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What is a malware ?

• A malware is a program which has malicious intentions

• A malware is a virus, a worm, a botnet ...

• Giving a mathematical definition is difficult

✴ So how to detect a malware ?

✴ How to protect a system from a malware ?

Pourquoi tracer ? (1/3)

Définition : l’analyse binaire, c’est

• de l’analyse de programme

• où le programme est inconnu

=⇒ on a juste un blob binaire
Raisons :

• sauts indirects
=⇒ flot de contrôle indécidable

• lectures/écritures indirectes
=⇒ flot de données indécidable

• code auto-modifiant
=⇒ syntaxe indécidable

3 / 32
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Code protection

1.Obfuscation

2.Cryptography

3.Self-modification

4.Anti-analysis tricks

Detection is hard because malware are protected 
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Protections: Self-Modification

• A lot of malware families use home-made obfuscations, like packers to 
protect their binaries, following a standard model
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➡ It is difficult to perform a static analysis

➡ Dynamic analysis by code monitoring (emulation, instrumentation, ...)
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A program generating codesExemple (4/5)

• hostname packé avec Themida
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Protections: Obfuscation

✓ Several possible implementations of a high 
level action
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Protections: Obfuscation

✓ Several possible implementations of a high 
level action

h=fopen(C:\windows\sys.dll);fwrite(«test»,h)

h=createFile(C:\windows\sys.dll);writeFile(h,«test»)

Two ways of writing into a file
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Malware detection methods in a tiny nutshell
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Malware detection by string scanning

• Signature is a regular expression denoting a sequence of bytes

Worm.Y
Your mac is now under our control !

• Signature : «Your * is now under our control

Worm.Y
Your PC is now under our control !
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Malware detection by string scanning

• Signature are quasi-manually constructed

• Signatures are not robust to malware protections

➡ Mutations

➡ Code obfuscations

Pros :

Cons :

• Accuracy:  low rate of false positive

➡ programs which are not malware are not detected

• Efficient : Fast string matching algorithm

➡ Karp & Rabin, Knuth, Morris & Pratt, Boyer & Moore
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Detection by integrity check

• Identify a file using a hash function

• Cons :
• File systems are updated, so numerical fingerprints change
• Difficult to maintain in practice
• Files may change with the same numerical fingerprint (due to hash fct)

Hash functionFiles Hash numbers

a

b

numerical 
fingerprints
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Detection based on higher level of abstraction 

A problem is the absence of high level abstraction 
to structure and understand obfuscated codes.

Related works

-Preda, Christodorescu & al 2007: A semantics based approach to malware 
detection.

-Chrisdorescu, Song & al 2007 : Semantics-Aware Malware detection

-Bonfante, Kaczmarek and M. 2009 : Morphological analysis
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Behavioral analysis and detection
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Behavioral detection 

• Identification of a sequence of actions :

• System calls or library calls

• File systems interactions

• Network interactions

• Sequence of instructions 
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void scan_d i r ( const char∗ d i r ) {
HANDLE hFind ;
char szFilename [2048 ] ;
WIN32_FIND_DATA f indData ;

s p r i n t f ( szFilename , "%s \\%s " , d i r , "∗.∗ " ) ;
hFind = F i n dF i r s t F i l e ( szFilename , &f indData ) ;
i f ( hFind == INVALID_HANDLE_VALUE) return ;
do {

s p r i n t f ( szFilename , "%s \\%s " , d i r ,
f indData . cFileName ) ;

i f ( f indData . dwF i l eA t t r i bu t es
& FILE_ATTRIBUTE_DIRECTORY)

scan_d i r ( szFilename ) ;
else { . . . }

} while ( F indNextF i le ( hFind , &f indData ) ) ;
FindClose ( hFind ) ;

}

void main ( i n t argc , char∗∗ argv ) {
HANDLE hIcmp ;
const char∗ icmpData = " Babcdef . . . " ;
char r ep l y [ 1 28 ] ;

/∗ Behavior pa t t e r n : p ing of a remote host ∗/
hIcmp = IcmpCreateFi le ( ) ;
f o r ( i n t i = 0 ; i < 2 ; ++ i )
IcmpSendEcho( hIcmp , ipaddr , icmpData , 10 ,

NULL, rep ly , 128 , 1000) ;
IcmpCloseHandle ( hIcmp ) ;

/∗ Behavior pa t t e r n : Netb ios connect ion ∗/
SOCKET s = socket (AF_INET , SOCK_STREAM, 0 ) ;
s t r u c t sockaddr_ in s in =

{AF_INET , ipaddr , htons (139) /∗ Netb ios ∗ / } ;
i f ( connect ( s , (SOCKADDR∗)&sin , s i zeo f ( s in ) )

!= SOCKET_ERROR) {
. . .

