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A mathematical theory of learning: towards AI

{Statistical,Machine} learning: devise automatic procedures to
infer general rules from data.

Field of study about computers’ ability to learn without being
explicitly programmed (Arthur Samuel, 1959).

In the (rather not so?) long term: mimic the inductive functioning
of the humain brain to develop an artificial intelligence.

Big data / data science (somewhat annoying) hype: extremely
dynamic field at the crossroads of Computer Science, Optimization
and Statistics.

A hot topic at CWI and Inria in general and in Lille in particular:
we are hiring!
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Learning in a nutshell

Collect data Dn = (Xi ,Yi )
n
i=1 distributed as a random variable

(X,Y) ∈ X× Y. Data may be incomplete (unsupervised setting,
missing input), collected sequentially / actively, etc.

Goal: use Dn to build up φ̂ such that φ̂(X) ≈ Y. Learning is to be
able to generalize!

For some loss function ` : Y× Y→ R+, let

R : φ̂ 7→ E`
(
φ̂(X),Y

)
and rn : φ̂ 7→ 1

n

n∑
i=1

`
(
φ̂(Xi ),Yi

)
denote the risk (unknown) and empirical risk (known), respectively.

Typical goals: probabilistic bounds on R, algorithm based on rn.
Under classical assumptions, rn → R.
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Bayesian learning in a nutshell

Let F be a set of candidates functions equipped with a probability
measure π (prior). Let f be the (known) density of the (assumed)
distribution of (X,Y), and define the posterior

ρ̂ (·) ∝ f (X,Y|·)π(·).

Model-based learning (may be parametric or nonparametric).

I MAP φ̂ ∈ arg max
φ∈F

ρ̂ (φ).

I Mean φ̂ = Eρ̂ φ =
∫
F
φρ̂ (dφ).

I Realization φ̂ ∼ ρ̂.

I . . .
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Quasi-Bayesian learning in a nutshell
A.k.a generalized Bayes.

Let F be a set of candidates functions equipped with a probability
measure π (prior). Let λ > 0, and define a quasi-posterior

ρ̂λ(·) ∝ exp (−λrn(·))π(·).

Model-free learning!

I MAQP φ̂λ ∈ arg max
φ∈F

ρ̂λ(φ).

I Mean φ̂λ = Eρ̂λφ =
∫
F
φρ̂λ(dφ).

I Realization φ̂λ ∼ ρ̂λ.

I . . .
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Why quasi-Bayes?

One justification (there are others). Let K denote the
Kullback-Leibler divergence

K(ρ, π) =

{∫
F

log
(

dρ
dπ

)
dρ when ρ� π,

+∞ otherwise.

With the classical quadratic loss ` : (a, b) 7→ (a − b)2,

ρ̂λ ∈ arg inf
ρ�π

{∫
F

rn(φ)ρ(dφ) +
K(ρ, π)

λ

}
.
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Statistical aggregation revisited

φ̂λ := Eρ̂λφ =

∫
F

φρ̂λ(dφ)

=

∫
F

φ exp (−λrn(φ))π(dφ)

=

#F∑
i=1

exp(−λrn(φi ))π(φi )∑#F
j=1 exp(−λrn(φj))π(φj)︸ ︷︷ ︸

ωλ,i

φi , if |F| < +∞.

This is the celebrated exponentially weighted aggregate (EWA).

� G. (2013). Agrégation d’estimateurs et de classificateurs : théorie et méthodes, Ph.D. thesis, Université Pierre

& Marie Curie
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PAC learning in a nutshell

Probably Approximately Correct (PAC) oracle inequalities /
generalization bounds and empirical bounds.
� Valiant (1984). A theory of the learnable, Communications of the ACM

Let φ̂ be a learning algorithm. For any ε > 0,

P
(
R
(
φ̂
)
≤ ♠

{
rn(φ̂) + ∆(n, d , φ, ε)

})
≥ 1− ε,

P
(
R
(
φ̂
)
− R? ≤ ♠ inf

φ∈F

{
R(φ)− R? + ∆(n, d , φ, ε)

})
≥ 1− ε,

where ♠ ≥ 1 and R? = infφ∈F R(φ).

