COALA:
Communication Optimal Algorithms
for Linear Algebra

Jim Demmel Laura Grigori
EECS & Math De

E

Nt
ML v

UCB rkeley lle eFrance

A u e

1Ha o S aina SUpporters

A~ ~vrataAr
(AU Ul dlUI

Collaborators at Berkeley (campus and LBL)

— Michael Anderson, Grey Ballard, Jong-Ho Byun, Erin Carson , Ming Gu,
Olga Holtz, Nick Knight, Marghoob Mohiyuddin , Hong Diep Nguyen,
Oded Schwartz, Edgar Solomonik , Vasily Volkov, Sam Williams, Kathy Yelick,
other members of BEBOP, ParLab and CACHE projects

Collaborators at INRIA

— Marc Baboulin, Simplice Donfack, Amal Khabou, Long Qu, Mikolaj Szydlarski,
Alok Gupta, Sylvain Peyronnet

Other Collaborators

— Jack Dongarra (UTK), loana Dumitriu (U. Wash), Mark Hoemmen (Sandia NL),
Julien Langou (U Colo Denver), Michelle Strout (Colo SU), Hua Xiang (Wuhan)

— Other members of EASI, MAGMA, PLASMA, TOPS projects

Supporters
— INRIA, NSF, DOE, UC Discovery

— Intel, Microsoft, Mathworks, National Instruments, NEC, Nokia, NVIDIA,
Samsung, Sun

°
[

nll+|l M\
UULIIC

e Why we need to “avoid communication,”
l.e. avoid moving data
e “Direct” Linear Algebra

— Lower bounds on communication for linear algebra
problems like Ax=b, least squares, Ax = Ax, SVD, etc

— New algorithms that attain these lower bounds
e Not in libraries like Sca/LAPACK (yet!)
e Large speed-ups possible
e “lterative” Linear Algebra
— Ditto for Krylov Subspace Methods

Why avoid communication? (1/2)

Algorithms have two costs:
1. Arithmetic (FLOPS)

2. Communication: moving data between
— levels of a memory hierarchy (sequential case)
— processors over a network (parallel case).

I

Why avoid communication? (2/2)

 Running time of an algorithm is sum of 3 terms:
— #flops * time_per_flop
— # words moved / bandwidth

" communication
— # messages * latency

 Time_per_flop << 1/ bandwidth << latency
e Gaps growing exponentially with time (FOSC, 2004)

Annual improvements
Time_per_flop Bandwidth Latency
Network 26% 15%
55%
DRAM 23% 5%

o ll«—> L2

> DRAM <— network, etc

e Not just hiding communication (speedup < 2x)

e Arbitrary speedups possible

e Goal : reorganize linear algebra to avoid communication

e Between all memory hierarchy levels

President Obama cites Communication-Avoiding algorithms in

s EV IN1ID DNAana it imn o s + A~
uice rr ZvuilzZ vecpdriuilicrit O

J
'-

.If.'l'.,.....,..._. ~d DAamitimcad dm M mtmcrmm ~ o~ e

sy DA~ T R o) .
ClHClIgy DUUgCEL REQUCESL LO LOTIEICSS.

“New Algorithm Improves Performance and Accuracy on Extreme-Scale
Computing Systems. On modern computer architectures, communication
between processors takes longer than the performance of a floating
point arithmetic operation by a given processor. ASCR researchers have
developed a new method, derived from commonly used linear algebra
methods, to minimize communications between processors and the
memory hierarchy, by reformulating the communication patterns
specified within the algorithm. This method has been implemented in the
TRILINOS frameworkf‘a highly-regarded suite of software, which provides
functionality for resezﬁrchers around the world to solve large scale,
complex multi-physic$ problems.”

—e—

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing
Research (ASCR), pages 65-67.

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD)
“Tall-Skinny” QR (Hoemmen, Langou, LG, JD)

Lower bound for all “direct” linear algebra

e Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M/ 2)

##messages_sent (per processor) = Q(#flops (per processor) / m3/ Z)

 Holds for anything that “smells like” 3 nested loops
— BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg AX)

— Dense and sparse matrices (where #flops << n3)
— Sequential and parallel algorithms
— Some graph-theoretic algorithms (eg Floyd-Warshall)

Can we attain these lower bounds?

Do conventional dense algorithms as implemented
in LAPACK and ScalLAPACK attain these bounds?