}

/∗ Behavior pa t t e r n : scanning of l o c a l d r i ves ∗/
char bu f f e r [ 1024 ] ;
Ge tLog ica lDr i veSt r ings ( s i zeo f ( b u f f e r ) , b u f f e r ) ;
const char∗ szDr ive = bu f f e r ;
wh i le (∗szDr ive ) {

i f ( GetDriveType ( szDr ive ) == DRIVE_FIXED )
scan_d i r ( szDr ive ) ;

szDr ive += s t r l e n ( szDr ive ) + 1 ;
}

}

Example execution trace of library calls:
...GetLogicalDriveStrings.GetDriveType.FindFirstFile.FindFirstFile.

FindNextFile...mercredi 8 juin 2011
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Program Traces

An execution is a sequence of configurations

A trace

(µ0, ν0) → . . . → (µn, νn) → . . .

c0 → . . . → cn → . . .

projection
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Program Traces

• A trace is a sequence of actions

• Approximation by a regular language 

• A trace automaton is a finite approximation of a trace language

An execution is a sequence of configurations

A trace

(µ0, ν0) → . . . → (µn, νn) → . . .

c0 → . . . → cn → . . .

In order to construct the trace automaton of a machine, one may either use a
collection of captured traces or reconstruct the program machine code from its
binary representation. In the first case, the automaton is built in such a way that
the captured traces correspond to a path in the trace automaton. In the second
case, the machine code of the program can be reconstructed using common
techniques that combine static and dynamic analysis: it is then projected on the
trace alphabet and the trace automaton is inferred from the code structure.

Example 4. Figure 1 shows a trace automaton for the Allaple.A excerpt repre-
senting the ping of a remote host and the scanning of local drives.

GetLogicalDriveStrings

IcmpSendEcho GetDriveType FindNextFileFindFirstFile

GetDriveType FindFirstFile

FindFirstFile FindNextFile

FindNextFile

Fig. 1. Trace automaton for the Allaple.A excerpt

By Theorem 2, the abstraction problem for a regular trace language now amounts
to computing an automaton recognizing the abstraction of this language. Con-
struction of this automaton, which we call abstract trace automaton, is described
in the proofs of the following theorems and uses a method proposed by Esparza
et al. [13]. It consists in modifying the initial trace automaton by adding new
transitions using the left hand sides of the rewriting rules and then intersecting
it with an automaton recognizing the words in normal form with respect to our
rewrite system.

Thus, the abstract trace automaton may be more complex than the initial
one, as shown by the Allaple worm example. Abstraction of the trace automaton
with respect to patterns SCAN_DRIVES and PING, where PING = IcmpSendEcho
describes the ping of a remote host, gives the automaton of Figure 2.

PING

GetDriveType FindFirstFile
GetDriveType

FindNextFileFindFirstFile

FindFirstFile FindNextFile

FindNextFile

GetLogicalDriveStrings

GetDriveType

SCAN_DRIVES
ε

ε
ε

Fig. 2. Abstract trace automaton for the Allaple.A excerpt

Allaple.A

projection
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Computing program traces

1.Dynamic analysis

• Collect an execution trace

• Monitor program interactions (sys calls, network calls, ...)

• What is the detection coverage ? 

