
Parallel Hierachical Hybrid Solvers
for Petascale and Beyond

Esmond G. Ng
Lawrence Berkeley National Laboratory

May 23, 2011

Background

q  Systems of linear equations

 A x = b

arise in many scientific and engineering applications.
§  A is a given n by n matrix and b is a given vector.
§  The goal is to compute x.

q  Occur most often in the inner most loop of numerical simulations
q  More complex/accurate simulations require efficient solution of

continuously increasing larger problems.

Need for Accurate and Robust Linear Solvers

q  Some applications need to compute accurate solutions efficiently.
q  Example: modeling of accelerator cavities

cryomodule

cavity
International Linear
Collider (ILC)

Compact Linear Collider (CLIC) -
Two-Beam Accelerator

Background

q  Characteristics of A:
§  The dimension, n, can be very large.
§  A can be sparse – many of the elements in A are zero.

•  “Sparsity” depends on the applications.

⇒  Absolutely important to take advantage of the zero entries for efficient
solution of such linear systems.

Background

q  Features of emerging computer architectures –
§  Hierarchical – multi-/many-core
§  Heterogeneous – CPU + accelerators

q  This provide several levels of parallelism
⇒  Need to design novel hierarchical solution schemes that naturally

match the features of computing platforms

NERSC Hopper – a 1.28
petaflops/sec Cray XE6
with 6,384 compute
nodes (24 cores/node,
totaling 153,216 cores)
and 212 TB of memory

Sparse Linear Equations Solver Spectrum

Direct Methods

q  Based on factoring the matrix A into product of a lower triangular
matrix L and an upper triangular matrix U using Gaussian elimination:

 A = LU

(pivoting may be needed for stability)

q  Then the solution is obtained by solving two triangular linear systems

 Ly = b and Ux = y

(permutation due to pivoting is not shown)

Direct Methods

q  Positives:
§  Robust – termination after a finite

number of operations.
§  Accurate – Gaussian elimination is

known to be backward stable.
§  Efficient – almost all

implementations take advantage
of BLAS-3 operations.

q  Negatives:
§  Sparsity issues – Gaussian

elimination will destroy some of
the zero entries.
•  Coping with fill is part of the

solution process.
•  Memory/computing becomes

prohibitive for 3D problems.
§  Limited scalability due to

communication requirements.

Iterative Methods

q  Based on generating a sequence of approximations
§  Many algorithms available for generating the approximations:

•  Basic methods:
Ø  Jacobi, Gauss-Seidel, successive overrelaxation

•  Projection methods:
Ø  Steepest descent, minimal residual

•  Krylov subspace methods:
Ø  Arnoldi’s, generalized minimal residual, conjugate gradient, conjugate residual,

biconjugate gradient, quasi-minimal residual

Iterative Methods

q  Positives:
§  Relative easy to implement,

requiring sparse computational
kernels.
•  Possibly few operations.
•  Typically require just matrix-vector

multiplications.

§  Small storage requirements.

q  Negatives:
§  Convergence is not guaranteed.
§  Convergence rate may be slow.
§  Both depends on the spectral

radius of the “iteration matrix”.
•  Problem dependent.

§  Possible better weak scalability.

Preconditioned Iterative Methods

q  Improving convergence rate:
§  Find nonsingular matrices P and Q.
§  Consider the equivalent linear system (PAQ)(Q-1x) = (Pb) .
§  The goal is to reduce the spectral radius of PAQ.
§  P and Q are called the left and right “preconditioners”, respectively.

•  P and Q should be easy to apply.

q  Preconditioning is a research area of its own.
§  Some recent work makes use of techniques from sparse direct methods in

constructing preconditioners.

q  A step further is to combine sparse direct methods and iterative
methods in a more intelligent way.

