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Broader goal: Probably Approximately Correct - Learning
6 Safe, Efficient, Sequential, Active, Structured, Ideal
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Monte-Carlo Tree Search for games

We introduce an idealized model:

fixed maximin tree

i.i.d. playouts starting from each leaf

and propose new algorithms with sample complexity guarantees
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A simple model for MCTS

A fixed MAXMIN game tree T , with leaves L.

MAX node (= your move)

MIN node (= adversary move)

Leaf `: stochastic oracle O` that evaluates the position
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A simple model for MCTS

At round t a MCTS algorithm:

picks a path down to a leaf Lt

get an evaluation of this leaf Xt ∼ OLt

Assumption: i.i.d. sucessive evaluations, EX∼O` [X ] = µ`
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Goal

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

A MCTS algorithm should find the best move at the root:

Vs =


µs if s ∈ L,

maxc∈C(s) Vc if s is a MAX node,
minc∈C(s) Vc if s is a MIN node.

s∗ = argmax
s∈C(s0)

Vs
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A PAC learning framework

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

MCTS algorithm: (Lt , τ, ŝτ ), where

Lt is the sampling rule

τ is the stopping rule

ŝτ ∈ C(s0) is the recommendation rule

is (ε, δ)− PAC if P (Vŝτ ≥ Vs∗ − ε) ≥ 1− δ.
Goal: (ε, δ)-PAC algorithm with a small sample complexity τ .
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A simpler problem: best arm identification

Reminiscent of a bandit model:

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

A Best Arm Identification algorithm: (At , τ, ŝτ ), where

At is the sampling rule

τ is the stopping rule

ŝτ ∈ C(s0) is the recommendation rule

is (ε, δ)-PAC if
P (µŝτ ≥ µ∗ − ε) ≥ 1− δ.

The BAI problem:
How to adaptivly sample the arms so as to identify as quickly as
possible the arm with highest mean ?
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P (µŝτ ≥ µ∗ − ε) ≥ 1− δ.

The BAI problem:
How to adaptivly sample the arms so as to identify as quickly as
possible the arm with highest mean ?

Emilie Kaufmann MCTS by Best Arm Identification



MCTS: a structured BAI problem

Reminiscent of a bandit model:

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

A Best Arm Identification algorithm: (Lt , τ, ŝτ ), where

Lt is the sampling rule

τ is the stopping rule

ŝτ ∈ C(s0) is the recommendation rule

is (ε, δ)-PAC if
P (Vŝτ ≥ Vs∗ − ε) ≥ 1− δ.

The MCTS problem:
How to adaptivly sample the leaves of a maxmin tree so as to
identify as quickly as possible the best action at the root ?
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A key building block: confidence intervals

Using the samples collected for the leaves, one can build, for ` ∈ L,

[LCB`(t),UCB`(t)] a confidence interval on µ`

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

Idea: Propagate these confidence intervals up in the tree
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A key building block: confidence intervals

MAX node:

UCBs(t) = max
c∈C(s)

UCBc(t) LCBs(t) = max
c∈C(s)

LCBc(t)

s0
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A key building block: confidence intervals

MIN node:

UCBs(t) = min
c∈C(s)

UCBc(t) LCBs(t) = min
c∈C(s)

LCBc(t)

s0
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Property of this construction

s0

⋂
`∈L

(µ` ∈ I`(t)) ⇒
⋂
s∈T

(Vs ∈ Is(t))
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Representative leaves

`s(t): representative leaf of internal node s ∈ T .

s0

Idea: alternate optimistic/pessimistic moves starting from s
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Generic BAI-MCTS algorithm

Input: a BAI algorithm
Initialization: t = 0.
while not BAIStop ({s ∈ C(s0)}) do

Rt+1 = BAIStep ({s ∈ C(s0)})
Sample the representative leaf Lt+1 = `Rt+1(t)
Update the information about the arms. t = t + 1.

end
Output: BAIReco ({s ∈ C(s0)})

... sometimes reduces to updating confidence intervals!
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An example of BAI algorithm: LUCB

0

1

771 459 200 45 48 23

The (KL)-LUCB algorithm
[Kalyanakrishnan et al. 12, Kaufmann and Kalyanakrishnan 13]
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UGapE-MCTS

based on the UGapE algorithm [Gabillon et al. 12]

Sampling rule: Rt+1 is the least sampled among two
promising depth-one nodes:

at = argmin
a∈C(s0)

Ba(t) and bt = argmax
b∈C(s0)\{at}

UCBb(t),

where

Bs(t) = max
s′∈C(s0)\{s}

UCBs′(t)− LCBs(t).

Stopping rule:

τ = inf
{
t ∈ N : UCBbt

(t)− LCBat (t) < ε
}

Recommendation rule: ŝτ = aτ
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Theoretical guarantees

We choose confidence intervals of the form

LCB`(t) = µ̂`(t)−

√
β(N`(t), δ)

2N`(t)

UCB`(t) = µ̂`(t) +

√
β(N`(t), δ)

2N`(t)

where β(s, δ) is some exploration function.

Correctness

If δ ≤ max(0.1|L|, 1), for the choice

β(s, δ) = log(|L|/δ) + 3 log log(|L|/δ) + (3/2) log(log s + 1)

UGapE-MCTS is (ε, δ)-PAC.
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Theoretical guarantees

H∗ε (µ) :=
∑
`∈L

1

∆2
` ∨∆2

∗ ∨ ε2

where

∆∗ := V (s∗)− V (s∗2 )

∆` := max
s∈Ancestors(`)\{s0}

∣∣VParent(s) − Vs

∣∣
Sample complexity

With probability larger than 1− δ, the total number of leaves
explorations performed by UGapE-MCTS is upper bounded as

τ = O

(
H∗ε (µ) log

(
1

δ

))
.
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Numerical results

ε = 0, δ = 0.1 · 27 (N = 106 simulations)
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LUCB-MCTS (0.72% errors, 1551 samples)
UGapE-MCTS (0.75% erros, 1584 samples)
FindTopWinner (0% errors, 20730 samples) [Teraoka et al. 14]
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A sample complexity lower bound

Theorem

Let ε = 0. Any δ-correct algorithm satisfies

Eµ[τ ] ≥ T ∗(µ) log (1/(3δ))
where

T ∗(µ)−1 := sup
w∈Σ|L|

inf
λ∈Alt(µ)

∑
`∈L

w`KL (B(µ`),B(λ`)) .

Depth-two tree:

The optimal proportions satisfy

w∗i ,j(µ) = 0

if i ≥ 2 and j ≥ 2.

A more general sparsity pattern?
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Conclusion

Our contributions:

a generic way to use a BAI algorithm for MCTS

PAC and sample complexity guarantees for UGapE-MCTS and
LUCB-MCTS...

... that also displays good empirical performance

Future work:

identify the optimal sample complexity of the MCTS
problem... (i.e. matching upper and lower bounds)

... and that of other structured Best Arm Identification
problems [Ajallooeian et al., ALT 17]

Reference:
E. Kaufmann & W.M. Koolen,

Monte-Carlo Tree Search by Best Arm Identification
to appear in NIPS 2017
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