2.Static analysis

• A good approximation of a set of execution traces 

• Good detection coverage

• But static analysis is difficult to perform 
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Behavior abstraction

Goal : Provide a behavior analysis technique by expressing 
traces in term of high level, implementation-independant 
functionalities
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Behavior abstraction

Goal : Provide a behavior analysis technique by expressing 
traces in term of high level, implementation-independant 
functionalities

h=fopen(C:\windows\sys.dll);fwrite(«test»,h)

h=createFile(C:\windows\sys.dll);writeFile(h,«test»)

Write_System_File
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Behavior abstraction

Goal : Provide a behavior analysis technique by expressing traces in term of 
high level, implementation-independant functionalities

Our works

- Expressing set of traces by regular languages from static or dynamic analysis

- Abstracting behavior patterns by string rewriting systems

- Efficient analysis (quasi-linear time)

-Detection of several abstract behaviors from a set of traces
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Behavior abstraction

Goal : Provide a behavior analysis technique by expressing traces in term of 
high level, implementation-independant functionalities

Related works

- Martignoni et al. 2008: multi-layered abstraction on a single trace

-Jacob et al., 2009: low-level functionalities, exponential-time detection

Our works

- Expressing set of traces by regular languages from static or dynamic analysis

- Abstracting behavior patterns by string rewriting systems

- Efficient analysis (quasi-linear time)
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Behavior patterns
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Behavior patterns

GetLogicalDriveString.GetDriveType.(FindFirstFile+FindFirstFileEx) 
→  Scandrive 

 A behavior pattern is a monadic String Rewriting System
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Behavior patterns

GetLogicalDriveString.GetDriveType.(FindFirstFile+FindFirstFileEx) 
→  Scandrive 

 A behavior pattern is a monadic String Rewriting System

• A behavior pattern B is a SRS :

B1 → λ1

Bn → λn
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|α| > |β|

Monadic String rewriting systems

Rules of a monadic SRS are of the form

(Book & Otto)

α → β where

Theorem:
The set of descendants of a regular language,
by using monadic SRS is regular

|β| ≤ 1
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Abstract trace language

Abstract a trace language L by reducing it w.r.t. a behavior pattern B

L →B . . . →B L↓
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Abstract a trace language L by reducing it w.r.t. a behavior pattern B

L →B . . . →B L↓

Theorem : Let B be a regular behavior pattern and L be 
a trace language.
 If L is regular then so is L↓.
There is a quadradic-time procedure to compute L↓.
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Abstract a trace language L by reducing it w.r.t. a behavior pattern B

L →B . . . →B L↓

Theorem : Let B be a regular behavior pattern and L be 
a trace language.
 If L is regular then so is L↓.
There is a quadradic-time procedure to compute L↓.

GetLogicalDriveString.GetDriveType.FindFirstFile.FindNextFile....
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Malicious behavior detection

• A malicious behavior (signature) is a regular behavior pattern B

PING.*.SCAN_DRIVE

Theorem 3. Let A be a trace automaton and C = {Bi}1≤i≤n
a set of behavior

patterns recognized by regular SRSs {RBi
}
1≤i≤n

. Let |C| =
∑

1≤i≤n

|RBi
|.

Then an automaton of size O (|A|) recognizing L (A) ↓C |Γ can be constructed

in time O
(
|A|3 · |C|2

)
and space O

(
|A|2 · |C|2

)
.

The final abstraction of the Allaple.A excerpt, for Γ = {PING, SCAN_DRIVES},
is depicted in Figure 3.

PING
SCAN_DRIVES

Fig. 3. Γ -abstract automaton for the Allaple.A excerpt

6 Application to Malware Detection

Using the abstraction framework defined in Section 4, malware detection now
consists in computing the abstract trace language of some machine and compar-
ing it to a database of malicious behaviors defined on Γ . These malicious behav-
iors either describe generic behaviors, e.g. sending spam or logging keystrokes, or
behaviors of specific malware. According to our abstraction formalism, malicious
behaviors are sets of particular combinations of behavior patterns abstractions.

Definition 7. A malicious behavior on Γ , or signature, is a language on Γ .

More specifically, a malicious behavior describes combinations of patterns, pos-
sibly interleaved with additional patterns which are irrelevant in these combina-
tions. For instance, we define the signature for the Allaple worm as the following
regular language, which explicitly allows interleaving of patterns that do not
match the upcoming pattern:

LOCAL_COM_SERVER · (Γ \ {PING})∗ · PING ·
(Γ \ {NETBIOS_CONNECTION})∗ · NETBIOS_CONNECTION .

