s  | 9                          | 0.11 s  | 11                  | 0.20 s  | 16                     | 0.74 s  | 11              | 0.06 s  | 4              | 0.05 s        |
|   | 3 | 11              | 2.07 s  | 7                          | 1.62 s  | 3                   | 2.34 s  | 44                     | 27.48 s | 10              | 9.64 s  | 5              | 1.37 s        |
|   | 6 | 9               | 20.19 s | 4                          | 12.54 s | 3                   | 38.40 s | >80                    | >6.87m  | 9               | 34.78 s | 6              | 14.44 s       |
|   | 9 | 9               | 2.13m   | 3                          | 49.84 s | 2                   | 2.24m   | >80                    | >23.08m | 8               | 1.72m   | 9              | 1.21m         |

Antonietti et al. J. Sci. Comput. 2017

Botti et al. J. Comput. Phys. 2017

🖹 Schöberl. *Tech. report.* 2014

B

E

# Comparison with other multilevel solvers

We compare our methods with solvers from literature in terms of the number of iterations (and CPU times).

|   |               | ~MG(0,1)             |         | $\sim$ MG(0,adapt) |         | PCG(MG<br>(3.3)-b I) |         | MG(1,1)-<br>PCG(iChol) |         | MG(0,1)-             |         | MG(3,3)-       |          |
|---|---------------|----------------------|---------|--------------------|---------|----------------------|---------|------------------------|---------|----------------------|---------|----------------|----------|
|   |               | $1, p \rightarrow p$ |         | $1 \nearrow p$     |         | $p \rightarrow p$    |         | $1 \nearrow p$         |         | $1 \rightarrow 1, p$ |         | $1 \nearrow p$ |          |
| L | $\mid p \mid$ | $i_s$                | time    | $i_{s}$            | time    | $i_{\rm s}$          | time    | $i_s$                  | time    | $i_s$                | time    | $i_s$          | time     |
| 4 | 1             | 19                   | 0.12 s  | 9                  | 0.11 s  | 11                   | 0.20 s  | 16                     | 0.74 s  | 11                   | 0.06 s  | 4              | 0.05 s   |
|   | 3             | 11                   | 2.07 s  | 7                  | 1.62 s  | 3                    | 2.34 s  | 44                     | 27.48 s | 10                   | 9.64 s  | 5              | 1.37 s   |
|   | 6             | 9                    | 20.19 s | 4                  | 12.54 s | 3                    | 38.40 s | >80                    | >6.87m  | 9                    | 34.78 s | 6              | 14.44 s  |
|   | 9             | 9                    | 2.13m   | 3                  | 49.84 s | 2                    | 2.24m   | >80                    | >23.08m | 8                    | 1.72m   | 9              | 1.21m    |
|   |               |                      |         |                    |         |                      |         |                        |         |                      |         |                |          |
|   |               | not <i>p</i> -robust |         |                    |         |                      |         |                        |         |                      |         |                | p-robust |

Antonietti et al. J. Sci. Comput. 2017

Botti et al. J. Comput. Phys. 2017

Schöberl. *Tech. report.* 2014

B

E

NumPDEs

**ASC**→**TUWIEN**


NumPDEs

 $\| \boldsymbol{u}_L - \boldsymbol{u}_L^i \|^2 \approx (\eta_{\mathrm{alg}}^i)^2 = \sum \left( \lambda_\ell^i \| \boldsymbol{\rho}_\ell^i \| \right)^2 \qquad \| \boldsymbol{\rho}_\ell^i \|^2 + \sum \lambda_\ell^i \sum \| \boldsymbol{\rho}_{\ell,\mathrm{s}} \|_{\omega_\ell^2}^2$ 

NumPDEs

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \sum_{\ell=0}^{L} (\lambda_{\ell}^i \| \rho_{\ell}^i \|)^2 = \prod_{\ell=0}^{L} ||\rho_0^i||^2 + \sum_{\ell=1}^{L} \lambda_{\ell}^i \sum_{\mathbf{a} \in \mathcal{V}_{\ell}} \| \rho_{\ell, \mathbf{a}} \|_{\omega_{\ell}}^2$$
(1) localization by levels
(2) localization by patches

NumPDEs

$$\|\!|\!| u_L - u_L^i \|\!|\!|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L \left(\lambda_\ell^i \|\!|\!| \rho_\ell^i \|\!|\!|\!|\right)^2}_{\text{(1) localization by levels}}$$

$$\underbrace{\|\boldsymbol{\rho}_{0}^{i}\|^{2} + \sum_{\ell=1}^{L} \lambda_{\ell}^{i} \sum_{\mathbf{a} \in \mathcal{V}_{\ell}} \|\boldsymbol{\rho}_{\ell,\mathbf{a}}\|_{\boldsymbol{\omega}_{\ell}}^{2}}_{\mathcal{O}} \|\boldsymbol{\rho}_{\ell,\mathbf{a}}\|_{\boldsymbol{\omega}_{\ell}}^{2}$$



Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{\text{(2) localization by patches}}$$

**1** Adaptive number of post-smoothing steps



Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^2}^2}_{\text{(2) localization by patches}}$$

**1** Adaptive number of post-smoothing steps



Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{\text{(2) localization by patches}}$$

**(1)** Adaptive number of post-smoothing steps





Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{\text{(2) localization by patches}}$$

**(1)** Adaptive number of post-smoothing steps





Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{\text{(2) localization by patches}}$$







Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{\text{(2) localization by patches}}$$







Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{\text{(2) localization by patches}}$$







Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{\text{(2) localization by patches}}$$







Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{\text{(2) localization by patches}}$$







Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{\text{(2) localization by patches}}$$







Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{\text{(2) localization by patches}}$$







Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{\text{(1) localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{\text{(2) localization by patches}}$$







Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{(1) \text{ localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{(2) \text{ localization by patches}}$$







Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_L - u_L^i \|^2 \approx (\eta_{\text{alg}}^i)^2 = \underbrace{\sum_{\ell=0}^L (\lambda_\ell^i \| \rho_\ell^i \|)^2}_{(1) \text{ localization by levels}} = \underbrace{\| \rho_0^i \|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_\ell} \| \rho_{\ell, \mathbf{a}} \|_{\omega_\ell^a}^2}_{(2) \text{ localization by patches}}$$







Starting point: equivalence of the algebraic error with a localized a posteriori estimate

$$\| u_{L} - u_{L}^{i} \|^{2} \approx (\eta_{alg}^{i})^{2} = \underbrace{\sum_{\ell=0}^{L} (\lambda_{\ell}^{i} \| \rho_{\ell}^{i} \|)^{2}}_{(1 \text{ localization by levels}} = \underbrace{\| \rho_{0}^{i} \|^{2} + \sum_{\ell=1}^{L} \lambda_{\ell}^{i} \sum_{a \in \mathcal{V}_{\ell}} \| \rho_{\ell,a} \|_{\omega_{\ell}^{a}}^{2}}_{(2 \text{ localization by patches}}$$
  
(1) Adaptive number of post-smoothing steps  
$$\underbrace{u_{L}^{i} - u_{L}^{i} + u_{L}^{i} - u_{L}^{i} + u_{L}^{i} - u_{L}^{i}}_{(1 \text{ localization by levels}} = \underbrace{u_{L}^{i} - u_{L}^{i} + u_{L}^{$$

(1)









NumPI)Fs **ASC+TUWIEN** 







NumPI)Fs **ASC+TUWIEN** 





















## Adaptive finite element setting

Ani Miraçi (TU Wien)

A-posteriori-steered and adaptive *p*-robust MG (Inria22)

NumPIDES

Optimal convergence rates wrt to overall computational cost for contractive solvers.

