

Traffic Monitoring and Control Systems and Tools

Roberto Horowitz

Professor Mechanical Engineering PATH Director

Pravin Varaiya

Professor in the Graduate School EECS

University of California, Berkeley

Carlos Canudas de Wit

Director of Research at the CNRS NeCS Team director

Grenoble France

Traffic Monitoring and Control Systems and Tools

- Information flow in ITS
- TOPL at UC Berkeley
- Grenoble Traffic Lab

Real-time Information flow in ITS

Technology

The data deluge

Businesses, governments and society are only starting to tap its vast potential

Feb 25th 2010 | From The Economist print edition

P/3

Information collection: measures, filter & aggregate real-time information

Large offer in new sensor technologies:

- Wireless,
- Heterogeneous,
- Richness,
- Mobile

Communicate Information; build ups a information flow from sensors to system

New communication Technologies will open opportunities:

- Vehicle-to-Vehicle communications,
- Vehicle-to-Infrastructure,
- Infrastructure-to-Vehicles,
- Information to users

Processing (controlling) Information: brings add value at the brut information

Ramp metering control:

- Products already in use are not optimal,
- Decentralized,
- Room for a lot of improvements

Variable velocity control:

- Under investigation,
- Relay on "Soft" actuators (drivers),
- High potentially

Information serving: services to users

Collecting

Communicating

The results of the processed information is transformed into user services:

- Desktop applications,
- Mobile phones,
- On-board navigation devices,
- Traffic control centers

Expected impact & Benefits of using feedback control

Table ES.1Annual Benefits of the Ramp Metering System
(Year 2000 Dollars)

Performance Measure	Annual Benefit	Annual \$ Savings
Travel time	25,121 hours of travel time saved	\$247,000
Travel time reliability	2,583,620 hours of unexpected delay avoided	\$25,449,000
Crashes	1,041 crashes avoided	\$18,198,000
Emissions	1,161 tons of pollutants saved	\$4,101,000
Fuel consumption	5.5 million gallons of fuel depleted	(\$7,967,000)
Total annual benefit		\$40,028,000

tre ES.6 Crash Occurrence in the "With Meters" and "Without Meters" Study Periods (for Metered Freeways in the Morning and Afternoon Peak Periods)

Expected Benefits

- Decrease traveling time
- Regularity
- Reduce accidents
- Decreases stop-go behavior
- Reduce emission of pollutants
- Minimize fuel consumptions

ure ES.5 Example of Increased Speed Variability (I-94 Corridor Location)

Detector: 3136 - 94/25AvE3 Time (Hour of Day)

From Cambridge Systematics for the Minnesota Department of Transportation 2001

Traffic Monitoring and Control Systems and Tools

- Information flow in ITS
- TOPL at UC Berkeley
- Grenoble Traffic Lab

TOPL (Tools for Operations Planning)

TOPL TEAM

Gunes Dervisoglu Gabriel Gomes Roberto Horowitz Alex A Kurzhanskiy Xiao-Yun Lu Ajith Muralidharan Rene O. Sanchez Dongyan Su Pravin Varaiya TOPL PI's

Roberto Horowitz Professor Mechanical Engineering horowitz@berkeley.edu

Pravin Varaiya Professor EECS varaiya@eecs.berkeley.edu

Supported by grants from Caltrans and National Science Foundations

2007 USA Traffic Congestion Caused:

- 4.2 billion hours of additional travel time
- 11 billion litters of additional fuel

Congestion delay in California:

- 500,000 veh-hrs/day
- will double in 2025

San Francisco I-80 Bay-shore morning commute

What is TOPL? (Tools for Operational Planning)

TOPL provide tools to

- specify actions for traffic corridor operational improvements:
 - ramp metering, incident management, traveler information, and demand management;
- quickly estimate the benefits of such actions

TOPL is

- based on macro-simulation models that are
- automatically calibrated using traffic data
- can be extended for real time traffic monitoring, prediction and control

R. Horowitz and P. Varaiya Automatic modeling of freeway corridors

Help Caltrans achieve a 55% reduction in traffic congestion by 2025

Examples: I210-W (Pasadena, CA) and 880-N (Bay Area)

1880-N Accident simulation

Simulation vs PeMS

Traffic-responsive Ramp metering

Some details of TOPL Self-Callibration Procedure

- Specify Freeway Network
 - Eg: I-210 EW , I-880S, I-80E
- Data
 - PeMS (Perfromance Measurement Systems) Data archive
 - Aggregate flow, density and Speed data from loop detectors
- Perform TOPL procedures for operations planning/ benefit assessment

A decision support structure for ATM

Towards a Smart Corridor TMC

ATM Workflow

Speed contours

Performance measures

Measured (PeMS)
Simulated

24:00

Example: HOT lane management

 Changes in % traffic in HOT lane produce changes in total delay.

Example I-80 W, 01/14/09 Best/worst case prediction

- Current time 6:00 am
- Prediction horizon: 2 hours
- Uncertainty: 1% in capacity, 2% in demands

Example I-80 W, 01/14/09 <u>Best</u>

Best/worst case prediction

Example I-80 W, 01/14/09

Best/worst case prediction

Example I-80 W, 01/14/09 <u>Best/worst case prediction</u>

Ramp metering at \bigstar

Example I-80 W, 01/14/09

Accident hot spot

I-80 West accident strategy 4: ALINEA and VMS detour

- ALINEA + queue control: upstream of accident
- VMS Detour: 10% use Carlson and Central junctions to 580 EB

Traffic Monitoring and Control Systems and Tools

- Information flow in ITS
- TOPL at UC Berkeley
- Grenoble Traffic Lab

- A national center of traffic data collection
- Multi-purposes data exploitation (model, prediction, control, statistics, etc.)

• Research transfer to KARRUS-ITS (Grenoble start-up)

Wireless magnetic sensor Speed and density

Long-term GTL Strategy

Fig.3 This figure show the role and position of the GTL in connection with the NeCS team activities, and its interrelation with the academia, the governmental traffic authorities and industry.

WP5 – Benchmark: Traffic Modeling, Estimation and Control

Context: Grenoble south ring, wireless sensor networks