The automaton representing the signature of Allaple is given in Figure 4.
Note that the SCAN_DRIVES pattern, which is present in the Γ -abstract trace
automaton of the Allaple.A excerpt, does not appear here because the signature
describes a common discriminating behavior exhibited by all samples of Allaple.

Definition 8. Let Lm be a malicious behavior on Γ . A machine M, with a
Γ -abstract trace language L̂, exhibits the malicious behavior Lm iff there exists
v ∈ Lm and u ∈ L̂ such that u = u1vu2, where u1, u2 ∈ Γ ∗.

Allaple.A signature:
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Allaple.A signature:

• Detection : comparing the abstract trace language L↓  with B
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6 Application to Malware Detection

Using the abstraction framework defined in Section 4, malware detection now
consists in computing the abstract trace language of some machine and compar-
ing it to a database of malicious behaviors defined on Γ . These malicious behav-
iors either describe generic behaviors, e.g. sending spam or logging keystrokes, or
behaviors of specific malware. According to our abstraction formalism, malicious
behaviors are sets of particular combinations of behavior patterns abstractions.

Definition 7. A malicious behavior on Γ , or signature, is a language on Γ .

More specifically, a malicious behavior describes combinations of patterns, pos-
sibly interleaved with additional patterns which are irrelevant in these combina-
tions. For instance, we define the signature for the Allaple worm as the following
regular language, which explicitly allows interleaving of patterns that do not
match the upcoming pattern:

LOCAL_COM_SERVER · (Γ \ {PING})∗ · PING ·
(Γ \ {NETBIOS_CONNECTION})∗ · NETBIOS_CONNECTION .

The automaton representing the signature of Allaple is given in Figure 4.
Note that the SCAN_DRIVES pattern, which is present in the Γ -abstract trace
automaton of the Allaple.A excerpt, does not appear here because the signature
describes a common discriminating behavior exhibited by all samples of Allaple.

Definition 8. Let Lm be a malicious behavior on Γ . A machine M, with a
Γ -abstract trace language L̂, exhibits the malicious behavior Lm iff there exists
v ∈ Lm and u ∈ L̂ such that u = u1vu2, where u1, u2 ∈ Γ ∗.

Allaple.A signature:

• Detection : comparing the abstract trace language L↓  with B

Theorem : Let B a regular behavior pattern and L↓ an abstract trace 
language.

There is a linear-time procedure deciding L↓ is infected by B.
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Tracking arguments ...

• A behavior pattern is a First-order LTL (Linear temporal logic) formula

3

we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .
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are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .
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L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
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Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).
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information leak abstract behavior is then defined by:

M := ∃x.λsteal (x) ∧ ¬λinval (x) Uλleak (x) .

By looking at several malware samples, like keyloggers, sms
message leaking applications or personal information stealing
mobile applications, we consider the following definitions of
the three behavior patterns involved:

• λsteal (x) describes a keystroke capture functionality1

and, on Android mobile phones, the retrieving of the
IMEI number:

λsteal(x) := GetAsyncKeyState(x)∨
(RegisterDev(KBD, SINK)⊙GetInputData(x, INPUT))∨
(∃y. SetWindowsHookEx(y, WH_KEYBOARD_LL)∧
¬UnhookWindowsHookEx(y)UHookCalled(y, x))∨

∃y.TelephonyManager_getDeviceId(x, y).

• λleak(x) describes a network send functionality under
Windows or Android:

λleak(x) := ∃y, z. sendto(z, x, y)∨
∃y, z. (connect (z, y) ∧ ¬close(z)U send(z, x))∨

∃c, s.HttpURLConnection_getOutputStream(s, c)∧
¬OutputStream_close(s)UOutputStream_write(s, x).

• λinval (x) describes the overwriting or freeing of x:

λinval(x) := free(x) ∨ ∃y. sprintf0(x, y)∨
GetInputData(x, INPUT) ∨ . . .

Finally, the captured data is usually not leaked in its raw form,
so we take into account transformations of this data via the
behavior pattern λdepends (x, y) which denotes a dependency
of x on y. For instance, x may be a string representation of
y, or x may be an encryption or an encoding of y:

λdepends(x, y) := sprintf0(x, y) ∨ ∃s. sprintf1(x, s, y)∨
∃sb. StringBuilder_append(sb, y)⊙ SB_toString(x, sb).

