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Our Saturation Assumption

|u − Îpu|1,t ≤ β|u − Ipu|1,t

t is a single shape regular simplex in Rd , 1 ≤ d ≤ 3, of size h.

|u|1,t ≡ ||∇u||L2(t) is the H1(t) semi-norm.

Sp is the space of polynomials of degree p.

Ipu ∈ Sp is the usual Lagrange interpolant of function u.

Îpu corresponds to h or p refinement of t. For p refinement Îp ≡ Ip+1. For h
refinement Îp is Ip applied to child elements.

β ≡ β(u) < 1.

Saturation Assumptions are typically global, refer to finite element solutions, and allow p
refinement only.
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Preliminaries

Assume a priori error estimates

||(1− Ip)u||Hr (t) ≤ C (q, r)hq−r |u|Hq(t)

for 0 ≤ r < q ≤ p + 1 hold. Assume β0 < 1 where

β0 ≡ max
ν∈Sp+1

|ν − Îpν|1,t
|ν − Ipν|1,t

.

Null(1− Ip) ≡ Sp ⊂ Null(1− Îp). For p refinement β0 = 0. For h refinement we assume
number of nodes for Îp ≥ number of nodes for Ip+1 (else β0 = 1). This may require several
levels of h refinement to define Îp. Note that β2

0 is largest generalized eigenvalue of two
positive semidefinite matrices, thus independent of ν.
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The Main Theorem

Theorem

Let u ∈ Hp+2(t) satisfy a priori estimates, u ̸∈ Sp, and β0 defined as above. Then there is a
constant C depending on u, the degree p, the shape of element t, but not on its diameter h,
such that

|u − Îpu|1,t
|u − Ipu|1,t

≤ β0 + Ch.

Note this implies

β0 ≤
|u − Îpu|1,t
|u − Ipu|1,t

≤ β0 + Ch

showing that (asymptotically) the saturation assumption holds.
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Proof

Using a priori estimates, β0, and the triangle inequality

|u − Îpu|1,t ≤ |(1− Îp)Ip+1u|1,t + |(1− Îp)(u − Ip+1u)|1,t
≤ β0|(1− Ip)Ip+1u|1,t + |(1− Îp)(u − Ip+1u)|1,t
≤ β0|u − Ipu|1,t + β0|(1− Ip)(u − Ip+1u)|1,t

+ |(1− Îp)(u − Ip+1u)|1,t

If u ∈ Sp, |u − Ipu|1,t = 0, then the saturation assumption is trivially satisfied for any choice
of β, so we exclude Null(1− Ip) ≡ Sp. Then as shown by Lin, Xie, and Xu

|u − Ipu|1,t ≥ C0(u)h
p > 0.
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Proof (Continued)

We bound the last two terms as follows

|(1− Ip)(u − Ip+1u)|1,t ≤ C1h|u − Ip+1u|2,t
≤ C2h

p+1|u|p+2,t

≤
(
C2|u|p+2,t

C0(u)

)
h|u − Ipu|1,t

≡ C3(u)h|u − Ipu|1,t

for functions u ∈ Hp+2(t). A similar argument shows

|(1− Îp)(u − Ip+1u)|1,t ≤ Ĉ3(u)h|u − Ipu|1,t .

The theorem now follows with C (u) = β0C3(u) + Ĉ3(u).
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Remarks (Details in Bank, Xu, Yserentant)

β0 = 0 for p refinement. For h refinement we compute β0 = 2−p for regular/red refinement
of simplicies in Rd , 1 ≤ d ≤ 3, and for newest node bisection (two levels) for d = 2.

Let a ∈ W 1
∞(t) and a(x) > a0 > 0

a(u, v)t =

∫
t
a(x)∇u · ∇v dx

|u|2a,t = a(u, u)t

β0 ≡ max
ν∈Sp+1

|ν − Îpν|a,t
|ν − Ipν|a,t

.

We show

β0 ≤
|u − Îpu|a,t
|u − Ipu|a,t

≤ β ≤ β0 + Ch
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Regularity

Regularity u ∈ Hp+2(t) can be relaxed to u ∈ Hp+1+α(t), 0 < α ≤ 1, with result
β ≤ β0 + Chα.

Let d = 1, p = 1, h refinement. Then Îpu is the exact finite element solution of the Dirichlet
problem −u′′ = f on (0, h) Galerkin Orthogonality shows

|u − I1u|21,t = |u − Î1u|21,t + |I1u − Î1u|21,t .

If both |I1u − Î1u|1,t and |u − I1u|1,t are positive

β2 = 1−
|I1u − Î1u|21,t
|u − I1u|21,t

< 1.

without a strong regularity assumption.
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A Posteriori Error Estimate

The saturation assumption is used to show, for all χ ∈ Sp

|u − Ipu|1,t ≤ C |u − χ|1,t

Let uh the finite element solution of a PDE on domain Ω. Then

C1|u − Ipu|1,Ω ≤ |u − uh|1,Ω ≤ C2|u − Ipu|1,Ω

using our local lower bound and classical upper bound.
Thus interpolation error is a reliable and efficient a posteriori error estimator (assuming it
could be computed). Let |eh| be a reliable and efficient a posteriori error estimate. Then

c1|u − Ipu|1,Ω ≤ |eh|1,Ω ≤ c2|u − Ipu|1,Ω
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Reference Adaptive Method

The reference adaptive method creates a sequence Sk
h of (possibly discontinuous) piecewise

polynomial spaces.

