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Background 

q  Systems of linear equations 
 

 A x = b 
 
arise in many scientific and engineering applications. 
§  A is a given n by n matrix and b is a given vector. 
§  The goal is to compute x. 

q  Occur most often in the inner most loop of numerical simulations 
q  More complex/accurate simulations require efficient solution of 

continuously increasing larger problems. 



Need for Accurate and Robust Linear Solvers 

q  Some applications need to compute accurate solutions efficiently. 
q  Example:  modeling of accelerator cavities 

cryomodule 

cavity 
International Linear 
Collider (ILC) 

Compact Linear Collider (CLIC) - 
Two-Beam Accelerator 
 



Background 

q  Characteristics of A: 
§  The dimension, n, can be very large. 
§  A can be sparse – many of the elements in A are zero. 

•  “Sparsity” depends on the applications. 

⇒  Absolutely important to take advantage of the zero entries for efficient 
solution of such linear systems. 



Background 

q  Features of emerging computer architectures – 
§  Hierarchical – multi-/many-core 
§  Heterogeneous – CPU + accelerators 

q  This provide several levels of parallelism 
⇒  Need to design novel hierarchical solution schemes that naturally 

match the features of computing platforms 

NERSC Hopper – a 1.28 
petaflops/sec Cray XE6 
with 6,384 compute 
nodes (24 cores/node, 
totaling 153,216 cores) 
and 212 TB of memory 

 



Sparse Linear Equations Solver Spectrum 



Direct Methods 

q  Based on factoring the matrix A into product of a lower triangular 
matrix L and an upper triangular matrix U using Gaussian elimination: 
 

 A = LU 
 
(pivoting may be needed for stability) 

q  Then the solution is obtained by solving two triangular linear systems 
 

 Ly = b  and  Ux = y 
 
(permutation due to pivoting is not shown) 



Direct Methods 

q  Positives: 
§  Robust – termination after a finite 

number of operations. 
§  Accurate – Gaussian elimination is 

known to be backward stable. 
§  Efficient – almost all 

implementations take advantage 
of BLAS-3 operations. 

q  Negatives: 
§  Sparsity issues – Gaussian 

elimination will destroy some of 
the zero entries. 
•  Coping with fill is part of the 

solution process. 
•  Memory/computing becomes 

prohibitive for 3D problems. 
§  Limited scalability due to 

communication requirements. 



Iterative Methods 

q  Based on generating a sequence of approximations 
§  Many algorithms available for generating the approximations: 

•  Basic methods: 
Ø  Jacobi, Gauss-Seidel, successive overrelaxation 

•  Projection methods: 
Ø  Steepest descent, minimal residual 

•  Krylov subspace methods: 
Ø  Arnoldi’s, generalized minimal residual, conjugate gradient, conjugate residual, 

biconjugate gradient, quasi-minimal residual 



Iterative Methods 

q  Positives: 
§  Relative easy to implement, 

requiring sparse computational 
kernels. 
•  Possibly few operations. 
•  Typically require just matrix-vector 

multiplications. 

§  Small storage requirements. 

q  Negatives: 
§  Convergence is not guaranteed. 
§  Convergence rate may be slow. 
§  Both depends on the spectral 

radius of the “iteration matrix”. 
•  Problem dependent. 

§  Possible better weak scalability. 



Preconditioned Iterative Methods 

q  Improving convergence rate: 
§  Find nonsingular matrices P and Q. 
§  Consider the equivalent linear system  (PAQ)(Q-1x) = (Pb) . 
§  The goal is to reduce the spectral radius of PAQ. 
§  P and Q are called the left and right “preconditioners”, respectively. 

•  P and Q should be easy to apply. 

q  Preconditioning is a research area of its own. 
§  Some recent work makes use of techniques from sparse direct methods in 

constructing preconditioners. 

q  A step further is to combine sparse direct methods and iterative 
methods in a more intelligent way. 



Hybrid Methods for Solving Sparse Linear Systems 

q  Goal: 
§  Combine direct methods and iterative methods in an intelligent way to 

create a new class of hybrid methods for solving sparse linear systems on 
hierarchical, and possibly heterogeneous, high performance computer 
architectures. 
•  Exploit the positives of both direct and iterative methods. 

q  Concept is not new … 
§  Example: 

•  Apply techniques developed for direct methods to compute an incomplete 
factorization. 

•  Then use the incomplete factors as preconditioners for iterative methods. 

q  … but it is the details that make a difference. 



Berkeley-INRIA Team 

q  Lawrence Berkeley National Laboratory 
§  Xioaye Sherry Li and Esmond G. Ng 
§  Ichitaro Yamazaki 
§  Experience in sparse direct methods and incomplete factorization 

q  INRIA-Bordeaux 
§  Luc Giraud and Jean Roman 
§  Experience in iterative methods, prconditioning techniques, and sparse 

direct methods 

q  Both teams have independently engaged in R&D to create “hybrid” 
solvers that combine the advantages of sparse direct solvers and the 
advantages of iterative solvers. 



Domain Decomposition Based Hybrid Linear Solver 

q  Given a matrix A. 
q  Consider a graph representation of the sparsity of A. 

§  Symmetric A … undirected graph 
§  Nonsymmetric A … undirected graph of A+AT 

q  Compute a partitioning of the graph (using, e.g., PT-SCOTCH and 
ParMETIS). 