#### Algorithm

Input  $\mathcal{T}_0, u_0^0, 0 < \theta \leq 1$ For each L = 0, 1, 2, ..., doSOLVE & ESTIMATE For  $i = 1, 2, ..., i_s$ , repeat compute  $u_L^i, \eta_{alg}^i =: \eta_{alg}(u_L^i)$ compute  $\eta_{disc}(T, u_L^i)$  for all  $T \in \mathcal{T}_l$ until  $\eta_{alg}(u_L^{i_s}) \leq \mu \eta_{disc}(u_L^{i_s}) \longrightarrow idea:$  equilibrate algebraic and discretization end MARK choose  $\mathcal{M}_L \subseteq \mathcal{T}_L$  such that  $\theta \sum_{T \in \mathcal{T}_L} \eta_{disc}(T, u_L^{i_s})^2 \leq \sum_{T \in \mathcal{M}_L} \eta_{disc}(T, u_L^{i_s})^2$ REFINE  $\mathcal{T}_{L+1} := \operatorname{refine}(\mathcal{T}_L, \mathcal{M}_L), \quad u_{L+1}^0 := u_L^{i_s}$ 

**Output** Discrete solutions  $u_T^{**}$  and corresponding estimators  $\eta_{\text{alg}}(u_T^{**}), \eta_{\text{disc}}(u_T^{**})$ 



Stevenson. Found. Comput. Math. 2007

Gantner, Haberl, Praetorius, Schimanko. Math. Comp. 2021

Chen, Nochetto, Xu. Numer. Math. 2012

Wu, Zheng. Appl. Numer. Math. 2017

NumPI)Es

Optimal convergence rates wrt to overall computational cost for contractive solvers.

#### Algorithm

| Input $\mathcal{T}_0$ , $u_0^0$ , $0 < 	heta \leq 1$ sufficiently small, $\mu > 0$ sufficiently small<br>For each $L = 0, 1, 2, \ldots$ do                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>SOLVE &amp; ESTIMATE</b> For $i = 1, 2,, i_s$ , repeat<br>compute $u_L^i$ , $\eta_{alg}^i =: \eta_{alg}(u_L^i)$<br>compute $\eta_{disc}(T, u_L^i)$ for all $T \in \mathcal{T}_\ell$                                                                                                                                                                                |
| $\begin{array}{l} \text{until } \eta_{\mathrm{alg}}(u_L^{i_{\mathrm{s}}}) \leq \mu \eta_{\mathrm{disc}}(u_L^{i_{\mathrm{s}}}) & \longrightarrow \\ \end{array}  \text{idea: equilibrate algebraic and discretization errors} \\ \hline \qquad \qquad$ |
| <b>REFINE</b> $\mathcal{T}_{L+1} := \operatorname{refine}(\mathcal{T}_L, \mathcal{M}_L),  u_{L+1}^0 := u_L^{i_s} \longrightarrow \text{nested iterations with error control on all } u_L^i \text{ except } u_0^0$<br><b>Output</b> Discrete solutions $u_L^{i_s}$ and corresponding estimators $\eta_{\mathrm{alg}}(u_L^{i_s}), \eta_{\mathrm{disc}}(u_L^{i_s})$      |
|                                                                                                                                                                                                                                                                                                                                                                       |

Stevenson. Found. Comput. Math. 2007

Gantner, Haberl, Praetorius, Schimanko. Math. Comp. 2021

- Chen, Nochetto, Xu. Numer. Math. 2012
- Wu, Zheng. Appl. Numer. Math. 2017

≞

≣່

Ľ

NumPI)Es

Optimal convergence rates wrt to overall computational cost for contractive solvers.

#### Algorithm

| For each $L = 0, 1, 2, \dots$ do                                                                                                                                                                                                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ■ SOLVE & ESTIMATE For $i = 1, 2,, i_s$ , repeat<br>→ compute $u_L^i$ , $\eta_{alg}^i =: \eta_{alg}(u_L^i)$<br>→ compute $\eta_{disc}(T, u_L^i)$ for all $T \in \mathcal{T}_\ell$                                                               |  |
| $until \eta_{\rm alg}(u_L^{i_{\rm S}}) \leq \mu \eta_{\rm disc}(u_L^{i_{\rm S}}) \longrightarrow idea: equilibrate algebraic and discretization errors$                                                                                         |  |
| $\blacksquare \text{ MARK choose } \mathcal{M}_L \subseteq \mathcal{T}_L \text{ such that }  \theta \sum_{T \in \mathcal{T}_L} \eta_{\text{disc}}(T, u_L^{\text{s}})^2 \leq \sum_{T \in \mathcal{M}_L} \eta_{\text{disc}}(T, u_L^{\text{s}})^2$ |  |
| <b>REFINE</b> $\mathcal{T}_{L+1} := \operatorname{refine}(\mathcal{T}_L, \mathcal{M}_L),  u_{L+1}^0 := u_L^{i_8} \longrightarrow nested iterations with error control on all u_L^i except$                                                      |  |
| Output Discrete solutions $u_L^{i_{ m g}}$ and corresponding estimators $\eta_{ m alg}(u_L^{i_{ m g}}), \eta_{ m disc}(u_L^{i_{ m g}})$                                                                                                         |  |

Stevenson. Found. Comput. Math. 2007

Gantner, Haberl, Praetorius, Schimanko. Math. Comp. 2021

- Chen, Nochetto, Xu. Numer. Math. 2012
- Wu, Zheng. Appl. Numer. Math. 2017

≞

≣່

Ľ

NumPDEs

Optimal convergence rates wrt to overall computational cost for contractive solvers.

