Risk Analysis: Efficient Computation of Failure Probability

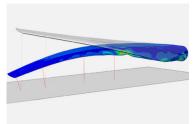
Nassim RAZAALY

CWI - INRIA Bordeaux

nassim.razaaly@inria.fr

20/09/2017

Motivation: Reliability

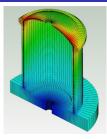

- v: Wind Speed
- F_c: Critical Load
- Load on the Blade x: F(v, x)

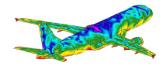
[Random Variable] [Scalar]

[Expensive Function]

Goal: Assess Blade Robustness

$$p_f = \mathbb{P}_v[\mathbf{F}(v, x) > F_c] < 10^{-6}$$
 ?


Blade x: Analysis



Damaged Wind Turbine

Nassim RAZAALY (INRIA-CWI)

Motivation: Very Low Failure Probability

Industry Design Assessment

- Aeronautics
- Nuclear Power Plants
- $\implies p_f < 10^{-8}$

How to Compute p_f ?

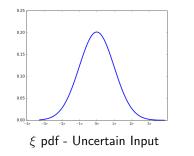
- Accurately
- Low Number of Evaluations

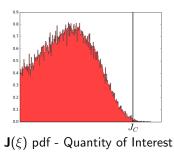
[CFD/Structural Analysis Models]

Nassim RAZAALY (INRIA-CWI)

Tail Probability

- 2 Different Approaches
- **3** Some Examples

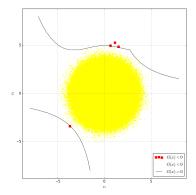

Section 1


Introduction

Motivation : Tail Probability

Failure Risk/Tail Probability : $\mathbb{P}(\mathbf{J} > \mathbf{J}_{C})$

- Quantity of Interest : \mathbf{J} : $\mathbb{R}^d \to \mathbb{R}$
- $J_C \in \mathbb{R}$ Critical value
- $\xi \in \mathbb{R}^d$ Random variable
- Goal : $\mathbb{P}(\mathbf{J}(\xi) > \mathsf{J}_{C})$



In the Standard Space

- $p_f = \mathbb{P}(G(\mathbf{X}) < 0) = \mathbb{E}[\mathbb{1}_{G < 0}(\mathbf{X})]$
- Standard Space: $\mathbf{X} \sim \mathcal{N}(0, I_d)$
- $p_f \ll 1$
- Disconnected Failure Regions

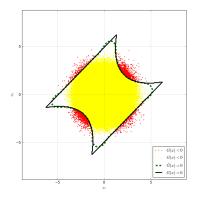
$$\delta_{target} = \frac{\hat{\sigma}_f}{\hat{\rho}_f} = 1\%$$

 $\implies N_{MC} \approx 10^{10}!!$

 5×10^{6} MC points [Expensive Computations] $p_{f} = 9 \times 10^{-7} \implies$ **4 Failure points...**

Section 2

Different Approaches


Metamodel Substitution

No Error Control

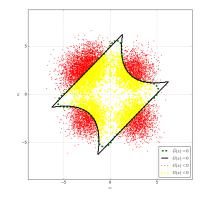
Requirements

- Few Expensive Calls
- Different Failure Branches
- No points Clustering

 $p_{\tilde{f}} \ll 1 \implies \tilde{N}_{MC}$ very high

10⁶ MC points [Cheap Computations]

Strategy 2: Metamodel Substitution + IS

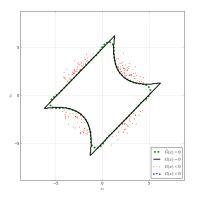

If $p_{\tilde{f}} \ll 1$

${\sf Metamodel}\ {\sf Substitution}\ +\ {\sf IS}$

- No Error Control
- Suitable for $p_{\tilde{f}} \ll 1$.