Key argument: concentration inequalities (e.g., Bernstein) +
duality formula (Csiszár, Catoni).
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The PAC-Bayesian theory

...consists in producing PAC bounds for quasi-Bayesian learning
algorithms.
While PAC bounds focus on estimators θ̂n that are obtained as
functionals of the sample and for which the risk R is small, the
PAC-Bayesian approach studies an aggregation distribution ρ̂n that
depends on the sample, for which

∫
R(θ)ρ̂n(dθ) is small.

� Shawe-Taylor and Williamson (1997). A PAC analysis of a Bayes estimator, COLT

� McAllester (1998). Some PAC-Bayesian theorems, COLT

� McAllester (1999). PAC-Bayesian model averaging, COLT

� Catoni (2004). Statistical Learning Theory and Stochastic Optimization, Springer

� Audibert (2004). Une approche PAC-bayésienne de la théorie statistique de l’apprentissage, Ph.D. thesis,

Université Pierre & Marie Curie

� Catoni (2007). PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning, IMS

� Dalalyan and Tsybakov (2008). Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity,

Machine Learning
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A flexible and powerful framework (1/2)

� Alquier and Wintenberger (2012). Model selection for weakly dependent time series forecasting, Bernoulli

� Seldin, Laviolette, Cesa-Bianchi, Shawe-Taylor and Auer (2012). PAC-Bayesian inequalities for martingales,

IEEE Transactions on Information Theory

� Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

� G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic Journal

of Statistics

� Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics

� Dziugaite and Roy (2017). Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural

Networks with Many More Parameters than Training Data, UAI

� Dziugaite and Roy (2018). Data-dependent PAC-Bayes priors via differential privacy, NIPS
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A flexible and powerful framework (2/2)

� Rivasplata, Parrado-Hernandez, Shawe-Taylor, Sun and Szepesvari (2018). PAC-Bayes bounds for stable

algorithms with instance-dependent priors, arXiv preprint

� G. and Robbiano (2018). PAC-Bayesian High Dimensional Bipartite Ranking, Journal of Statistical Planning and

Inference

� Li, G. and Loustau (2018). A Quasi-Bayesian perspective to Online Clustering, Electronic Journal of Statistics

� G. and Li (2018). Sequential Learning of Principal Curves: Summarizing Data Streams on the Fly, arXiv preprint

Towards (almost) no assumptions to derive powerful results

� Bégin, Germain, Laviolette and Roy (2016). PAC-Bayesian bounds based on the Rényi divergence, AISTATS

� Alquier and G. (2018). Simpler PAC-Bayesian bounds for hostile data, Machine Learning
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Existing implementation: PAC-Bayes in the real world

I (Transdimensional) MCMC
� G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic

Journal of Statistics

� Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

� Li, G. and Loustau (2018). A Quasi-Bayesian perspective to Online Clustering, Electronic Journal of

Statistics

� G. and Robbiano (2018). PAC-Bayesian High Dimensional Bipartite Ranking, Journal of Statistical

Planning and Inference

I Stochastic optimization
� Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics

� G. and Li (2018). Sequential Learning of Principal Curves: Summarizing Data Streams on the Fly, arXiv

preprint

I Variational Bayes
� Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs

posteriors, Journal of Machine Learning Research
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(intermediary) take-home message

PAC-Bayesian learning is a flexible and powerful machinery.

+ little to no assumptions (teaser for second part)
+ flexibility: works as long as you can define a loss
+ generalization properties: state-of-the-art PAC risk

bounds
+ model-free learning

- still perceived as a black box and suffers from lack of
interpretability

- implementation plagued with the same issues as
"classical" Bayesian learning (speed / high dim / ...)
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A unified PAC-Bayesian framework
� Alquier and G. (2018)
Simpler PAC-Bayesian Bounds for hostile data
Machine Learning
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Motivation: towards an agnostic learning theory

PAC-Bayesian bounds are a key justification in stat/ML for using
Bayesian-flavored learning algorithms in several settings.
high dimensional bipartite ranking, non-negative matrix factorization, sequential learning of principal curves, online

clustering, single-index models, high dimensional additive regression, domain adaptation, neural networks, . . .