#### Algorithm

| Input $\mathcal{T}_0$ , $u_0^0$ , $0<	heta\leq 1$ sufficiently small, $\mu>0$ sufficiently small<br>For each $L=0,1,2,\ldots$ do                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>SOLVE &amp; ESTIMATE</b> For $i = 1, 2,, i_s$ , repeat                                                                                                                                                                           |
| <b>b</b> compute $u_L^i$ , $\eta_{alg}^i =: \eta_{alg}(u_L^i)$                                                                                                                                                                      |
| $\blacktriangleright$ compute $\eta_{ m disc}(T, u_L^i)$ for all $T \in \mathcal{T}_\ell$                                                                                                                                           |
| until $\eta_{ m alg}(u_L^{i_{ m s}}) \leq \mu \eta_{ m disc}(u_L^{i_{ m s}}) \; \longrightarrow \;$ idea: equilibrate algebraic and discretization errors                                                                           |
| • MARK choose $\mathcal{M}_L \subseteq \mathcal{T}_L$ such that $\theta \sum_{T \in \mathcal{T}_L} \eta_{\mathrm{disc}}(T, u_L^{i_{\mathrm{s}}})^2 \leq \sum_{T \in \mathcal{M}_L} \eta_{\mathrm{disc}}(T, u_L^{i_{\mathrm{s}}})^2$ |
| $\blacksquare \text{ REFINE } \mathcal{T}_{L+1} := \texttt{refine}(\mathcal{T}_L, \mathcal{M}_L),  u_{L+1}^0 := u_L^{i_8} \longrightarrow \textit{nested iterations with error control on all } u_L^i \textit{ except } u_0^0$      |
| Output Discrete solutions $u_L^{i_{ m s}}$ and corresponding estimators $\eta_{ m alg}(u_L^{i_{ m s}}),\eta_{ m disc}(u_L^{i_{ m s}})$                                                                                              |
|                                                                                                                                                                                                                                     |

🖹 Stevenson. Found. Comput. Math. 2007

Gantner, Haberl, Praetorius, Schimanko. Math. Comp. 2021

- Chen, Nochetto, Xu. Numer. Math. 2012
- Wu, Zheng. Appl. Numer. Math. 2017

≣່

Ľ

# Key to obtaining *L*-robustness

**Remark:** From now on, consider  $p_0 = \ldots = p_{\ell-1} = 1$  and  $p_L = p$ .

previously

improvement

NumPDEs

**ASC**→**TUWIEN** 

For intermediate levels  $\ell \in \{1, \dots, L-1\}$ :

moothing on *all* patches smoothing *locally* 

For the finest level L: smoothing on all patches when p > 1.

Takeaway message:

- *L*-robustness by local smoothing on lowest-order levels
- p-robustness by smoothing on all patches of the high-order level
- the new construction guarantees linear cost of the solver step

Ani Miraçi (TU Wien)



- p-robustness by smoothing on all patches of the high-order level
- the new construction guarantees linear cost of the solver step



For the finest level L: smoothing on all patches when p > 1.

Takeaway message:

- *L*-robustness by local smoothing on lowest-order levels
- p-robustness by smoothing on all patches of the high-order level
- the new construction guarantees linear cost of the solver step

Ani Miraçi (TU Wien)


Takeaway message:

- *L*-robustness by local smoothing on lowest-order levels
- p-robustness by smoothing on all patches of the high-order level
- the new construction guarantees linear cost of the solver step

Ani Miraçi (TU Wien)



### Takeaway message:

- L-robustness by local smoothing on lowest-order levels
- *p*-robustness by smoothing on all patches of the high-order level
- the new construction guarantees linear cost of the solver step



### Takeaway message:

- L-robustness by local smoothing on lowest-order levels
- p-robustness by smoothing on all patches of the high-order level
- the new construction guarantees linear cost of the solver step

Ani Miraçi (TU Wien)



### Takeaway message:

- *L*-robustness by local smoothing on lowest-order levels
- $\blacksquare$   $p\mbox{-robustness}$  by smoothing on all patches of the high-order level
- the new construction guarantees linear cost of the solver step

### Theorem (*h*- and *p*-robust reliable and efficient bound on the algebraic error)

 $\begin{array}{l} \text{Let } u_L^i \in \mathbb{V}_L^p \text{ be arbitrary. Let } \eta_{\mathrm{alg}}^i \text{ be the associated estimator on the algebraic error.} \\ \Longrightarrow \qquad \| \| u_L - u_L^i \| \| \geq \eta_{\mathrm{alg}}^i \quad \text{and} \quad \eta_{\mathrm{alg}}^i \geq \beta \| \| u_L - u_L^i \| \quad \text{with} \quad 0 < \beta(\kappa_{\mathcal{T}}, d, \mathbf{K}) < 1 \\ \end{array}$ 

## Theorem (*h*- and *p*-robust error contraction of the multilevel solver) For $u_L^i \in \mathbb{V}_L^p$ , let $u_L^{i+1} \in \mathbb{V}_L^p$ be constructed from $u_L^i$ using one step of the solv

$$||\!| u_L - u_L^{i+1} ||\!| \le \alpha ||\!| u_L - u_L^i ||\!| \quad \text{with} \quad \alpha = \sqrt{1 - \beta^2}$$

**Remark:** Complete *independence* from L is obtained even under minimal  $H^1$ -regularity

### Theorem (*h*- and *p*-robust reliable and efficient bound on the algebraic error)

 $\begin{array}{l} \text{Let } u_L^i \in \mathbb{V}_L^p \text{ be arbitrary. Let } \eta_{\text{alg}}^i \text{ be the associated estimator on the algebraic error.} \\ \Longrightarrow \qquad \| \| u_L - u_L^i \| \| \geq \eta_{\text{alg}}^i \quad \text{and} \quad \eta_{\text{alg}}^i \geq \beta \| \| u_L - u_L^i \| \quad \text{with} \quad 0 < \beta(\kappa_{\mathcal{T}}, d, \mathbf{K}) < 1 \\ \end{array}$ 

Theorem (*h*- and *p*-robust error contraction of the multilevel solver) For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be constructed from  $u_L^i$  using one step of the solver.  $\implies \qquad ||u_L - u_L^{i+1}||| \le \alpha ||u_L - u_L^i||| \quad \text{with} \quad \alpha = \sqrt{1 - \beta^2}$ 

**Remark:** Complete *independence* from L is obtained even under minimal  $H^1$ -regularity

### Theorem (*h*- and *p*-robust reliable and efficient bound on the algebraic error)

 $\begin{array}{l} \text{Let } u_L^i \in \mathbb{V}_L^p \text{ be arbitrary. Let } \eta_{\text{alg}}^i \text{ be the associated estimator on the algebraic error.} \\ \Longrightarrow \qquad \| \| u_L - u_L^i \| \| \geq \eta_{\text{alg}}^i \quad \text{and} \quad \eta_{\text{alg}}^i \geq \beta \| \| u_L - u_L^i \| \quad \text{with} \quad 0 < \beta(\kappa_{\mathcal{T}}, d, \mathbf{K}) < 1 \\ \end{array}$ 

