Current challenges for parallel graph partitioning
and static mapping

Francois Pellegrini
INRIA Bordeaux Sud-Ouest and LaBRI
Université de Bordeaux
351, cours de la Libération, 33405 TALENCE, FRANCE
pelegrin@labri.fr

May 15, 2011

1 Introduction

Graph partitioning is an ubiquitous technique which has applications in many
fields of computer science and engineering. It is used to help in solving domain-
dependent optimization problems modelled in terms of weighted or unweighted
graphs, where finding good solutions amounts to computing small vertex or
edge cuts that balance evenly the weights of the graph parts. In the context
of intensive numerical simulations, it is mostly used for domain decomposition,
used by iterative or hybrid solvers, as well as for the computation of fill-reducing
or block-preserving orderings required by direct or hybrid solvers.

For some problems that cannot be adequately represented in the form of
graphs, the hypergraph model, although heavier to implement, allows one to
define more accurate cut cost metrics. For instance, hypergraphs allow one
to represent non-symmetric or non-square matrix patterns and, in the case of
sparse matrix-vector products, hypergraph partitioning models more accurately
data exchange than graph partitioning. Yet, the run time of hypergraph parti-
tioning tools is currently much higher than the one of graph partitioning tools,
which makes the latter still useful in this context.

Because problem sizes keep increasing, large problems graphs cannot fit in
the memory of sequential computers, and cost too much to partition, leading
to the development of parallel graph partitioning tools such as PARMEIS or
JOSTLE, or parallel hypergraph partitioning tools such as ZOLTAN. The SCOTCH
project, carried out within the BACCHUS team of INRIA Bordeaux — Sud-Ouest,
is yet another attempt to address the parallel graph partitioning problem.

The advent of massively parallel, NUMA machines, represents a new chal-
lenge for software designers, in order for partitioning tools to scale up to hundred
thousands of processing elements.

2 Design constraints

While the sequential version of the SCOTCH library makes very few assumptions
on the nature of graphs to be handled, the only limitation regarding the fact that
vertex and edge weights should be strictly positive integers, the parallel version
required some early design decisions to be taken, which condition the ability of
the software to handle some types of graphs. In particular, we assumed that
distributed graphs are of reasonably small degree, that is, that graph adjacency
matrices have sparse rows and columns.

Also, we want our software to run on any number of processes P, and pro-
duce any number of parts k, irrespective of the values of k and P. Tackling these
issues in PT-SCOTCH requires data structures to decouple the target and execu-
tion architectures: a process can handle several target domains, and conversely
a given target domain can be managed concurrently by several processes.

2.1 Challenges

For the sizes of problems that we consider, parallel processing is mandatory,
for application software as well as for partitioning tools. In the context of
Exascale computing, the roadmap of parallel partitioning tools is to be able
to partition (hyper)graphs of more than a trillion vertices, distributed across
a million processing elements, in any number of parts. The number of parts
must be decoupled from the number of processors as partitioning tools are not
likely to ever be run on the GPU units of hybrid architectures, because of their
irregularity and lower computational complexity, while target computations are
more likely to be so. Consensus is not yet achieved on the best methods to
use in this problem space. It is most likely that current state-of-the-art local
optimization algorithms will be replaced by more global algorithms such as
diffusion-based and/or genetic algorithm methods, which are heavier albeit more
scalable. Moreover, several specific challenges have to be overcome, which are
discussed below.

2.1.1 Heterogeneity

The advent of massively parallel, heterogeneous machines imposes a higher bur-
den on software development: all parallel codes must take into account the
heterogeneity of the machines they are going to run on, and parallel partition-
ing software must also provide partitions (that is, domain decompositions) that
reflect this heterogeneity.

The problem of assigning the communicating processes of a parallel program
onto the processing elements of some heterogeneous computer system is referred
to as static mapping in the literature (graph partitioning can therefore be seen as
a subproblem of static mapping where the target architecture is homogeneous).
In the SPMD context, it is equivalent to the distribution across processors of the
data structures of parallel programs so as to maximize load balance with respect

to the different compute powers, and to maximize data locality by favoring local
over remote communication.

In order to adapt to heterogeneous parallel architectures, partitioning tools
must offer mapping and remapping capabilities, by integrating some knowledge
on the hierarchy and topology of the parallel machines for which partitioning
is requested. Sequential tools already exist, parallel tools have to be created
and/or adapted.

While graph mapping is already well studied, hypergraph mapping has not
yet been considered to our knowledge. This should be a direction for future
research.

2.1.2 Dynamicity

Since large scale simulations are most likely to involve remeshing and/or data
redistribution, dynamic data migration and load balancing features are manda-
tory for application software designers. It is therefore necessary to provide
parallel repartitioning capabilities, which should be available both for graphs
and hypergraphs. While parallel graph repartitioning tools already exist, also,
to our knowledge, parallel hypergraph repartitioning and/or remapping has not
yet been addressed.

2.1.3 Synchronization avoidance

Large heterogeneous machines may also pose a synchronicity problem. Most
partitioning algorithms make use of halo exchanges, that is, some form of all-
to-all communication between neighbouring vertices held by different processes,
as well as of parallel reduction, to inform all processes of the result of a dis-
tributed computation (e.g. the global sum of distributed values, etc.). With
the advent of machines having several hundred thousand processing elements,
and in spite of the continuous improvement of communication subsystems, the
demand for more asynchronicity in parallel algorithms is likely to increase. In
this respect, genetic algorithms may be good candidates, as computations can
take place asynchronously within independent sub-populations, called demes,
with some “champions” being asynchronously exchanged between neighbouring
demes, much like what happens on Earth. When enough demes exist, conver-
gence to a good local optimum is likely to be achieved, even if some demes may
lag behind in terms of number of generations. Yet, as said above, genetic algo-
rithms are too expensive, so that new algorithms have also to be investigated
in this respect.

Static mapping aims at improving the locality of communications in the tar-
get machine, by taking into account the topology of the latter when partitioning
the problem graph. This additional constraint poses a problem to the computa-
tion of initial mappings. While initial k-way partitions can be easily computed
in parallel by means of recursive bipartitioning, this is not possible for recursive
bi-mapping, because every bipartition at some level must take into account the

shapes of neighboring partitions. This information is available in a sequential
context, but not in parallel, when k ~ |V|.

Also, the increasing number of processing elements hinders the convergence
of partition refinement algorithms which are commonly used in k-way multilevel
schemes. The more processing elements there are, the more vertices can be
moved independently by each of them from overloaded domains to a presumed
underloaded neighboring domain, overloading it even more than its neighbors.
Computing exactly diffusion matrices prior to data movement may not always be
possible, as these structures are in k2. Using iterative diffusion-based algorithms
may also lead unbalance, due to rounding artifacts when deciding which domain
owns some vertex.

Future parallel static mapping software will therefore have to rely on a com-
bination of these methods to preserve partition quality.