— Mostly not

* |f not, are there other algorithms that do?
— Yes, for dense linear algebra

 Only a few sparse algorithms so far
— Cholesky on matrices with good separators
— [David, Peyronnet, LG, JD]

TSQR: QR of a Tall, Skinny matrix

r

=

0

HE

=

-
-

\

TSQR: QR of a Tall, Skinny matrix

~ N ™ 4)
Wo Qoo Rog /Qoo A Roo
W = Wy _ Qi Ry _ Qo , Rio
W, Q,0 Ryo Q,0 R2o
\W3) \Q3O Ro J _ Q39 J 9 R3o)
4 ™

Minimizing Communication in TSQR

Wo | — Roo > Ry,
Parallel: w=| Wi | = Ruw T R,,
WZ — Rzo — R /
W | — R,y 7 i

Sequential: -

SSS=S
Qm
o)

- W D
2T T — p
Dual Core: _| Wi | = R, 5"
W w, R, — ROZ\
W, 11 o %R(B
L i 11

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

Can choose reduction tree dynamically

TSQR Performance Results

Parallel
— Intel Clovertown
— Up to 8x speedup (8 core, dual socket, 10M x 10)
— Pentium llI cluster, Dolphin Interconnect, MPICH
e Up to 6.7x speedup (16 procs, 100K x 200)
— BlueGene/L
e Up to 4x speedup (32 procs, 1M x 50)
— Tesla C 2050 / Fermi
e Upto13x(110,592 x 100)
— Grid —4x on 4 cities (Dongarra et al)
— Cloud — early result — up and running
Sequential
— “Infinite speedup” for out-of-Core on PowerPC laptop
e As little as 2x slowdown vs (predicted) infinite DRAM

e LAPACK with virtual memory never finished

Generalize to LU: How to Pivot?

Block W | - U —
_| W, | = Up — \
Parallel W= Uy,
. . WZ - U20 T U /
Pivoting: W | Uy Y
BIOCk I Wo | - UOO \ U
Pairwi w=| Vi | —— ™ U
airwise w, | = oy
Pivoting: W,

e Block Pairwise Pivoting used in PLASMA and FLAME
e Both can be much less numerically stable than partial pivoting
 Need a new idea...

CALU: Using similar idea for TSLU as TSQR:
Use reduction tree, to do “Tournament Pivoting”

R ~ ~
W, PyLy-Uy Choose b pivot rows of W, call them W/’
Wb = W, _ [PyLY, Choose b pivot rows of W,, call them W’
a W, - P.-L,-U, Choose b pivot rows of W, call them W’
{ W,) \P4'L4'U4 y Choose b pivot rows of W,, call them W’
. N
W,
P..-L..-U :)
W/ 12"+12"Y12 Choose b pivot rows, call them W,
wy|
W3’ Py LssUsy J Choose b pivot rows, call them W,,’
~ 4 S
W)’ -
[W34’J = PiyalizzaUioas Choose b pivot rows

* Go back to W and use these b pivot rows

(move them to top, do LU without pivoting)
e Repeat on each set of b columns to do CALU
e Provably stable [Xiang, LG, JD]

Performance vs ScaLAPACK

e Parallel TSLU (LU on tall-skinny matrix)
— IBM Power 5
e Up to 4.37x faster (16 procs, 1M x 150)
— Cray XT4
e Up to 5.52x faster (8 procs, 1M x 150)

e Parallel CALU (LU on general matrices)
— Intel Xeon (two socket, quad core)
o Up to 2.3x faster (8 cores, 106 x 500)
— IBM Power 5
e Up to 2.29x faster (64 procs, 1000 x 1000)
— Cray XT4
e Up to 1.81x faster (64 procs, 1000 x 1000)

e Details in SC08 (LG, JD, Xiang), IPDPS’10 (S. Donfack, LG)

CA(LU/QR) on multicore architectures

e The matrix is partitioned in blocks of size Tr x b.
e The computation of each block is associated with a task.
 The task dependency graph is scheduled using a dynamic scheduler.

2.2

Step: 0 Step:1 Step:2 Step:3 Step: 4 Step:5

\) II\I
i L lﬁ |

| 00 ¢

Step: 3 Step:4 Step:5 Step:6 Step:7

: P |

Step: 6 Step:7 Step: 8 Step:9

CA(LU/QR) on multicore architectures (contd)

The panel factorization stays on the critical path, but it is much faster.
Exemple of execution on Intel 8 cores machine for a matrix of size 10° x
1000, with block size b = 100.