Theorem (*h*- and *p*-robust error contraction of the multilevel solver) For  $u_L^i \in \mathbb{V}_L^p$ , let  $u_L^{i+1} \in \mathbb{V}_L^p$  be constructed from  $u_L^i$  using one step of the solver.  $\implies \qquad |||u_L - u_L^{i+1}||| \le \alpha |||u_L - u_L^i||| \quad \text{with} \quad \alpha = \sqrt{1 - \beta^2}$ 

**Remark:** Complete *independence* from L is obtained even under minimal  $H^1$ -regularity

## Visualizing the theory

NumPDEs

### L-shape problem

 $- \bullet p = 1 - \bullet p = 2 - \bullet p = 3 - \bullet p = 4$ 



Innerberger, Praetorius. MooAFEM: An object oriented Matlab code for higher-order (nonlinear) adaptive FEM. 2022+

Ani Miraçi (TU Wien)



## Conclusion

- A p-robustly efficient a posteriori algebraic error estimator
- A *p*-robust contractive multigrid solver steered by the a posteriori estimator
- Optimal level-wise step-sizes in the error correction stage
- Two **adaptive** multigrid variants:
  - Approach 1: adaptive number of smoothing steps per level
  - Approach 2: adaptive local smoothing per patches
- An *hp*-robust contractive extension satisfying the requirements of the SOLVE module in AFEM

Future work would explore:

- $\blacksquare$  Extension of the theory to cover variable p elements of the finest level
- Extension of the approach to fractional diffusion problem and BEM
- Study of the robustness in the jumps of the diffusion coefficient

NumPDEs

ASC ► THWIEN

NumPI)Es

#### We presented:

- A *p*-robustly efficient a posteriori algebraic error estimator
- A p-robust contractive multigrid solver steered by the a posteriori estimator
- Optimal level-wise step-sizes in the error correction stage
- Two **adaptive** multigrid variants:
  - Approach 1: adaptive number of smoothing steps per level
  - Approach 2: adaptive local smoothing per patches
- An *hp*-robust contractive extension satisfying the requirements of the SOLVE module in AFEM

Future work would explore:

- $\blacksquare$  Extension of the theory to cover variable p elements of the finest level
- Extension of the approach to fractional diffusion problem and BEM
- Study of the robustness in the jumps of the diffusion coefficient

- A *p*-robustly efficient a posteriori algebraic error estimator
- A *p*-robust contractive multigrid solver steered by the a posteriori estimator
- Optimal level-wise step-sizes in the error correction stage
- Two adaptive multigrid variants:
  - Approach 1: adaptive number of smoothing steps per level
  - Approach 2: adaptive local smoothing per patches
- An *hp*-robust contractive extension satisfying the requirements of the SOLVE module in AFEM

Future work would explore:

- **\blacksquare** Extension of the theory to cover variable p elements of the finest level
- Extension of the approach to fractional diffusion problem and BEM
- Study of the robustness in the jumps of the diffusion coefficient

We presented:

NumPDEs

- A *p*-robustly efficient a posteriori algebraic error estimator
- A *p*-robust contractive multigrid solver steered by the a posteriori estimator
- Optimal level-wise **step-sizes** in the error correction stage

#### Two adaptive multigrid variants:

- Approach 1: adaptive number of smoothing steps per level
- Approach 2: adaptive local smoothing per patches
- An *hp*-robust contractive extension satisfying the requirements of the SOLVE module in AFEM

Future work would explore:

- Extension of the theory to cover variable p elements of the finest level
- Extension of the approach to fractional diffusion problem and BEM
- Study of the robustness in the jumps of the diffusion coefficient

NumPDFs

- A *p*-robustly efficient a posteriori algebraic error estimator
- A *p*-robust contractive multigrid solver steered by the a posteriori estimator
- Optimal level-wise **step-sizes** in the error correction stage
- Two **adaptive** multigrid variants:
  - Approach 1: adaptive number of smoothing steps per level
  - Approach 2: adaptive local smoothing per patches
- An hp-robust contractive extension satisfying the requirements of the SOLVE module in AFEM

Future work would explore:

- Extension of the theory to cover variable p elements of the finest level
- Extension of the approach to fractional diffusion problem and BEM
- Study of the robustness in the jumps of the diffusion coefficient

NumPDEs

- A *p*-robustly efficient a posteriori algebraic error estimator
- A *p*-robust contractive multigrid solver steered by the a posteriori estimator
- Optimal level-wise **step-sizes** in the error correction stage
- Two **adaptive** multigrid variants:
  - Approach 1: adaptive number of smoothing steps per level
  - Approach 2: adaptive local smoothing per patches
- An *hp*-robust contractive extension satisfying the requirements of the SOLVE module in AFEM

Future work would explore:

- Extension of the theory to cover variable p elements of the finest level
- Extension of the approach to fractional diffusion problem and BEM
- Study of the robustness in the jumps of the diffusion coefficient

NumPDEs

- A *p*-robustly efficient a posteriori algebraic error estimator
- A *p*-robust contractive multigrid solver steered by the a posteriori estimator
- Optimal level-wise step-sizes in the error correction stage
- Two **adaptive** multigrid variants:
  - Approach 1: adaptive number of smoothing steps per level
  - Approach 2: adaptive local smoothing per patches
- An *hp*-robust contractive extension satisfying the requirements of the SOLVE module in AFEM

Future work would explore:

- Extension of the theory to cover variable p elements of the finest level
- Extension of the approach to fractional diffusion problem and BEM
- Study of the robustness in the jumps of the diffusion coefficient

NumPNFs

- A *p*-robustly efficient a posteriori algebraic error estimator
- A *p*-robust contractive multigrid solver steered by the a posteriori estimator
- Optimal level-wise step-sizes in the error correction stage
- Two **adaptive** multigrid variants:
  - Approach 1: adaptive number of smoothing steps per level
  - Approach 2: adaptive local smoothing per patches
- An *hp*-robust contractive extension satisfying the requirements of the SOLVE module in AFEM

Future work would explore:

- $\blacksquare$  Extension of the theory to cover variable p elements of the finest level
- Extension of the approach to fractional diffusion problem and BEM
- Study of the robustness in the jumps of the diffusion coefficient

NumPNFs

- A *p*-robustly efficient a posteriori algebraic error estimator
- A *p*-robust contractive multigrid solver steered by the a posteriori estimator
- Optimal level-wise step-sizes in the error correction stage
- Two **adaptive** multigrid variants:
  - Approach 1: adaptive number of smoothing steps per level
  - Approach 2: adaptive local smoothing per patches
- An *hp*-robust contractive extension satisfying the requirements of the SOLVE module in AFEM