Conversely, they are also used to elicit new learning algorithms.

Most of these bounds rely on heavy and unrealistic assumptions:
e.g., boundedness of the loss function, independence. Hardly met
when working on real data!

We relaxed these constraints and provide unprecedented
PAC-Bayesian learning bounds for dependent and/or heavy-tailed
data, a.k.a hostile data.

skip context
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skip context
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Context: PAC bounds for heavy-tailed random variables

Calm before the storm (< 2015)
PAC-Bayesian bounds for unbounded losses, under strong exponential
moments assumptions.
� Catoni (2004). Statistical Learning Theory and Stochastic Optimization, Springer
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Context: PAC bounds for heavy-tailed random variables
The next big thing (≥ 2015)
I PAC bounds for the (penalized) ERM without an exponential

moments assumption with the small-ball property
� Mendelson (2015). Learning without concentration, Journal of ACM � Lecué and Mendelson (2016).

Regularization and the small-ball method, The Annals of Statistics � Grünwald and Mehta (2016). Fast

Rates for Unbounded Losses, arXiv preprint

I Robust loss functions
� Catoni (2016). PAC-Bayesian bounds for the Gram matrix and least squares regression with a random

design, arXiv preprint

I Median-of-means tournaments for estimating the mean
without an exponential moments assumption.
� Devroye, Lerasle, Lugosi and Oliveira (2016). Sub-Gaussian mean estimators, The Annals of Statistics

� Lugosi and Mendelson (2018). Risk minimization by median-of-means tournaments, Journal of the

European Mathematical Society � Lugosi and Mendelson (2017). Regularization, sparse recovery, and

median-of-means tournaments, arXiv preprint � Lecué and Lerasle (2017). Learning from MoM’s

principles: Le Cam’s approach, arXiv preprint
https://bguedj.github.io - 6PAC - 18
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Context: PAC bounds for dependent observations
PAC(-Bayesian) bounds have been provided by a series of papers.
However all these works relied on concentration inequalities or limit
theorems for time series for which boundedness or exponential
moments assumption are crucial.
� Mohri and Rostamizadeh (2010). Stability bounds for stationary φ-mixing and β-mixing processes, Journal of

Machine Learning Research

� Ralaivola, Szafranski and Stempfel (2010). Chromatic PAC-Bayes bounds for non-iid data: Applications to

ranking and stationary β-mixing processes, Journal of Machine Learning Research

� Seldin, Laviolette, Cesa-Bianchi, Shawe-Taylor and Auer (2012). PAC-Bayesian inequalities for martingales,

IEEE Transactions on Information Theory

� Alquier and Wintenberger (2012). Model selection for weakly dependent time series forecasting, Bernoulli

� Agarwal and Duchi (2013). The generalization ability of online algorithms for dependent data, IEEE

Transactions on Information Theory

� Kuznetsov and Mohri (2014). Generalization bounds for time series prediction with non-stationary processes,

ALT
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Disclaimer

The strategy I’m about to describe yields, at best, the same rates
as those existing in known settings.

However we designed a unified framework to derive PAC-Bayesian
bounds for settings where even no PAC learning bounds were
available (such as heavy-tailed time series).
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Notation

Loss function `, observations (X1,Y1), . . . , (Xn,Yn), family of
predictors (fθ, θ ∈ Θ).

Observations are not required to be independent nor identically
distributed. Let `i (θ) = `[fθ(Xi ),Yi ], and define the (empirical)
risk as

rn(θ) =
1
n

n∑
i=1

`i (θ),

R(θ) = E
[
rn(θ)

]
.
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Key quantities

Definition
For any function g, let

Mφp ,n =

∫
E (|rn(θ)− R(θ)|p)π(dθ).