Then, in order to account for one such transformation of
the stolen data, we adapt the definition of the information leak
abstract behavior:

M := ∃x, y.λsteal (x)∧ ¬λinval (x) Uλdepends (y, x)∧
¬λinval (y) Uλleak (y) .

Of course, we can adapt this formula to allow more than
one data transformation.

VIII. EXPERIMENTS

We tested the validity of our approach on several types
of malware: keyloggers, sms message leaking, mobile phone
personal information stealing. Our goal is to detect the infor-
mation leak behavior M defined in the previous section. In
order to perform behavior pattern abstraction and behavior
detection in the presence of data, we use the CADP tool-
box [27], which allows us to manipulate and model-check
communicating processes written in the LOTOS language.
CADP features a verification tool, evaluator4, which allows
on-the-fly model checking of formulas expressed in the MCL

1We assume the execution of a hook f with argument x is represented in
a trace by an action HookCalled (f, x).

language, a fragment of the modal mu-calculus extended with
data variables, whose FOLTL logic used in this paper is a
subset.

We first represent the program set of traces as a CADP pro-
cess. For this, we use a program control flow graph obtained by
static analysis (see [21] and [23], [24]). Regularity of the set of
traces is enforced by limiting recursion and inlining function
calls, an approximation that can be deemed safe with respect
to the abstract behaviors to detect. Note that there are two
shortcomings to regular approximation. First, approximation
of conditional branches by nondeterministic branches may
result in false positives, especially when the program code
is obfuscated. And second, failure to identify data correlations
during dataflow analysis can result in false negatives. However,
this does not significantly impact our detection results.

Now, as expressed in Theorem 3, detection of the in-
formation leak abstract behavior M can be broken down
into two steps: abstracting the set of traces L by computing
Rλinval

��
R≤2(L)

�
and then verifying whether an abstracted

trace matches the abstract behavior formula.
So, we can simulate the abstraction step in CADP and

delegate the verification step to the evaluator4 module. For
this, we represent the set of traces L of a given program by
a system of communicating processes expressed in LOTOS,
with a particular gate on which communications correspond to
library calls. Then, computation of R≤2(L) is performed by
synchronization with another LOTOS process which simulates
the transducer realizing the abstraction. Moreover, the relation
Rλinval

� is rational and can also be simulated by process
synchronization in CADP.

For each malware sample we tested, we success-
fully run evaluator4 on the resulting process, representing
Rλinval

� (R≤2(L)), in order to detect the information leak
abstract behavior defined in the previous section.

Also, in our previous work [21], we implemented our
string rewriting based abstraction technique and we defined
several behavior patterns and abstract behaviors, by looking at
malicious execution traces. Then, we tested it on samples of
malicious programs collected using a honeypot2 and identified
using Kaspersky Antivirus. These samples belonged to known
malware families, among which Allaple, Virut, Agent, Rbot,
Afcore and Mimail. Most of them were successfully matched
to our malware database.

IX. CONCLUSION

We presented an original approach for detecting high-level
behaviors in programs, describing combinations of function-
alities and defined by first-order temporal logic formulas.
Behavior patterns, expressing concrete realizations of the
functionalities, are also defined by first-order temporal logic
formulas. Abstraction of these functionalities in program traces
is performed by term rewriting. Validation of the abstracted
traces with respect to some high-level behavior is performed
using usual model checking techniques. In order to address
the general intractability of the problem of constructing the
set of normal forms of traces for a given program, we have

2The honeypot of the Loria’s High Security Lab: http://lhs.loria.fr.
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detection in the presence of data, we use the CADP tool-
box [27], which allows us to manipulate and model-check
communicating processes written in the LOTOS language.
CADP features a verification tool, evaluator4, which allows
on-the-fly model checking of formulas expressed in the MCL

1We assume the execution of a hook f with argument x is represented in
a trace by an action HookCalled (f, x).

language, a fragment of the modal mu-calculus extended with
data variables, whose FOLTL logic used in this paper is a
subset.