Requirements

- Few Expensive Calls
- Different Failure Branches
- No points Clustering
- Suitable for very Low probability



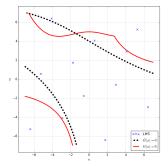
10000 IS points [Cheap Computations]

$\mathsf{Metamodel} + \mathsf{IS}$

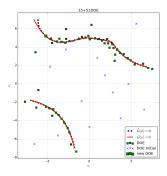
- Construct a Metamodel \tilde{G}
- Run performance function *G* with IS

Unbiased Estimation $\hat{p_f}$.

200 IS points [Expensive Computations]

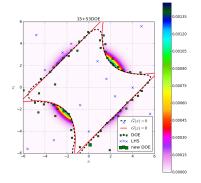

Section 3

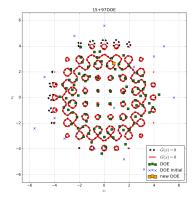
Some Examples


Metamodel Construction

2D Example

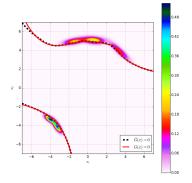
- Two Disconnected Failure Regions
- Low Failure probability: $p_f = 9 \times 10^{-7}$


LHS Sampling in Standard Space

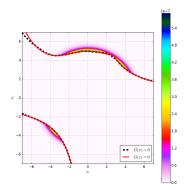

Refined Metamodel: $N_{calls} = 66$

Nassim RAZAALY (INRIA-CWI)

Refined Metamodel: 2D examples

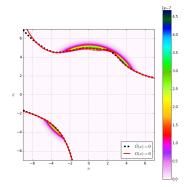


Refined Metamodel ; $\textit{N}_{\textit{calls}} = 68$; $\textit{p}_{f} = 2.21 \times 10^{-3}$

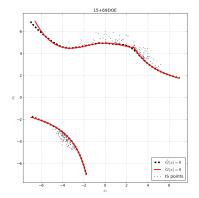


Refined Metamodel ; $N_{calls} = 112$; $p_f = 7.43 \times 10^{-2}$

IS Metamodel: $\tilde{p}_f = \mathbb{E}[\mathbb{1}_{\tilde{G} < 0}(\mathbf{X})]$



ISD used on Metamodel Contour ; $\tilde{N}_{calls} \sim 2 \times 10^6$; $\tilde{\delta} < 0.1\%$; $\tilde{p}_f = 9 \times 10^{-7}$



Optimal ISD Contour

Quasi-Optimal IS: $p_f = \mathbb{E}[\mathbb{1}_{G < 0}(X)]$, using MCMC

Quasi-opt IS Contour

Sampled Points using MCMC ; $N_{calls} = 84 + 496$; $\delta < 1\%$

Section 4

Conclusion

Tail Probability

- Accurate Metamodel Refinement
- Suitable for very low p_f, multiple failure regions
- Sharp IS accuracy on metamodel
- Statistically consistent error
- Low number of performance function evaluations

Perspectives

- Parallel Metamodel Refinement
- Extreme Quantile Evaluation: $\mathbb{P}(\mathbf{J}(\xi) > q) = 10^{-6}$
- Optimization under Failure Probability Constraint

References

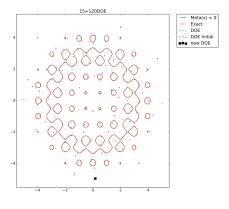
- Q. Wang. Uncertainty Quantification for Unsteady Fluid Flow using Adjoint-based Approaches. PhD Thesis. Stanford University. 2008.
- Echard B, Gayton N, Lemare M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation. *Reliability Engineering and System Safety*, **33 (2011) 145-154.**
- Echard B, Gayton N, Lemaire M, Relun N. A combined Inportance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models. *Reliability Engineering and System Safety*, **111 (2013) 232-240.**
 - Cadini F, Gioletta A, Zio E. Improved metamodel-based importance sampling for the performance assessment of radiactive waste repositories. *Reliability Engineering and System Safety*, **134 (2015) 188-197.**
- Cadini F, Santos F, Zio E. An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability. *Reliability Engineering and System Safety*, **131 (2014) 109-117.**
- Dubourg V, Sudret B, Deheeger F. Metamodel-based importance sampling for structural reliability analysis. *Probabilistic Engineering Mechanics*, 33 (2013) 47-57.