Assume a shape regular triangulation of Ω with ht ≤ h0 < 1. Let S0
h be the initial space

with local degree p (e.g. p = 1) in each element. Assume local regularity and a priori
estimates hold on each element.

Sk
h → Sk+1

h as follows: pick an element t with largest interpolation error and refine it (h
or p). Local regularity and a priori estimates must remain the same or improve.

If both h and p refinement are possible, chose one with the largest error reduction.

Let uk ∈ Sk
h be the (possibly discontinuous) piecewise polynomial interpolant of u

generated in the k-th step of this process.
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Reference Adaptive Method

Since the Saturation Assumption only holds asymptotically, could it impede convergence of
the reference adaptive method?

Lemma

Assume that the sequence {uk ∈ Sk
h } is generated as described above. Then

lim
k→∞

|u − uk |1,Ω = 0.

The proof is by the method of contradiction. If the adaptive procedure did not converge,
there must be one or more elements with maximum positive error that was not reduced even
after multiple (infinite) refinement steps. This contradicts the a priori error estimate.
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Test Framework for Adaptive Feedback Loops

We consider adaptive feedback loops of the form

Classic (pltmg) solve → estimate → refine

Dörfler (θ = 1/2) solve → estimate → mark → refine

Pick known functions in the class of interest. Skip solve.

Replace estimate with interpolation error.

Prove reference adaptive scheme is optimal for the chosen class of functions, using all
known information.

Feedback loops can only use information available to them in the actual PDE application.

This provides a standardized framework to evaluate feedback loops, eliminating much white
noise (e.g. approximate solution, details of a posteriori error estimates), allowing focus on the
feedback loop itself.
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Point Singularity Example
We consider the case r = 1 singular point u ∈ H1+α for 0 < α < 1, and use for numerical
illustration the Circle Problem:

−∆u = 0 in Ω, with

u = g on ∂Ω1, and un = 0 on ∂Ω2,

Ω is a circle of radius one, with a crack along the positive x-axis 0 ≤ x ≤ 1. The boundary
∂Ω2 is the bottom edge of the crack, and ∂Ω1 = ∂Ω \ ∂Ω2. g is chosen such that the exact
solution is u = r1/4 sin(θ/4) ∈ H5/4−ϵ.
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Notation

The table data is labeled as follows.

Loops: number of adaptive feedback steps; L = loops.

Digits: − log(|u − Ipu|1/|u|1) for NL ≈ 250K DOFs.

Order: least squares fit to AN−Q/2; Q=Order.

Exp: nonlinear least squares fit to A exp(−BNQ
k ); Q=Exp.

The reference scheme has Nk ≈ min(4Nk−1, 250K ) to provide data points for graphs and
tables.

The graphs are log(|u − Ipu|1/|u|1) v logN.
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Reference Scheme

h refinement for p = 1, p = 2, p = 4, and hp refinement.
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h Refinement p = 1

h-refinement, p = 1

Digits Order Loops

reference 2.30 1.09 9
pltmg 2.29 1.26 13
Dörfler 2.26 1.10 69
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h Refinement p = 2

h-refinement, p = 2

Digits Order Loops

reference 3.95 2.23 8
pltmg 3.81 2.30 23
Dörfler 3.76 2.12 105
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h Refinement p = 4

h-refinement, p = 4

Digits Order Loops

reference 6.36 4.45 7
pltmg 5.49 4.21 46
Dörfler 5.99 4.53 260
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hp Refinement

hp-refinement

Digits Exp Loops

reference 9.48 0.24 9
pltmg 7.57 0.30 24

UCSD Center for Computational Mathematics Slide 20/21, June 9, 2022



Overview Analysis Adaptive Refinement Examples References

References

Randolph E. Bank, Jinchao Xu, and Harry Yserentant. An analysis of the saturation
assumption, submitted (2021).

Qun Lin, Hehu Xie, and Jinchao Xu, Lower bounds of the discretization error for
piecewise polynomials. Mathematics of Computation 1–13 (2014).

Randolph E. Bank and Harry Yserentant, A note on interpolation, best approximation,
and the saturation property. Numerische Mathematik, 131, 199–203 (2015).

Randolph E. Bank and Harry Yserentant, On the convergence of adaptive feedback
loops. Computing and Visualization in Science 20, 59–70 (2019).

Randolph E. Bank and Chris Deotte, Adventures in adaptivity. Computing and
Visualization in Science, 18:79–92, 2017.

UCSD Center for Computational Mathematics Slide 21/21, June 9, 2022


	Overview
	Analysis
	Adaptive Refinement
	Examples
	References