Domain Decomposition Based Hybrid Linear Solver 

q  Desirable properties of the 
partitioning … 
§  The subdomains are balanced in size. 
§  The “separator” (or “interface”) is 

small. 

q  Number the vertices of the subdomains (one by one) before those on 
the separator. 
§  This is equivalent to a permutation of the rows and columns of A. 



Bordered Block Form 

q  Each Di corresponds to a subdomain. 
q  AΓΓ corresponds to the “separator”. 
q  Ei and Fj corresponds to the connections between the subdomains and 

the separator. 



Block Factorization 

!
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Block Triangular Solution 

q  The Schur complement is given by 

q  Also, c is given by 
 

 
q  Once S and c have been computed, the solution can be obtained via a 

block substitution process. 
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Schur Complement Method 

q  Assume that we can solve Sy = c. 

q  Then each (smaller) linear system 
 Dlxl = bl – Ely 

can be solved relatively easily. 
§  Either serially on a single processor or 

in parallel on multiple processors. 
•  This can be accomplished using a 

number of existing sparse direct solvers. 

q  How about the linear system Sy = c? 

can be processed 
using a parallel 

sparse direct solver 



Schur Complement Method 

q  How about the linear system Sy = c? 
q  Possible challenges: 

§  Size of S depends on the quality of the 
partitioning. 
•  In terms of number of unknowns associated 

with S and number of nonzero entries in S. 

q  This linear system can be solved in a 
number of ways. 



Handling the Schur complement 

q  Possibilities for solving Sy = c … 

q  Performing LU on S. 
§  Result in a truly direct solution for the original system. 
§  S tends to be quite dense and its LU factorization usually suffers from a lot 

of fill. 

q  Perform incomplete factorization on S and use the incomplete factors 
as preconditioners for solving Sy = c. 

q  Compute an approximation of S via drop tolerance, perform LU 
factorization on the approximation, and use the LU factors as 
preconditioners for solving Sy = c. 

q  Compute an approximation of S via drop tolerance, perform incomplete 
factorization on the approximation, and use the incomplete factors as 
preconditioners for solving Sy = c. 
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can be done 
in parallel 



Parallel Hierarchical Implementation 

q  Parallelism between sub-graphs treatment and within the treatment of 
each individual sub-graph (coarse grain parallelism using MPI between 
sub-graphs, medium/fine grain parallelism using threads on many-core 
multiprocessor SMP nodes) 

q  Natural two/three-levels of parallelism with different granularity ➪ 
flexibility to map on parallel platforms to best comply with 
architecture features 



Berkeley and INRIA Approaches 

q  Lawrence Berkeley National Laboratory approach: 
§  Use approximations to the Schur complement as preconditioners. 
§  PDSLin package. 
§  Funded by  the TOPS (Towards Optimal Petascale Simulation) Project under 

the DOE SciDAC (Scientific Discovery Through Advanced Computing) Program. 

q  INRIA approach 
§  Part of HiePACS project. 
§  Parallel additive Schwarz preconditioner. 
§  MaPHyS package (Massively Parallel Hybrid Solver). 
§  INRIA – CERFACS Joint Laboratory on High Performance Computing (https://

inria-cerfacs.inria.fr/). 



MaPhyS Parallel Performance 
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PDSLin Parallel Performance 

q  Fusion problem: 
§  Dimension = 801,378 (real 

unsymmetric, indefinite) 

q  Experimental setup: 
§  PT-SCOTCH to extract 8 

domains, each of size ~99K 
§  SuperLU_DIST to factor each 

domain. 
§  SuperLU_DIST to compute LU

(S’), with S’ ≈ S of size 13K, 
using 64 processors. 

§  BICGStab from PETSc to solve 
Sy = c until rel residual < 
10-12 (converged in ~10 
iterations). 

(on NERSC Cray XT-4) 
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PDSLin Parallel Performance 

q  ILC cavity problem: 
§  Dimension = 17,799,228 (real 

symmetric, highly indefinite) 

q  Experimental setup: 
§  PT-SCOTCH to extract 64 

domains, each of size ~277K 
§  SuperLU_DIST to factor each 

domain. 
§  SuperLU_DIST to compute LU

(S’), with S’ ≈ S of size 57K, 
using 64 processors. 

§  BICGStab from PETSc to solve 
Sy = c until rel residual < 
10-12 (converged in ~10 
iterations). 

(on NERSC Cray XT-4) 



The France-Berkeley Fund Project 

q  Title : Scalable Hybrid Solvers for Large Sparse Linear of Equations on 
Petascale Computing Architectures 
§  A project that provides travel funds to enable collaboration. 

q  Main focusses 
§  Exploit hybrid programming models on NUMA clusters 
§  Design parallel numerical techniques for augmented systems 

q  Start date: January 2011 
q  Duration: 1-2 years 

q  One visit by the French team 
§  Luc Giraud & Jean Roman (February 14-16, 2011) 
§  Emmanuel Agullo (February 14-25, 2011) 

q  Current research activity: perform a comparative study of the MaPHyS 
and PDSLin solver 



Challenges 

q  Further algorithmic improvements are needed in both PDSLin and 
MaPhyS. 

q  Scalability (numerical and implementation) on O(104-105) cores. 
q  Efficient implementation on heterogeneous many-core (CPU, GPGPU, 

…). 

q  Resilience embedded in solvers 
§  In particular, preliminary investigations are ongoing at an ANR project: 

•  Topics on the agenda of the INRIA’s Large-Scale Initiative on “Very High 
Performance Computing for Computational Sciences”. 

q  Deployment of solvers 
§  A focus in the DOE SciDAC (Scientific Discovery Through Advanced 

Computing) Program. 