T=0 CALU: one thread computes the panel factorizaton

T=0 CALU: 8 threads compute the panel factorizaton

[[} [¥X]
m [m
T T T

-]
=

GFlopsis

10+

—_
m
T

Performance of CALU on multicore architectures

Tall Skinny Matrix, CALL, m=10%

—— Mk _dgetf2
—8— ML _dyetr
PLASKA dgetrt
—w— CALUTr=4)
—+— CALUT=E)

GFlopsis

—_
m
T

Tall Skinny Matrix, CALL, m=10%

= hikL_dgetf2

—&— ML dgetr
PLASMA, dyetr

—a— CALUT=4)

—+— CALUT=E)

e Results obtained on a two socket, quad core machine based on
Intel Xeon EMT64 processor, and on a four socket, quad core machine

based on AMD Opteron processor.
e Matrices of size m= 10° and n varies from 10 to 1000.

Courtesy of S. Donfack 18

Summary of dense parallel algorithms
attaining communication lower bounds

#words_moved = Q(n2/ p1/2)

Assume nxn matrices on P processors, memory per processor = O(n / P)
ScaLAPACK assumes best block size b chosen
Many references (see reports), Green are ours
Recall lower bounds:

and #messages = Q(pl/2)

Algorithm

Reference

Factor exceeding
lower bound for
#words_moved

Factor exceeding
lower bound for
#messages

Matrix multiply

[Cannon, 69]

Cholesky ScalLAPACK
LU [GDXO08]
ScaLAPACK
QR [DGHLOS]
ScaLAPACK
Sym Eig, SVD [BDD10]
ScaLAPACK
Nonsym Eig [BDD10]

ScaLAPACK

C IVidUI 11T

E\I"\f‘f"‘\l n"\ V“'\Mf\'l‘f\lf‘(‘
LAdOLdIl raldlilic Ll o

27230 ~ 1,000,000 nodes

1024 cores/node (a billion cores!)
100 GB/sec interconnect bandwidth
400 GB/sec DRAM bandwidth

1 microsec interconnect latency

50 nanosec memory latency

32 Petabytes of memory
1/2 GB total L1 on a node

log, (n*/p)
log, (memory_per_proc)

Exascale predicted speedups
for CA-LU vs ScalLAPACK-LU

CALU Scalapack speed up

3

Summary of dense parallel algorithms
attaining communication lower bounds

Recall lower bounds:

#words_moved = Q(n2/ p1/2)

Assume nxn matrices on P processors, memory per processor = O(n / P)
ScaLAPACK assumes best block size b chosen
Many references (see reports), Green are ours

and #messages = Q(pl/2)

Algorithm

Reference

Factor exceeding
lower bound for

Matrix multiply

[Cannon, 69]

Fa exceeding
bound for

#words mov%@ es§ages
QgP

Cholesky ScalLAPACK g log P
LU [GDX08] log P log P
Scal e log P (N/P¥2).logP
QR a LO3] log P log3 P
< , &P Scal APACK log P (N/PY2).logP
Sym Eig, SVD [BDD10] log P log3 P
ScalLAPACK log P N / P12
Nonsym Eig [BDD10] log P log3 P
ScaLAPACK PY/2. og P N - log P

Summary of dense parallel algorithms
attaining communication lower bounds

Recall lower bounds:

Assume nxn matrices on P processors, memaory per processor = O(n / P)? Why?
ScaLAPACK assumes best block size b chosen
Many references (see reports), Green are ours

#words_moved = Q) n?/ pl/2) and #messages = Q(pl/2)

Algorithm

Reference

Factor exceeding exceeding
lower bound for bound for

Matrix multiply

#words mov%@ esgages
[Cannon, 69] ﬁ_e‘
gP

Cholesky ScalLAPACK Q log P
LU [GDX08] e log P log P
Scal log P (N/PY2).logP
QR a@H LOS] log P log3 P
(, & ScaLAPACK log P (N/PY2).logP
Sym Eig, SVD [BDD10] log P log3 P
ScalLAPACK log P N / P12
Nonsym Eig [BDD10] log P log3 P
ScaLAPACK PY/2. og P N - log P

Beating #words moved = Q(n2/P1/2)

~3 /D
/I'

H\Al V‘Al‘ m \7 n I
1asS \I

AAAY, movcu = 324\

If one copy of data, local_mem = n?/P
Can we use more memory to communicate less?