Future work would explore:

- $\blacksquare$  Extension of the theory to cover variable p elements of the finest level
- Extension of the approach to fractional diffusion problem and BEM
- Study of the robustness in the jumps of the diffusion coefficient

NumPNFs

ASC ►THWIEN

- A *p*-robustly efficient a posteriori algebraic error estimator
- A *p*-robust contractive multigrid solver steered by the a posteriori estimator
- Optimal level-wise **step-sizes** in the error correction stage
- Two **adaptive** multigrid variants:
  - Approach 1: adaptive number of smoothing steps per level
  - Approach 2: adaptive local smoothing per patches
- An *hp*-robust contractive extension satisfying the requirements of the SOLVE module in AFEM

Future work would explore:

- $\blacksquare$  Extension of the theory to cover variable p elements of the finest level
- Extension of the approach to fractional diffusion problem and BEM
- Study of the robustness in the jumps of the diffusion coefficient

NumPDEs

# Thank you for your attention!

- Miraçi, Papež, and Vohralík. A multilevel algebraic error estimator and the corresponding iterative solver with p-robust behavior. SIAM J. Numer. Anal. (2020)
- Miraçi, Papež, and Vohralík. A-posteriori-steered *p*-robust multigrid with optimal step-sizes and adaptive number of smoothing steps. *SIAM J. Sci. Comput.* (2021)
- Miraçi, Praetorius, and Streitberger. Optimal local *p*-robust multigrid for FEM on graded bisection grids. *In preparation.*

#### Dr. Ani Miraçi

TU Wien

Institute of Analysis and Scientific Computing NumPDEs group ani.miraci@asc.tuwien.ac.at https://www.asc.tuwien.ac.at/~amiraci



NumPDEs ASC+TUWIEN

### Corollary (Equivalence of the two main results)

Proving the efficiency of the a posteriori estimator  $\eta^i_{alg}$  is equivalent to proving the solver contraction.

**Proof:** By using the *link between solver and estimator* given by the Pythagorean formula, there holds:

$$\begin{split} & \left(\eta_{\mathrm{alg}}^{i}\right)^{2} \geq \beta^{2} \|\|u_{L} - u_{L}^{i}\|\|^{2} \quad \text{(estimator efficiency)} \\ \Leftrightarrow \|\|u_{L} - u_{L}^{i}\|\|^{2} - \|\|u_{L} - u_{L}^{i+1}\|\|^{2} \geq \beta^{2} \|\|u_{L} - u_{L}^{i}\|\|^{2} \\ \Leftrightarrow \|\|u_{L} - u_{L}^{i+1}\|\|^{2} \leq (1 - \beta^{2}) \|\|u_{L} - u_{L}^{i}\|\|^{2} \quad \text{(solver contraction)}. \end{split}$$

Corollary (Equivalence of error-global estimator-local estimators)

Let the assumptions of Theorem 2 hold. Then

$$\|u_{L} - u_{L}^{i}\|^{2} \approx \left(\eta_{\mathrm{alg}}^{i}\right)^{2} = \sum_{\ell=0}^{L} \left(\lambda_{\ell}^{i}\|\rho_{\ell}^{i}\|\right)^{2} = \|\rho_{0}^{i}\|^{2} + \sum_{\ell=1}^{L} \lambda_{\ell}^{i} \sum_{\mathbf{a} \in \mathcal{V}_{\ell}} \|\rho_{\ell,\mathbf{a}}\|_{\omega_{\ell}^{\mathbf{a}}}^{2}.$$

### *p*-robustness: contraction factors

NumPDEs

L-shape problem, L = 3, and mesh hierarchy  $p_{\ell} = 1$  (left) and  $p_{\ell} = p$  (right),  $\ell \in \{1, \dots, L-1\}$ 



**ASC+TUWIEN** 

#### Stopping criterion:

$$\frac{|\mathbf{F}_L - \mathbb{A}_L \mathbf{U}_L^{i_{\mathrm{S}}}\|}{\|\mathbf{F}_L\|} \le 10^{-5} \frac{\|\mathbf{F}_L - \mathbb{A}_L \mathbf{U}_L^0\|}{\|\mathbf{F}_L\|}.$$

The mesh hierarchies here are obtained from L uniform refinements of an initial Delaunay mesh  $T_0$ .

 $H^2$ -regular

 $H^{1}$ -regular

|   | Sine             |          | Pe                     | Peak L-shape          |                      | Checkerboard          |                             |                       |                                     | Skyscraper           |                                     |                      |                                     |                      |                      |                      |
|---|------------------|----------|------------------------|-----------------------|----------------------|-----------------------|-----------------------------|-----------------------|-------------------------------------|----------------------|-------------------------------------|----------------------|-------------------------------------|----------------------|----------------------|----------------------|
|   | $\mathbf{K} = I$ |          | $\mathbf{K} = I$       |                       | $\mathbf{K} = I$     |                       | $\mathbf{K} = I$            |                       | $\mathcal{J}(\mathbf{K}) = O(10^6)$ |                      | $   \mathcal{J}(\mathbf{K}) = O(1)$ |                      | $\mathcal{J}(\mathbf{K}) = O(10^7)$ |                      |                      |                      |
|   |                  |          | $1 {\rightarrow} 1, p$ | $1,p\!\rightarrow\!p$ | $1 \rightarrow 1, p$ | $1,p\!\rightarrow\!p$ | $1\!\!\rightarrow\!\!1\!,p$ | $1,p\!\rightarrow\!p$ | $1 \rightarrow 1, p$                | $1, p \rightarrow p$ | $1 \rightarrow 1, p$                | $1, p \rightarrow p$ | $1 \rightarrow 1, p$                | $1, p \rightarrow p$ | $1 \rightarrow 1, p$ | $1, p \rightarrow p$ |
| L | p                | DoF      | $i_s$                  | $i_s$                 | $i_s$                | $i_s$                 | $i_s$                       | $i_s$                 | $i_s$                               | $i_s$                | $i_s$                               | $i_s$                | $i_s$                               | $i_s$                | $i_s$                | $i_s$                |
| 3 | 1                | $2e^4$   | 19                     | 19                    | 19                   | 19                    | 21                          | 21                    | 18                                  | 18                   | 18                                  | 18                   | 19                                  | 19                   | 19                   | 19                   |
|   | 3                | $1e^5$   | 29                     | 13                    | 28                   | 14                    | 29                          | 11                    | 27                                  | 11                   | 28                                  | 11                   | 31                                  | 13                   | 31                   | 13                   |
|   | 6                | $6e^5$   | 30                     | 13                    | 30                   | 14                    | 26                          | 9                     | 24                                  | 9                    | 25                                  | 10                   | 28                                  | 11                   | 28                   | 11                   |
|   | 9                | $1e^{6}$ | 31                     | 14                    | 30                   | 14                    | 23                          | 9                     | 23                                  | 9                    | 23                                  | 9                    | 26                                  | 10                   | 26                   | 10                   |
| 4 | 1                | $6e^4$   | 21                     | 21                    | 20                   | 20                    | 21                          | 21                    | 19                                  | 19                   | 19                                  | 19                   | 19                                  | 19                   | 19                   | 19                   |
|   | 3                | $6e^5$   | 29                     | 13                    | 29                   | 14                    | 28                          | 11                    | 26                                  | 11                   | 27                                  | 11                   | 30                                  | 11                   | 30                   | 11                   |
|   | 6                | $2e^{6}$ | 31                     | 13                    | 30                   | 14                    | 25                          | 9                     | 24                                  | 9                    | 24                                  | 9                    | 27                                  | 10                   | 27                   | 10                   |
|   | 9                | $5e^{6}$ | 32                     | 14                    | 31                   | 15                    | 23                          | 9                     | 22                                  | 9                    | 23                                  | 9                    | 25                                  | 9                    | 25                   | 9                    |