Definition
Let f be a convex function with f (1) = 0. Csiszár’s f -divergence
between ρ and π is defined by

Df (ρ, π) =

∫
f
(

dρ
dπ

)
dπ

when ρ� π and Df (ρ, π) = +∞ otherwise.

Note that K(ρ, π) = Dx log(x)(ρ, π) and χ2(ρ, π) = Dx2−1(ρ, π).
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Key quantities
Definition
For any function g, let

Mφp ,n =

∫
E (|rn(θ)− R(θ)|p)π(dθ).
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Let f be a convex function with f (1) = 0. Csiszár’s f -divergence
between ρ and π is defined by
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Main theorem

Fix p > 1, q = p
p−1 and δ ∈ (0, 1). With probability at least 1− δ

we have for any distribution ρ∣∣∣∣∫ Rdρ−
∫

rndρ
∣∣∣∣ ≤ (Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1

p .
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Proof

Let ∆n(θ) := |rn(θ)− R(θ)|.∣∣∣∣∫ Rdρ−
∫

rndρ
∣∣∣∣ ≤ ∫ ∆ndρ =

∫
∆n

dρ
dπ

dπ

≤
(∫

∆q
ndπ

) 1
q
(∫ (

dρ
dπ

)p
dπ
) 1

p

(Hölder ineq.)

≤
(
E
∫

∆q
ndπ

δ

) 1
q
(∫ (

dρ
dπ

)p
dπ
) 1

p

(Markov, w.p. 1− δ)

=

(
Mφq,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1

p .

Inspired by

� Bégin, Germain, Laviolette and Roy (2016). PAC-Bayesian bounds based on the Rényi divergence, AISTATS
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We can compare
∫
rndρ (observable) to

∫
Rdρ (unknown, the

objective) in terms of
I the moment Mφq ,n (which depends on the distribution of the

data)
I and the divergence Dφp−1(ρ, π) (which is a measure of the

complexity of the set Θ).

Corolloray: with probability at least 1− δ, for any ρ,∫
Rdρ ≤

∫
rndρ+

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1

p .

Strong incitement to define our aggregation distribution ρ̂n as the
minimizer of the right-hand side!
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1. Computing the divergence term
I Discrete case
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Computing the divergence term (discrete case)

Assume Card(Θ) = K <∞ and that π is uniform on Θ. Fix
p > 1, q = p

p−1 and δ ∈ (0, 1). With probability at least 1− δ

R(θ̂ERM) ≤ inf
θ∈Θ

{
rn(θ)

}
+ K 1− 1

p

(
Mφq ,n

δ

) 1
q
.

back to intersection
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Computing the divergence term (continuous case)
Assume that there exists d > 0 such that for any γ > 0,

π
{
θ ∈ Θ :

{
rn(θ)

}
≤ inf

θ′∈Θ
rn(θ′) + γ

}
≥ γd .

Fix p > 1, q = p
p−1 , δ ∈ (0, 1) and

πγ(dθ) ∝ π(dθ)1
[
r(θ)− rn(θ̂ERM) ≤ γ

]
.

With probability at least 1− δ

∫
Rdπγ ≤ inf

θ∈Θ

{
rn(θ)

}
+

(
Mφq ,n

δ

) 1
1+ d

q


(
d
q

) 1
1+ d

q +

(
d
q

) − d
q

1+ d
q

 .

back to intersection
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Bounding the moment Mφq,n: the i.i.d case

Assume that
s2 =

∫
Var[`1(θ)]π(dθ) < +∞

then

Mφq ,n ≤
(
s2
n

) q
2
.

So ∫
Rdρ ≤

∫
rndρ+

(
Dφp−1(ρ, π) + 1

) 1
p

δ
1
q

√
s2
n .

This rate can not be improved without further assumptions.

back to intersection
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Bounding the moment Mφq,n: the i.i.d case

Assume Card(Θ) = K < +∞ and for any θ, `i (θ) is sub-Gaussian
with parameter σ2.

For any δ ∈ (0, 1), with probability at least 1− δ

R(θ̂ERM) ≤ inf
θ∈Θ

{
rn(θ)

}
+

√
2eσ2 log

(2K
δ

)
n .