“3D” Matmul Algorithm on P/3 x P1/3 x P1/3 processor grid
e P1/3 redundant copies of A and B
e Reduces communication volume to O((n%/P2/3) log(P))
e optimal for PY/3 copies
e Reduces number of messages to O(log(P)) — also optimal

“2.5D” Algorithms
e Extends to 1 < ¢ < P¥3 copies on (P/c)Y2 x (P/c)Y? x c grid
e Reduces communication volume of Matmul, LU, by c1/2
e Reduces comm 92% on 64K proc BG-P, LU&MM speedup 2.6x

°
@Y "\If'

Linea g

1 1 Y\ v

C ~
9 1iliia

r\l A'F .r

RY 4 A
y Ol Ui L DI

ecC

* New lower bounds, optimal algorithms,
big speedups in theory and practice

e Lots of other progress, open problems
— New ways to “pivot”
— Extensions to Strassen-like algorithms
— Heterogeneous architectures
— Some sparse algorithms
— Autotuning. . .

Avoiding Communication in lterative Linear Algebra

e k-steps of iterative solver for sparse Ax=b or Ax=Ax
— Does k SpMVs with A and starting vector

— Many such “Krylov Subspace Methods”
e Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, ...

e Goal: minimize communication
— Assume matrix “well-partitioned”
— Serial implementation
e Conventional: O(k) moves of data from slow to fast memory
 New: O(1) moves of data — optimal
— Parallel implementation on p processors
e Conventional: O(k log p) messages (k SpMV calls, dot prods)
e New: O(log p) messages - optimal
e Lots of speed up possible (modeled and measured)

— Price: some redundant computation
26

Minimizing Communication of GMRES to solve Ax=b
* GMRES: find x in span{b,Ab,...,A*b} minimizing | | Ax-b ||,

Standard GMRES Communication-avoiding GMRES
for i=1 to k W =[v, Ay, A2y, ..., AKy]
w=A"-v(i-1) ... SpoMV [Q,R] = TSQR(W)
MGS(w, v(0),...,v(i-1)) ... “Tall Skinny QR”
update v(i), H build H from R
endfor solve LSQ problem with H

solve LSQ problem with H

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

eOops — W from power method, precision lost!
e Need different polynomials than A for stability

27

Speed ups of GMRES on 8-core Intel Clovertown
Requires Co-tuning Kernels
[MHDYO09]

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,
using 8 threads and restart length 60

=
Ln

4.5 T
Matrix powers
1 R kernel -
TSQR
i BB Block Gram- |-
i:l Schmidt
i ISR SRS NUUNO RNt SOUURUUOUUONOE SURUOUOOUON Y Small dense
g2 3.0 operations
5 Sparse matrix-
g 2.5 vector product
= Modified
- Gram-Schmidt |
=
v
$

with floorrestart length / k)
%)
=

=
=

&
Ln

0.0
pwitk bmw xenon cant 1d3pt cfd shipsec
Sparse matrix name

Exascale predicted speedups for
Matrix Powers Kernel over SpMV
for 2D Poisson (5 point stencil)

Alxiregular speed up

[1)
[=)

log, (n*/p) =
log, (memory_per_proc)

1 1 X\ N

C ~
9 ilid

¥\ 7
|

~F I+
V OT IT

Avrating 1A A f\v-
ILCIi1dl

If\ll f\'L\
Ive Linear Aigebra

d

e New Lower bounds, optimal algorithms,
big speedups in theory and practice

* Lots of other progress, open problems
— GMRES, CG, BiCGStab, Arnoldi, Lanczos reorganized
— Other Krylov methods?
— Recognizing stable variants more easily?
— Avoiding communication with preconditioning harder

e “Hierarchically semi-separable” preconditioners work

— Autotuning

CAav f1iv+lhA
I Ul TUI LIITC

e
|

~ imnfFAarrmAatiAanm
U 11U 111Adlivli |

www.cs.berkeley.edu/~demmel

www-rocg.inria.fr/who/Laura.Grigori

Papers

— bebop.cs.berkeley.edu

— www-rocg.inria.fr/who/Laura.Grigori/COALA2010/coala.html
— www.netlib.org/lapack/lawns

1-week-short course — slides and video

— www.ba.cnr.it/ISSNLA2010

Google “parallel computing course”

Summary

Time to redesign all linear algebra
algorithms and software

And eventually all of applied mathematics...

Don’t Communic...