Numerical  $\mathbf{K}$ - and L-robustness is observed even in low-regularity cases.

**ASC+TUWIEN** 

Stopping criterion: 
$$\frac{||\mathbf{F}_L|}{|\mathbf{F}_L|}$$

~

$$\frac{\|\mathbf{F}_L - \mathbb{A}_L \mathbf{U}_L^{i_s}\|}{\|\mathbf{F}_L\|} \le 10^{-5} \frac{\|\mathbf{F}_L - \mathbb{A}_L \mathbf{U}_L^0\|}{\|\mathbf{F}_L\|}.$$

The mesh hierarchies here are obtained from L uniform refinements of an initial Delaunay mesh  $\mathcal{T}_0$ .

| $H^2$ -regular |                                                                 |          |                        |                       |                      |                       |                      |                       |                      |                       |                                                                                                                       |                       |                      |                      |                      |                       |
|----------------|-----------------------------------------------------------------|----------|------------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|----------------------|----------------------|-----------------------|
|                | $ \begin{array}{c c} Sine & Peak \\ K = I & K = I \end{array} $ |          |                        |                       | L-sl<br>K            | hape $= I$            |                      |                       |                      | = O(10 <sup>6</sup> ) | $10^{6}) \begin{vmatrix} Skyscraper \\ \mathcal{J}(\mathbf{K}) = O(1) & \mathcal{J}(\mathbf{K}) = O(1) \end{vmatrix}$ |                       |                      |                      |                      |                       |
| 1-             |                                                                 |          | $1 {\rightarrow} 1, p$ | $1,p\!\rightarrow\!p$ | $1 \rightarrow 1, p$ | $1,p\!\rightarrow\!p$ | $1 \rightarrow 1, p$ | $1,p\!\rightarrow\!p$ | $1 \rightarrow 1, p$ | $1, p \rightarrow p$  | $1 {\rightarrow} 1, p$                                                                                                | $1,p\!\rightarrow\!p$ | $1 \rightarrow 1, p$ | $1, p \rightarrow p$ | $1 \rightarrow 1, p$ | $1,p\!\rightarrow\!p$ |
| L              | p                                                               | DoF      | $i_s$                  | $i_s$                 | $i_s$                | $i_s$                 | $i_s$                | $i_s$                 | $i_s$                | $i_s$                 | $i_s$                                                                                                                 | $i_s$                 | $i_s$                | $i_s$                | $i_s$                | $i_s$                 |
| 3              | 1                                                               | $2e^4$   | 19                     | 19                    | 19                   | 19                    | 21                   | 21                    | 18                   | 18                    | 18                                                                                                                    | 18                    | 19                   | 19                   | 19                   | 19                    |
|                | 3                                                               | $1e^5$   | 29                     | 13                    | 28                   | 14                    | 29                   | 11                    | 27                   | 11                    | 28                                                                                                                    | 11                    | 31                   | 13                   | 31                   | 13                    |
|                | 6                                                               | $6e^5$   | 30                     | 13                    | 30                   | 14                    | 26                   | 9                     | 24                   | 9                     | 25                                                                                                                    | 10                    | 28                   | 11                   | 28                   | 11                    |
|                | 9                                                               | $1e^{6}$ | 31                     | 14                    | 30                   | 14                    | 23                   | 9                     | 23                   | 9                     | 23                                                                                                                    | 9                     | 26                   | 10                   | 26                   | 10                    |
| 4              | 1                                                               | $6e^4$   | 21                     | 21                    | 20                   | 20                    | 21                   | 21                    | 19                   | 19                    | 19                                                                                                                    | 19                    | 19                   | 19                   | 19                   | 19                    |
|                | 3                                                               | $6e^5$   | 29                     | 13                    | 29                   | 14                    | 28                   | 11                    | 26                   | 11                    | 27                                                                                                                    | 11                    | 30                   | 11                   | 30                   | 11                    |
|                | 6                                                               | $2e^{6}$ | 31                     | 13                    | 30                   | 14                    | 25                   | 9                     | 24                   | 9                     | 24                                                                                                                    | 9                     | 27                   | 10                   | 27                   | 10                    |
|                | 9                                                               | $5e^6$   | 32                     | 14                    | 31                   | 15                    | 23                   | 9                     | 22                   | 9                     | 23                                                                                                                    | 9                     | 25                   | 9                    | 25                   | 9                     |

Numerical  $\mathbf{K}$ - and L-robustness is observed even in low-regularity cases.

**ASC + TUWIEN** 

Stopping criterion: 
$$\frac{\|\mathbf{F}_L - \mathbb{A}_L \mathbf{U}_L^{i_s}\|}{\|\mathbf{F}_L\|} \le 10^{-5} \frac{\|\mathbf{F}_L - \mathbb{A}_L \mathbf{U}_L^0\|}{\|\mathbf{F}_L\|}.$$

The mesh hierarchies here are obtained from L uniform refinements of an initial Delaunay mesh  $T_0$ .

