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. a new Associate Team proposal

‘PAC

involving

o Peter Griinwald (CWI, Machine Learning Group)
e Wouter M. Koolen (CWI, Machine Learning Group)
@ Benjamin Guedj (Inria Lille, MODAL project-team)

e Emilie Kaufmann (Inria Lille, Sequel project-team)

Broader goal: Probably Approximately Correct - Learning
6 Safe, Efficient, Sequential, Active, Structured, Ideal
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Monte-Carlo Tree Search for games

Selection Expansion Simulation Backpropagation

) Po _/ ()

@& 0o ® @ 0e

ORI 0T 0RF QTG
©6 @? ®@ ®®
® ® @

Emilie Kaufmann MCTS by Best Arm Identification



Monte-Carlo Tree Search for games

Selection Expansion Simulation Backpropagation
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We introduce an idealized model:
@ fixed maximin tree
@ i.id. playouts starting from each leaf

and propose new algorithms with sample complexity guarantees

Emilie Kaufmann MCTS by Best Arm Identification



@ Problem formulation
© The BAI-MCTS architecture
© UGapE-MCTS and LUCB-MCTS

@ Towards optimal algorithms
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@ Problem formulation
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A simple model for MCTS

A fixed MAXMIN game tree T, with leaves L.
W MAX node (= your move)

A /N node (= adversary move)

® Leaf ¢: stochastic oracle O, that evaluates the position
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A simple model for MCTS

At round t a MCTS algorithm:
@ picks a path down to a leaf L;

@ get an evaluation of this leaf X; ~ Oy,

Assumption: i.i.d. sucessive evaluations, Ex.o,[X] = s
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Goal

A MCTS algorithm should find the best move at the root:
Ihs ifs € L,
Vs = ¢ maxcee(s) Ve if sis a MAX node,
mincee(s) Ve if sis a MIN node.
s* = argmax Vs
seC(so)
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A PAC learning framework

MCTS algorithm: (L, 7, 5;), where
@ L; is the sampling rule
@ 7 is the stopping rule
@ 5, € C(sp) is the recommendation rule
is (6,0) —PACif P(Vz > Ve —¢)>1—0.

Goal: (€, 6)-PAC algorithm with a small sample complexity 7.
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A simpler problem: best arm identification

Reminiscent of a bandit model:

A Best Arm ldentification algorithm: (A, 7,5;), where
@ A;is the sampling rule
@ 7 is the stopping rule
@ 5, € C(sp) is the recommendation rule
is (e,0)-PAC if
P(us, Zp* —€)=21-0.
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A simpler problem: best arm identification

Reminiscent of a bandit model:

A Best Arm ldentification algorithm: (A, 7,5;), where
@ A;is the sampling rule
@ 7 is the stopping rule
@ 5, € C(sp) is the recommendation rule
is (e,0)-PAC if
P(ps, 2 p" —€) =14

The BAI problem:
How to adaptivly sample the arms so as to identify as quickly as
possible the arm with highest mean ?
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MCTS: a structured BAI problem

Reminiscent of a bandit model:

A Best Arm ldentification algorithm: (L;, 7, 3;), where
@ L; is the sampling rule
@ 7 is the stopping rule
@ 5, € C(sp) is the recommendation rule
is (e,0)-PAC if
P(Ve > Vs —e) >1-04.

The MCTS problem:
How to adaptivly sample the leaves of a maxmin tree so as to
identify as quickly as possible the best action at the root ?
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© The BAI-MCTS architecture
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A key building block: confidence intervals

Using the samples collected for the leaves, one can build, for ¢ € L,

[LCB(t), UCBy(t)] a confidence interval on py
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A key building block: confidence intervals

Using the samples collected for the leaves, one can build, for £ € L,

[LCBy(t), UCBy(t)] a confidence interval on ti

Idea: Propagate these confidence intervals up in the tree
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A key building block: confidence intervals

MAX node:
UCBs(t) = max UCB.(t) LCBs(t) = max LCB(t)

ceC(s) ceC(s)
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A key building block: confidence intervals

MAX node:

UCBs(t) = max UCB.(t) LCBs(t) = max LCB(t)
ceC(s) ceC(s)
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A key building block: confidence intervals

MIN node:
UCBs4(t) = min UCB.(t) LCBs(t) = min LCB(t)
ceC(s) ceC(s)
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Property of this construction
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() (e € Zu(t)) = ) (Vs € Zs(1))
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Representative leaves

ls(t): representative leaf of internal node s € 7.
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Idea: alternate optimistic/pessimistic moves starting from s
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Generic BAI-MCTS algorithm