Hybrid Methods for Solving Sparse Linear Systems

q  Goal:
§  Combine direct methods and iterative methods in an intelligent way to

create a new class of hybrid methods for solving sparse linear systems on
hierarchical, and possibly heterogeneous, high performance computer
architectures.
•  Exploit the positives of both direct and iterative methods.

q  Concept is not new …
§  Example:

•  Apply techniques developed for direct methods to compute an incomplete
factorization.

•  Then use the incomplete factors as preconditioners for iterative methods.

q  … but it is the details that make a difference.

Berkeley-INRIA Team

q  Lawrence Berkeley National Laboratory
§  Xioaye Sherry Li and Esmond G. Ng
§  Ichitaro Yamazaki
§  Experience in sparse direct methods and incomplete factorization

q  INRIA-Bordeaux
§  Luc Giraud and Jean Roman
§  Experience in iterative methods, prconditioning techniques, and sparse

direct methods

q  Both teams have independently engaged in R&D to create “hybrid”
solvers that combine the advantages of sparse direct solvers and the
advantages of iterative solvers.

Domain Decomposition Based Hybrid Linear Solver

q  Given a matrix A.
q  Consider a graph representation of the sparsity of A.

§  Symmetric A … undirected graph
§  Nonsymmetric A … undirected graph of A+AT

q  Compute a partitioning of the graph (using, e.g., PT-SCOTCH and
ParMETIS).

Domain Decomposition Based Hybrid Linear Solver

q  Desirable properties of the
partitioning …
§  The subdomains are balanced in size.
§  The “separator” (or “interface”) is

small.

q  Number the vertices of the subdomains (one by one) before those on
the separator.
§  This is equivalent to a permutation of the rows and columns of A.

Bordered Block Form

q  Each Di corresponds to a subdomain.
q  AΓΓ corresponds to the “separator”.
q  Ei and Fj corresponds to the connections between the subdomains and

the separator.

Block Factorization

!
Block elimination

S= A!! " F

l
D

l
"1E

l
l
#

The Schur
complement is

given by

Block Triangular Solution

q  The Schur complement is given by

q  Also, c is given by

q  Once S and c have been computed, the solution can be obtained via a

block substitution process.

S= A!! " F

l
D

l
"1E

l
l
#

c = b! " F

l
D

l
"1b

l
l
#

Sy = c

D
l
x

l
= b

l
! E

l
y, for l = 1,2,...

Schur Complement Method

q  Assume that we can solve Sy = c.

q  Then each (smaller) linear system
 Dlxl = bl – Ely

can be solved relatively easily.
§  Either serially on a single processor or

in parallel on multiple processors.
•  This can be accomplished using a

number of existing sparse direct solvers.

q  How about the linear system Sy = c?

can be processed
using a parallel

sparse direct solver

Schur Complement Method

q  How about the linear system Sy = c?
q  Possible challenges:

§  Size of S depends on the quality of the
partitioning.
•  In terms of number of unknowns associated

with S and number of nonzero entries in S.

q  This linear system can be solved in a
number of ways.

Handling the Schur complement

q  Possibilities for solving Sy = c …

q  Performing LU on S.
§  Result in a truly direct solution for the original system.
§  S tends to be quite dense and its LU factorization usually suffers from a lot

of fill.

q  Perform incomplete factorization on S and use the incomplete factors
as preconditioners for solving Sy = c.

q  Compute an approximation of S via drop tolerance, perform LU
factorization on the approximation, and use the LU factors as
preconditioners for solving Sy = c.

q  Compute an approximation of S via drop tolerance, perform incomplete
factorization on the approximation, and use the incomplete factors as
preconditioners for solving Sy = c.