|   |                                                                 |          | $H^2$ -regular       |                      |                      |                                                                                                                                                |                      | $H^{1}$ -regular     |                                              |                      |                                                        |                      |                      |                      |                      |                      |  |
|---|-----------------------------------------------------------------|----------|----------------------|----------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------------------------------------|----------------------|--------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|
|   | $ \begin{array}{c c} Sine & Peak \\ K = I & K = I \end{array} $ |          |                      | L-sl<br>K            | hape<br>=I           | $\mathbf{K} = I \qquad \qquad$ |                      |                      | $=O(10^6) \parallel \mathcal{J}(\mathbf{K})$ |                      | Skyscraper<br>)= $O(1) \mid \mathcal{J}(\mathbf{K})$ : |                      | $= O(10^7)$          |                      |                      |                      |  |
|   |                                                                 |          | $1 \rightarrow 1, p$ | $1, p \rightarrow p$ | $1 \rightarrow 1, p$ | $1, p \rightarrow p$                                                                                                                           | $1 \rightarrow 1, p$ | $1, p \rightarrow p$ | $1 \rightarrow 1, p$                         | $1, p \rightarrow p$ | $1 \rightarrow 1, p$                                   | $1, p \rightarrow p$ | $1 \rightarrow 1, p$ | $1, p \rightarrow p$ | $1 \rightarrow 1, p$ | $1, p \rightarrow p$ |  |
| L | p                                                               | DoF      | $i_s$                | $i_s$                | $i_s$                | $i_s$                                                                                                                                          | $i_s$                | $i_s$                | $i_s$                                        | $i_s$                | $i_s$                                                  | $i_s$                | $i_s$                | $i_s$                | $i_s$                | $i_s$                |  |
| 3 | 1                                                               | $2e^4$   | 19                   | 19                   | 19                   | 19                                                                                                                                             | 21                   | 21                   | 18                                           | 18                   | 18                                                     | 18                   | 19                   | 19                   | 19                   | 19                   |  |
|   | 3                                                               | $1e^5$   | 29                   | 13                   | 28                   | 14                                                                                                                                             | 29                   | 11                   | 27                                           | 11                   | 28                                                     | 11                   | 31                   | 13                   | 31                   | 13                   |  |
|   | 6                                                               | $6e^5$   | 30                   | 13                   | 30                   | 14                                                                                                                                             | 26                   | 9                    | 24                                           | 9                    | 25                                                     | 10                   | 28                   | 11                   | 28                   | 11                   |  |
|   | 9                                                               | $1e^{6}$ | 31                   | 14                   | 30                   | 14                                                                                                                                             | 23                   | 9                    | 23                                           | 9                    | 23                                                     | 9                    | 26                   | 10                   | 26                   | 10                   |  |
| 4 | 1                                                               | $6e^4$   | 21                   | 21                   | 20                   | 20                                                                                                                                             | 21                   | 21                   | 19                                           | 19                   | 19                                                     | 19                   | 19                   | 19                   | 19                   | 19                   |  |
|   | 3                                                               | $6e^5$   | 29                   | 13                   | 29                   | 14                                                                                                                                             | 28                   | 11                   | 26                                           | 11                   | 27                                                     | 11                   | 30                   | 11                   | 30                   | 11                   |  |
|   | 6                                                               | $2e^{6}$ | 31                   | 13                   | 30                   | 14                                                                                                                                             | 25                   | 9                    | 24                                           | 9                    | 24                                                     | 9                    | 27                   | 10                   | 27                   | 10                   |  |
|   | 9                                                               | $5e^{6}$ | 32                   | 14                   | 31                   | 15                                                                                                                                             | 23                   | 9                    | 22                                           | 9                    | 23                                                     | 9                    | 25                   | 9                    | 25                   | 9                    |  |

Numerical **K**- and *L*-robustness is observed even in low-regularity cases.

**ASC + TUWIEN** 

Stopping criterion: 
$$\frac{\|\mathbf{F}_L - \mathbb{A}_L \mathbf{U}_L^{i_s}\|}{\|\mathbf{F}_L\|} \le 10^{-5} \frac{\|\mathbf{F}_L - \mathbb{A}_L \mathbf{U}_L^0\|}{\|\mathbf{F}_L\|}.$$

The mesh hierarchies here are obtained from L uniform refinements of an initial Delaunay mesh  $T_0$ .

|   |                                                                        | $H^2$ -regular |                      |                                  |                      |                                  | $H^{1}$ -regular     |                                  |                                                                                                  |             |                                                                                                               |                                  |                                                                                             |         |                      |                                  |
|---|------------------------------------------------------------------------|----------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|--------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------|---------|----------------------|----------------------------------|
|   | $\begin{vmatrix} Sine \\ K = I \\ I > I > I > I > I > I > I > I > I >$ |                |                      | eak $=I$                         | L-sl<br>K            | hape $=I$                        | K                    | Checke $= I$                     | erboard<br>$\mathcal{J}(\mathbf{K}) = O(10^6)$<br>$1 \rightarrow 1$ $n \mid 1$ $n \rightarrow n$ |             | $\begin{array}{c} Skysc\\ \mathcal{J}(\mathbf{K}) = O(1)\\ 1 \rightarrow 1 n + 1 n \rightarrow n \end{array}$ |                                  | craper<br>$\mathcal{J}(\mathbf{K}) = O(10^7)$<br>$1 \rightarrow 1 p \mid 1 p \rightarrow p$ |         |                      |                                  |
| L | p                                                                      | DoF            | $i \rightarrow i, p$ | $\frac{1, p \rightarrow p}{i_s}$ | $i \rightarrow i, p$ | $\frac{1, p \rightarrow p}{i_s}$ | $i \rightarrow i, p$ | $\frac{1, p \rightarrow p}{i_s}$ | $i \rightarrow i, p$                                                                             | $i_{\rm s}$ | $i \rightarrow i, p$<br>$i_s$                                                                                 | $\frac{1, p \rightarrow p}{i_s}$ | $i \rightarrow i, p$                                                                        | $i_{s}$ | $i \rightarrow i, p$ | $\frac{1, p \rightarrow p}{i_s}$ |
| 3 | 1                                                                      | $2e^4$         | 19                   | 19                               | 19                   | 19                               | 21                   | 21                               | 18                                                                                               | 18          | 18                                                                                                            | 18                               | 19                                                                                          | 19      | 19                   | 19                               |
|   | 3                                                                      | $1e^5$         | 29                   | 13                               | 28                   | 14                               | 29                   | 11                               | 27                                                                                               | 11          | 28                                                                                                            | 11                               | 31                                                                                          | 13      | 31                   | 13                               |
|   | 6                                                                      | $6e^5$         | 30                   | 13                               | 30                   | 14                               | 26                   | 9                                | 24                                                                                               | 9           | 25                                                                                                            | 10                               | 28                                                                                          | 11      | 28                   | 11                               |
|   | 9                                                                      | $1e^{6}$       | 31                   | 14                               | 30                   | 14                               | 23                   | 9                                | 23                                                                                               | 9           | 23                                                                                                            | 9                                | 26                                                                                          | 10      | 26                   | 10                               |
| 4 | 1                                                                      | $6e^4$         | 21                   | 21                               | 20                   | 20                               | 21                   | 21                               | 19                                                                                               | 19          | 19                                                                                                            | 19                               | 19                                                                                          | 19      | 19                   | 19                               |
|   | 3                                                                      | $6e^5$         | 29                   | 13                               | 29                   | 14                               | 28                   | 11                               | 26                                                                                               | 11          | 27                                                                                                            | 11                               | 30                                                                                          | 11      | 30                   | 11                               |
|   | 6                                                                      | $2e^{6}$       | 31                   | 13                               | 30                   | 14                               | 25                   | 9                                | 24                                                                                               | 9           | 24                                                                                                            | 9                                | 27                                                                                          | 10      | 27                   | 10                               |
|   | 9                                                                      | $5e^6$         | 32                   | 14                               | 31                   | 15                               | 23                   | 9                                | 22                                                                                               | 9           | 23                                                                                                            | 9                                | 25                                                                                          | 9       | 25                   | 9                                |

Numerical K- and L-robustness is observed even in low-regularity cases.