Input: 2 BAI algorithm

Initialization: t = 0.

while not BAIStop ({s € C(sp)}) do

Res1 = BAIStep ({s € C(s0)})

Sample the representative leaf Ly 1 = (g, (1)
Update the information about the arms. t =t + 1.

end
Output: BATIReco ({s € C(s0)})
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Generic BAI-MCTS algorithm

Input: 2 BAI algorithm
Initialization: t = 0.
while not BAIStop ({s € C(sp)}) do
Resr = BAIStep ({s € C(s0)})
Sample the representative leaf Ly 1 = (g, (1)
Update the information about the arms. t =t 4+ 1.
end
Output: BAIReco ({s € C(s0)})

. sometimes reduces to updating confidence intervals!
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© UGapE-MCTS and LUCB-MCTS
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An example of BAI algorithm: LUCB

‘ ‘ S ' ‘ v
1 459 200 45 48 23

The (KL)-LUCB algorithm
[Kalyanakrishnan et al. 12, Kaufmann and Kalyanakrishnan 13]
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UGapE-MCTS

based on the UGapE algorithm [Gabillon et al. 12]

@ Sampling rule: Ryqq is the least sampled among two
promising depth-one nodes:

a, = argmin B,(t) and b, = argmax UCB(t),

aeC(so) beC(so)\{a.}
where

Bs(t max UCBg(t) — LCB4(t).

) - s'eC(s0)\{s}

@ Stopping rule:
7 =inf {t € N: UCBy, (t) — LCB, (t) < €}
@ Recommendation rule: & = a_
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Theoretical guarantees

We choose confidence intervals of the form

LOB() = fu(e) — | PGaes
UCBi(t) = fu(t) + 5%%5)

where (s, ) is some exploration function.

If & < max(0.1|£],1), for the choice

B(s, ) = log(|L£]/d) + 3loglog(|L|/d) + (3/2) log(logs + 1)

UGapE-MCTS is (e, §)-PAC.
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Theoretical guarantees

H ) = Y 22

AZV A2V e

LeLl
where
A* = V(S*) _ V(S;()
A = ma V aren - Vs
¢ sEAncestor)s((Z)\{sO}| P t(s) |

Sample complexity

With probability larger than 1 — §, the total number of leaves
explorations performed by UGapE-MCTS is upper bounded as

=0 (ruame (2)).
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Theoretical guarantees

. 1
Hw) =D poazve

LeL
where
A, = V()= V(s3)
A = a V aren - V
¢ SGAncesTor)s((l)\{so}| P t(s) Sl
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Numerical results

€=0,0=0.1-27 (N = 10° simulations)

LUCB-MCTS (0.72% errors, 1551 samples)
UGapE-MCTS (0.75% erros, 1584 samples)
FindTopWinner (0% errors, 20730 samples) [Teraoka et al. 14|
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@ Towards optimal algorithms
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A sample complexity lower bound

Let e = 0. Any 6-correct algorithm satisfies
Eulr] = T*(p)log (1/(30))

where

wEY | /| AEAlL(p

T*(N)_l ‘= sup inf )ZWZKL(B(W)7B()‘£))'
lel

Depth-two tree:

1o

[ . The optimal proportions satisfy

/ Ve *
AN Y w}j(1) = 0

\/ if i >2and j > 2.
N
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A sample complexity lower bound

Let e = 0. Any 6-correct algorithm satisfies
Eulr] = T*(p)log (1/(30))

where

wEY | /| AEAl (1

T*([J)_l ‘= sup Inf( )Z wyKL (B(M(),B()\E)) :
YEL

Depth-two tree:

1o

[ . The optimal proportions satisfy

/ JJJ / *
/m// ol . W,J(U’) =0

\/ if i >2and j> 2.
N

A more general sparsity pattern?
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Conclusion

Our contributions:
@ a generic way to use a BAI algorithm for MCTS

@ PAC and sample complexity guarantees for UGapE-MCTS and
LUCB-MCTS...

@ ... that also displays good empirical performance

Future work:

o identify the optimal sample complexity of the MCTS
problem... (i.e. matching upper and lower bounds)

@ ... and that of other structured Best Arm ldentification
problems [Ajallooeian et al., ALT 17|
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Reference:
E. Kaufmann & W.M. Koolen,
Monte-Carlo Tree Search by Best Arm Identification
to appear in NIPS 2017
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