We first represent the program set of traces as a CADP pro-
cess. For this, we use a program control flow graph obtained by
static analysis (see [21] and [23], [24]). Regularity of the set of
traces is enforced by limiting recursion and inlining function
calls, an approximation that can be deemed safe with respect
to the abstract behaviors to detect. Note that there are two
shortcomings to regular approximation. First, approximation
of conditional branches by nondeterministic branches may
result in false positives, especially when the program code
is obfuscated. And second, failure to identify data correlations
during dataflow analysis can result in false negatives. However,
this does not significantly impact our detection results.

Now, as expressed in Theorem 3, detection of the in-
formation leak abstract behavior M can be broken down
into two steps: abstracting the set of traces L by computing
Rλinval

��
R≤2(L)

�
and then verifying whether an abstracted

trace matches the abstract behavior formula.
So, we can simulate the abstraction step in CADP and

delegate the verification step to the evaluator4 module. For
this, we represent the set of traces L of a given program by
a system of communicating processes expressed in LOTOS,
with a particular gate on which communications correspond to
library calls. Then, computation of R≤2(L) is performed by
synchronization with another LOTOS process which simulates
the transducer realizing the abstraction. Moreover, the relation
Rλinval

� is rational and can also be simulated by process
synchronization in CADP.

For each malware sample we tested, we success-
fully run evaluator4 on the resulting process, representing
Rλinval

� (R≤2(L)), in order to detect the information leak
abstract behavior defined in the previous section.

Also, in our previous work [21], we implemented our
string rewriting based abstraction technique and we defined
several behavior patterns and abstract behaviors, by looking at
malicious execution traces. Then, we tested it on samples of
malicious programs collected using a honeypot2 and identified
using Kaspersky Antivirus. These samples belonged to known
malware families, among which Allaple, Virut, Agent, Rbot,
Afcore and Mimail. Most of them were successfully matched
to our malware database.

IX. CONCLUSION

We presented an original approach for detecting high-level
behaviors in programs, describing combinations of function-
alities and defined by first-order temporal logic formulas.
Behavior patterns, expressing concrete realizations of the
functionalities, are also defined by first-order temporal logic
formulas. Abstraction of these functionalities in program traces
is performed by term rewriting. Validation of the abstracted
traces with respect to some high-level behavior is performed
using usual model checking techniques. In order to address
the general intractability of the problem of constructing the
set of normal forms of traces for a given program, we have

2The honeypot of the Loria’s High Security Lab: http://lhs.loria.fr.
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Ainsi, dans cette section, nous prenons l’exemple d’un programme capturant
les caractères entrés au clavier (afin d’en extraire notamment mots de passe,
informations bancaires et autres données sensibles). L’analyse sous IDA de sa
forme compilée permet de déterminer la structure de la pile et le type des
variables la composant. Par simplicité, nous travaillons sur son code source :

1 LRESULT WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {
2 RAWINPUTDEVICE rid;
3 RAWINPUT *buffer;
4 UINT dwSize;
5 USHORT uKey;
6

7 switch(msg) {
8 case WM_CREATE: /* Creation de la fenetre principale */
9 /* Initialisation de la capture du clavier */

10 rid.usUsagePage = 0x01;
11 rid.usUsage = 0x06;
12 rid.dwFlags = RIDEV_INPUTSINK;
13 rid.hwndTarget = hwnd;
14 RegisterRawInputDevices(&rid, 1, sizeof(RAWINPUTDEVICE));
15 break;
16

17 case WM_INPUT: /* Evenement clavier, souris, etc. */
18 /* Quelle taille pour buffer ? */
19 GetRawInputData( (HRAWINPUT) lParam, RID_INPUT, NULL,
20 &dwSize, sizeof(RAWINPUTHEADER) );
21 buffer = (RAWINPUT*) malloc(dwSize);
22 /* Recuperer dans buffer les donnees capturees */
23 if(!GetRawInputData( (HRAWINPUT) lParam, RID_INPUT, buffer,
24 &dwSize, sizeof(RAWINPUTHEADER) ))
25 break;
26 if(buffer->header.dwType == RIM_TYPEKEYBOARD &&
27 buffer->data.keyboard.Message == WM_KEYDOWN) {
28 printf("%c\n", buffer->data.keyboard.VKey);
29 }
30 free(buffer);
31 break;
32 }
33 /* ... */
34 }