### Numerical tests in three space dimensions

Test cases: exact solution u when available;  $\mathbf{K} = I$  except where explicitly specified, uniform mesh refinement,  $p_{\ell} = 1$ ,  $\ell \in \{1, \dots, L\}$ , and L = 4.

**Cube:**  $\Omega := (0, 1)^3$ ,

u(x, y, z) = x(x - 1)y(y - 1)z(z - 1).



unknown analytic solution,

 $\mathbf{K} = 10^5 * I \text{ in } (-0.5, 0.5)^3.$ 

Checkers cubes:  $\Omega := (0, 1)^3$ , unknown analytic solution,

**NumPDEs** 

**ASC**→**TUWIEN** 

 $\mathbf{K} = 10^6 * I \text{ in } (0, 0.5)^3 \cup (0.5, 1)^3.$ 



- 21 -

### Numerical tests in three space dimensions

Test cases: exact solution u when available;  $\mathbf{K} = I$  except where explicitly specified, uniform mesh refinement,  $p_{\ell} = 1$ ,  $\ell \in \{1, \dots, L\}$ , and L = 4.

**Cube:**  $\Omega := (0, 1)^3$ ,

u(x, y, z) = x(x - 1)y(y - 1)z(z - 1).



unknown analytic solution,

 $\mathbf{K} = 10^5 * I \text{ in } (-0.5, 0.5)^3.$ 

 $\label{eq:Greekers} \begin{array}{ll} \mbox{Checkers cubes:} & \Omega:=(0,1)^3, \\ \\ \mbox{unknown analytic solution}, \end{array}$ 

**NumPDEs** 

**ASC**→**TUWIEN** 

 $\mathbf{K} = 10^6 * I \text{ in } (0, 0.5)^3 \cup (0.5, 1)^3.$ 



- 21 -

## Numerical advantages of optimal step-sizes

Level-wise optimal step-sizes determined by line search:

- analytically: Pythagorean formula for the algebraic error
- numerically: advantages of using even a single global step-size on level L

|   |   |                  | Sine |      | Peak             | L-shape |           |  |
|---|---|------------------|------|------|------------------|---------|-----------|--|
| L | p | WRAS   MG(0,1)-J |      | wRAS | wRAS   MG(0,1)-J |         | MG(0,1)-J |  |
| 3 | 1 | 21               | -    | 19   | 68               | 17      | 44        |  |
|   | 3 | 15               | -    | 15   | -                | 12      | -         |  |
|   | 6 | 13               | -    | 14   | -                | 10      | -         |  |
|   | 9 | 13               | -    | 14   | -                | 10      | -         |  |
| 4 | 1 | 23               | -    | 20   | -                | 18      | -         |  |
|   | 3 | 15               | -    | 15   | -                | 12      | -         |  |
|   | 6 | 13               | -    | 14   | -                | 10      | -         |  |
|   | 9 | 13               | -    | 14   | -                | 9       | -         |  |
| 5 | 1 | 22               | -    | 20   | -                | 17      | -         |  |
|   | 3 | 15               | -    | 15   | -                | 12      | -         |  |
|   | 6 | 13               | -    | 14   | -                | 9       | -         |  |
|   | 9 | 13               | -    | 13   | -                | 8       | -         |  |

For p = 1: wRAS and MG(0,1)-J only differ by the use of the global optimal step-size.

NumPDEs

**ASC**→**TUWIEN** 

## Number of post-smoothing steps: adaptive vs fixed

NumPDEs



#### **NumPDEs** Can we predict the distribution of the algebraic error? **ASC+TUWIEN** $\text{Dörfler's bulk-chasing criterion:} \quad \theta^2 \left( \left\| \mathbf{K}^{\frac{1}{2}} \nabla \rho_0^i \right\|^2 + \sum_{\ell=1}^L \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{V}_L} \left\| \mathbf{K}^{\frac{1}{2}} \nabla \rho_{\ell, \mathbf{a}} \right\|_{\omega_\ell^{\mathbf{a}}}^2 \right) \leq \sum_{\substack{\ell \in \mathcal{M} \\ \| \nabla \bar{\rho}_i^i \|_{\omega_\ell^{\mathbf{a}}}} \lambda_\ell^i \sum_{\mathbf{a} \in \mathcal{M}_L} \left\| \mathbf{K}^{\frac{1}{2}} \nabla \rho_{\ell, \mathbf{a}} \right\|_{\omega_\ell^{\mathbf{a}}}^2 \cdot 10^{-2} \cdot 10^{$ 6 **Hierarchy:** uniform refinement, L = 2, $p_1 = p_2 = 3$ . • local algebraic error indicators $\rho_{\ell,\mathbf{a}}$ local algebraic error distribution $\|\tilde{\rho}_{\ell}^{i}\|_{\omega^{\mathbf{R}}}$ with $\tilde{\rho}_0^i=\rho_0^i$ and $\tilde{\rho}_\ell^i\in\mathbb{V}_\ell^{p_\ell}$ , for $\ell\in\{1,\ldots,L\}$ , given by ×10<sup>-3</sup> $(\lambda_{2}^{i})^{\frac{1}{2}} \| \nabla \rho_{2,\mathbf{a}}^{i} \|_{\omega_{2}^{\mathbf{a}}}$ $\|\nabla \tilde{\rho}_2^i\|_{\omega_2^a}$ ×10<sup>-3</sup> $\langle\!\langle \tilde{\rho}_{\ell}^{i}, v_{\ell} \rangle\!\rangle = (f, v_{\ell}) - \langle\!\langle u_{L}^{i}, v_{\ell} \rangle\!\rangle - \sum^{i-1} \langle\!\langle \tilde{\rho}_{k}^{i}, v_{\ell} \rangle\!\rangle \quad \forall v_{\ell} \in \mathbb{V}_{\ell}^{p_{\ell}},$ 25 12 so that $\sum_{\ell=0}^{L} \tilde{ ho}_{\ell}^{i} = u_{L} - u_{L}^{i}$ . 20 10 8 15 10 4

INUMIPIDES