S= A!! " F

l
D

l
"1E

l
l
#

can be done
in parallel

Parallel Hierarchical Implementation

q  Parallelism between sub-graphs treatment and within the treatment of
each individual sub-graph (coarse grain parallelism using MPI between
sub-graphs, medium/fine grain parallelism using threads on many-core
multiprocessor SMP nodes)

q  Natural two/three-levels of parallelism with different granularity ➪
flexibility to map on parallel platforms to best comply with
architecture features

Berkeley and INRIA Approaches

q  Lawrence Berkeley National Laboratory approach:
§  Use approximations to the Schur complement as preconditioners.
§  PDSLin package.
§  Funded by the TOPS (Towards Optimal Petascale Simulation) Project under

the DOE SciDAC (Scientific Discovery Through Advanced Computing) Program.

q  INRIA approach
§  Part of HiePACS project.
§  Parallel additive Schwarz preconditioner.
§  MaPHyS package (Massively Parallel Hybrid Solver).
§  INRIA – CERFACS Joint Laboratory on High Performance Computing (https://

inria-cerfacs.inria.fr/).

MaPhyS Parallel Performance

64 216 343 512 729 1000 1331 1728
0

20

40

60

80

100

120

140

160

180

proc
Ti

m
e(

se
c)

3D heterogeneous diffusion problem

Dense 64−bit calculation
Dense mixed calculation
Sparse with ξ=10−4

 5.3.106 15.106 22.106 31.106 43.106 55.106 74.106

Weak scalability Elasticity problem on 32 cores

0 40 80 120 160 200 240 280 320 360 400 440 480
10−12

10−10

10−8

10−6

10−4

10−2

100

Time(sec)

||r
k||/

||b
||

Fuselage 6.5Mdof

Direct calculation
Dense calculation
Sparse with ξ=5.10−7

Sparse with ξ=10−6

Sparse with ξ=5.10−6

PDSLin Parallel Performance

q  Fusion problem:
§  Dimension = 801,378 (real

unsymmetric, indefinite)

q  Experimental setup:
§  PT-SCOTCH to extract 8

domains, each of size ~99K
§  SuperLU_DIST to factor each

domain.
§  SuperLU_DIST to compute LU

(S’), with S’ ≈ S of size 13K,
using 64 processors.

§  BICGStab from PETSc to solve
Sy = c until rel residual <
10-12 (converged in ~10
iterations).

(on NERSC Cray XT-4)

16 64 256 1024
101

102

number of processors

el
ap

se
d

tim
e

(s
)

matrix211

SuperLU
Hybrid

PDSLin Parallel Performance

q  ILC cavity problem:
§  Dimension = 17,799,228 (real

symmetric, highly indefinite)

q  Experimental setup:
§  PT-SCOTCH to extract 64

domains, each of size ~277K
§  SuperLU_DIST to factor each

domain.
§  SuperLU_DIST to compute LU

(S’), with S’ ≈ S of size 57K,
using 64 processors.

§  BICGStab from PETSc to solve
Sy = c until rel residual <
10-12 (converged in ~10
iterations).

(on NERSC Cray XT-4)

The France-Berkeley Fund Project

q  Title : Scalable Hybrid Solvers for Large Sparse Linear of Equations on
Petascale Computing Architectures
§  A project that provides travel funds to enable collaboration.

q  Main focusses
§  Exploit hybrid programming models on NUMA clusters
§  Design parallel numerical techniques for augmented systems

q  Start date: January 2011
q  Duration: 1-2 years

q  One visit by the French team
§  Luc Giraud & Jean Roman (February 14-16, 2011)
§  Emmanuel Agullo (February 14-25, 2011)

q  Current research activity: perform a comparative study of the MaPHyS
and PDSLin solver

Challenges

q  Further algorithmic improvements are needed in both PDSLin and
MaPhyS.

q  Scalability (numerical and implementation) on O(104-105) cores.
q  Efficient implementation on heterogeneous many-core (CPU, GPGPU,

…).

q  Resilience embedded in solvers
§  In particular, preliminary investigations are ongoing at an ANR project:

•  Topics on the agenda of the INRIA’s Large-Scale Initiative on “Very High
Performance Computing for Computational Sciences”.

q  Deployment of solvers
§  A focus in the DOE SciDAC (Scientific Discovery Through Advanced

Computing) Program.