This rate can not be improved without further assumptions on the
loss `.
� Audibert (2009). Fast learning rates in statistical inference through aggregation, The Annals of Statistics

back to intersection
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Bounding the moment Mφq,n: the dependent case

Definition
The α-mixing coefficients between two σ-algebras F and G are
defined by

α(F,G) = sup
A∈F,B∈G

∣∣∣P(A ∩ B)− P(A)P(B)
∣∣.

Define
αj = α[σ(X0,Y0), σ(Xj ,Yj)].

When the future of the series is strongly dependent of the past, αj
will remain constant or slowly decay. When the near future is
almost independent of the past, then the αj quickly decay to 0.

back to intersection
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Bounding the moment Mφq,n: the dependent case
Bounded case: assume 0 ≤ ` ≤ 1 and (Xi ,Yi )i∈Z is a stationary
process which satisfies

∑
j∈Z αj <∞. Then

Mφ2,n ≤
1
n
∑
j∈Z

αj .

Unbounded case: assume that (Xi ,Yi )i∈Z is a stationary process.
Let 1/r + 2/s = 1 and assume∑

j∈Z
α
1/r
j <∞,

∫
{E [`si (θ)]}

2
s π(dθ) <∞.

Then

Mφ2,n ≤
1
n

(∫
{E [`si (θ)]}

2
s π(dθ)

)∑
j∈Z

α
1
r
j

 .

back to intersection
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n

(∫
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2
s π(dθ)

)∑
j∈Z

α
1
r
j

 .
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Example
Consider auto-regression with quadratic loss and linear predictors:
Xi = (1,Yi−1) ∈ R2, Θ = R2 and fθ(·) = 〈θ, ·〉. Let

ν = 32E
(
Y 6

i
) 2
3
∑
j∈Z

α
1
3
j

(
1 + 4

∫
‖θ‖6π(dθ)

)
.

With probability at least 1− δ we have for any ρ∫
Rdρ ≤

∫
rndρ+

√
ν[1 + χ2(ρ, π)]

nδ .

Up to our knowledge, first PAC(-Bayesian) bound in the case of a
time series without any boundedness nor exponential moment
assumption.

back to intersection
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PAC-Bayesian bounds to elicit new learning algorithms

Reminder:

For p > 1 and q = p/(p − 1), with probability at least 1− δ we
have for any ρ∫

Rdρ ≤
∫

rndρ+

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1

p .

back to intersection
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Definition
We define rn = rn(δ, p) as

rn = min

{
u ∈ R,

∫
[u − rn(θ)]q+ π(dθ) =

Mφq ,n

δ

}
.

Such a minimum always exists as the integral is a continuous
function of u, is equal to 0 when u = 0 and →∞ when u →∞.
We then define

dρ̂n
dπ

(θ) =
[rn − rn(θ)]

1
p−1
+∫

[rn − rn]
1

p−1
+ dπ

.

back to intersection
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With probability at least 1− δ,∫
Rdρ̂n ≤ rn ≤ inf

ρ

{∫
Rdρ+ 2

(
Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1

p

}
.

Assume that there exists d > 0 such that for any γ > 0,

π
{
θ ∈ Θ :

{
rn(θ)

}
≤ inf

θ′∈Θ
rn(θ′) + γ

}
≥ γd .

With probability at least 1− δ,∫
Rdρ̂n ≤ rn ≤ inf

θ∈Θ

{
rn(θ)

}
+ 2

(
Mφq ,n

δ

) 1
q+d

.

back to intersection
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δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1
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δ

) 1
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Highlights

I 6PAC
I 2 ANR-funded projects for the period 2019–2023

I APRIORI: representation learning and deep neural networks,
with PAC-Bayes

I BEAGLE (PI): agnostic learning, with PAC-Bayes
I H2020 European Commission project PERF-AI: machine

learning algorithms (including PAC-Bayes) applied to aviation
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�
We are hiring!

Interns, Engineers, PhD students, Postdocs

Spread the word!
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