From Physical Space to Standard Space $p_f = \mathbb{P}(F(\mathbf{X}) > F_c)$, with $\mathbf{X} = (X_1, ..., X_d)$ independant. • $J(\mathbf{X}) = F_c - F(\mathbf{X}) \implies p_f = \mathbb{P}(J(\mathbf{X}) < 0)$ • $\mathbf{U} = T(\mathbf{X}), \mathbf{U} \sim \mathcal{N}(0, I_d)$ • $T(\mathbf{x}) = [\phi^{-1} \circ F_{X_k}(x_k)]_{k \in [\![1,d]\!]}$ • $G = J \circ T^{-1} \implies G(\mathbf{U}) = J \circ T^{-1}(\mathbf{X}) = J(\mathbf{X})$ $\implies p_f = \mathbb{P}(G(\mathbf{U}) < 0)$

If X not independent, use Rosenblatt Transformation.

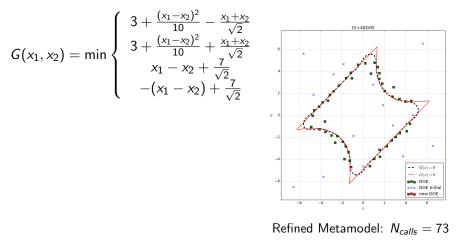
Two Failure Regions Example in 2D

Equation

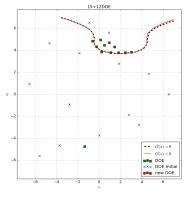

$$c = 5$$
, $\mathbf{X} = (X_1, X_2) \sim \mathcal{N}(0, I_2)$

$$G(x_1, x_2) = \min \left\{ \begin{array}{c} c - 1 - x_2 + e^{\frac{-x_1^2}{10}} + (\frac{x_1}{5})^4 \\ \frac{c^2}{2} - x_1 \cdot x_2 \end{array} \right\}$$

Method	N _{calls}	\hat{p}_f	$\hat{\delta}_{f}$	$3 - \hat{\sigma}_f$ Interval	Ñ _{calls}	₽ _Ğ	$\hat{\delta}_{P\bar{G}}$	$3 - \hat{\sigma}_{p_{\tilde{c}}}$ Interval
Crude MC	422, 110, 000	$9.48 imes 10^{-7}$	< 5%	\subseteq [8.06, 11.9] $ imes$ 10 ⁻⁷				
FORM	7	2.87×10^{-7}						
Subset	700,000	$6.55 imes10^{-7}$	< 5%	\subseteq [5.57, 7.53] \times 10 ⁻⁷				
Meta-IS	40 + 2900	$9.17 imes10^{-7}$	< 5%	\subseteq [7.80, 10.5] \times 10 ⁻⁷				
MetaAK-IS ²	117 + 119					$8.16 imes10^{-7}$	< 5%	\subseteq [6.94, 9.38] $ imes$ 10 ⁻⁷
MetaAL-OIS	56 + 1000	$8.90 imes10^{-7}$		$[8.58, 9.24] imes 10^{-7}$	1.62×10^{6}	$9.18 imes10^{-7}$	0.09%	$[9.16, 9.21] imes 10^{-7}$
Perf + IS	2.62×10^{6}	$8.97 imes 10^{-7}$	0.09%	$[8.942, 8996] \times 10^{-7}$				
Perf + IS 2.62 × 10 ⁶ 8.97 × 10 ⁻⁷ 0.09% [8.942, 8.996] × 10 ⁻⁷								


Metamodel \tilde{G} : Tricky Case

$$G(x_1, x_2) = 10 - \sum_{i=1}^{2} (x_i^2 - 5\cos(2\pi x_i))$$


Refined Metamodel: $N_{calls} = 135$

Metamodel \tilde{G} : Four Failure Case

Metamodel \tilde{G} : One Failure Case

$$G(x_1, x_2) = \frac{1}{2}(x_1 - 2)^2 - \frac{3}{2}(x_2 - 5)^3 - 3$$

Refined Metamodel: $N_{calls} = 27$

The End