Ce code contient sept variables : hwnd, msg, wParam, lParam, rid, buffer
et dwSize. Les types HWND et HRAWINPUT représentent des entiers. Les types
WPARAM et LPARAM sont interprétés différement selon le contexte : ici, seule
la variable lParam est utilisée et représente un entier dans le contexte de son
utilisation. Les types RAWINPUTDEVICE et RAWINPUT sont des structures décrites
ci-après. Seuls les champs nous intéressant ont été conservés.

struct RAWINPUTDEVICE {
int usUsagePage;
int usUsage;

mercredi 8 juin 2011



Promela translation

CHAPITRE 2. ANALYSE COMPORTEMENTALE STATIQUE 32

}

On définit par ailleurs des symboles RegisterRawInputDevices,GetRawInputData,
malloc et printf1 dans Σ tels que :

– Pour un appel RegisterRawInputDevices(pRawInputDevices, uiNumDevices,
cbSize), RegisterRawInputDevices prend 4 arguments décrivant les
données suivantes : pRawInputDevices->usUsagePage,pRawInputDevices->usUsage,
pRawInputDevices->dwFlags, pRawInputDevices->hwndTarget.

– Pour un appel GetRawInputData(hRawInput, uiCommand, pData, pcbSize,
cbSizeHeader),GetRawInputData prend 5 arguments décrivant les don-
nées suivantes : hRawInput, pData->header->dwType,pData->header.hDevice,
pData->data.keyboard.Flags et pData->data.keyboard.VKey.

– Pour un appel malloc(size), malloc prend 1 argument décrivant les
données suivantes : la valeur de retour.

– Pour un appel printf(format, arg1), printf1 prend 2 arguments dé-
crivant les données suivantes : format, arg1.

Enfin, on indexe la représentation abstraite par des symboles de Fd : hwnd,
main_hwnd, msg, rid_usUsagePage, rid_usUsage, . . .

Comme dans le cas de la fuite de SMS, dans la section précédente, on peut
construire un modèle Promela du programme :

mtype = { CALL_COPY, CALL_RegisterRawInputDevices, CALL_GetRawInputData,
CALL_malloc, CALL_printf1, CALL_free }

chan lib_call = [0] of {mtype, int, int, int, int, int, int};
proctype lib_loop() {

xr lib_call;
do

:: lib_call ? _,_,_,_,_,_,_;
od;

}
init {

run lib_loop();
run main();

}

#define COPY(v1, v2) \
lib_call ! CALL_COPY, v1, v2;

#define RegisterRawInputDevices(pRID_usUsagePage, pRID_usUsage, pRID_dwFlags,\
pRID_hwndTarget) \
lib_call ! CALL_RegisterRawInputDevices, pRID_usUsagePage, pRID_usUsage,\
pRID_dwFlags, pRID_hwndTarget;

/* ... */

mtype = {hwnd, msg, wParam, lParam,
rid_usUsagePage, rid_usUsage, rid_dwFlags, rid_hwndTarget,
buffer, malloc10_header_dwType, malloc10_header_hDevice,
malloc10_header_wParam, malloc10_keyboard_VKey, malloc10_keyboard_Message,
dwSize,
main_hwnd,
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main S21

S19

copy(hwnd,main_hwnd)

S24

S3

copy(rid_hwndTarget,hwnd)

S5

GetRawInputData(_0,_0,_0,_0,_0)

S0

-end-

S18

RegisterRawInputDevices(_1,_6,RIDEV_INPUTSINK,rid_hwndTarget)

S6

malloc(buffer)

S9

GetRawInputData(_0,malloc10_hdr_dwType,malloc10_hdr_hDevice,malloc10_kbd_VKey,malloc10_kbd_Message)

S13

S15

printf1(FMT,malloc10_kbd_VKey)

free(buffer)

Figure 2.7: Automate de traces pour le keylogger en Section 2.4.4.
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Malicious behavior detection 

• Detection of malicious behaviors

• Abstraction provides a high level notion of signature which is robust with 
respect to some functional obfuscation methods

• Behavior analysis from a set of traces which comes from static or dynamic 
analysis

• Detections algorithms are efficient based on (word/tree) automata 
techniques

• Tests with Allaple, Virus, Agent, Rbot, Afcore and Mimail
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