COMPUTATIONAL METHODS FOR UNCERTAINTIES IN FLUIDS AND ENERGY SYSTEMS

- ✓ Development of efficient UQ-forward propagation method
- ✓ Data-inferred stochastic modeling when a limited amount of data is available for unsteady non-linear systems
- ✓ Numerical simulation of fluids (CFD) for energy application (high number of uncertainties, optimization under uncertainty, etc)

CWI Scientific Computing Group

Polytechnique) Pietro M Congedo

DeFI Team (INRIA SIF, Ecole

Daan Crommelin COMMUNES Team Leader COMMUNES Team Leader

Benjamin Sanderse Research Scientist, CWI

Olivier Le Maitre Research Scientist, CNRS

Anne Engels PhD Candidate, CWI

Nassim Razaaly PhD Candidate, CWI-INRIA

Laurent van den Bos PhD Candidate, CWI

François Sanson PhD Candidate, INRIA

Yous van Halder PhD Candidate, CWI

Mickael Rivier PhD Candidate, INRIA

Some main activities

- Workshop of COMMUNES Team, December 3-4 at CWI, 11 participants.
- Several visits (to INRIA and CWI)
- MS Organization at SIAM UQ 2018
- Joint Paper at Eccomas Conference 2018

 International Conference UQOP on UQ and Optimization, Paris 2019

Clustering-based UQ

Anne Eggels

September 26th, 2018

Uncertainty Quantification

Different types of data

Monte Carlo sampling

Smart sampling - independent data

Smart sampling - k-means

Gaussian processes (GPs)

Gaussian processes (GPs)

Work in progress

- ► GPs have length scales
- ► Rate of variance growth for each variable
- ► Combine the GP length scales with *k*-means to improve the prediction

Efficient clustering based training set generation for system of solvers

Francois Sanson (Inria BSO) Anne W. Eggels (CWI) Olivier Le Maitre (LIMSI) Dann Crommelin (CWI) Pietro M. Congedo (Inria Saclay)

Context: forward propagation of uncertainties in a system of solvers

Example: Tsunami simulation, Space object reentry

How to propagate uncertainties through a system of solvers at minimal computational cost?

How to propagate uncertainties through a system of solvers at minimal computational cost?

Build a cheap surrogate of the system and use Monte Carlo methods

A naive strategy: the black box approach

Computationally expensive and not optimal

A naive strategy: the black box approach

Computationally expensive and not optimal

A naive strategy: the black box approach

Black Box

Computationally expensive and not optimal

Our strategy : systems of Gaussian Processes

Predictions with Gaussian processes

The first two moments can be computed analytically

$$\mu(x) = \mathbf{k}_{\mathcal{A}}(x) K_{\mathcal{A}}^{-1} \mathbf{y}_{\mathcal{A}},$$

$$\sigma^{2}(x) = k(x, x) - \mathbf{k}_{\mathcal{A}}(x) K_{\mathcal{A}}^{-1} \mathbf{k}_{\mathcal{A}}(x)^{T}.$$

Training evaluations

Define a distribution of possible functions given observations

Mean predictions with SoGPs

$$X_0 \longrightarrow GP_1 \xrightarrow{X_1} GP_2 \longrightarrow X_2$$

Composition of average :

$$f_2 \circ f_1(x_0) \approx \mu_2(\mu_1(x_0)) = \mu_2 \circ \mu_1(x_0).$$

• Average of composition :

$$f_2 \circ f_1(x_0) \approx E\left[G_2 \circ G_1(x_0)\right] = \frac{1}{\sqrt{2\pi\sigma_1^2(x_0)}} \int \mu_2(x_1) \exp\left(-\frac{(x_1 - \mu_1(x_0))^2}{2\sigma_1^2(x_0)}\right) dx_1.$$

The integral cannot be computed analytically and have to be approximated (MC,inducing points, Taylor series expansion)

Generating training sets for SoGPs

LHS training

LHS are smart techniques for independent variables, are those properties propagated through the layers?

LHS training

LHS are smart techniques for independent variables, are those properties propagated through the layers?

Latin Hyper Cube sampling

No shared rows and columns

Monte Carlo Simulation

Latin Hypercube Sampling

Taken from Schultze, V.; Schillig, B.; IJsselsteijn, R.; Scholtes, T.; Woetzel, S.; Stolz, R. An Optically Pumped Magnetometer Working in the Light-Shift Dispersed Mz Mode. Sensors 2017, 17, 561.

Limitation of LHS training

The good properties of LHS: no alignments, good coverage are not assured after propagation

Limitation of LHS training

The good properties of LHS: no alignments, good coverage are not assured after propagation

Limitation of LHS training

The good properties of LHS: no alignments, good coverage are not assured after propagation

Use clustering to resample the training set at each layer

Local distorsion:

$$d(X_t, x) = \min_{x' \in X_t} ||x' - x||$$

Distorsion:

$$\tilde{D}(X_t) = \frac{1}{m} \sum_{x \in X_d} d(X_t, x)$$

Kmeans minimizes for X_t the distorsion

Lekivetz, R., and Jones, B. (2015) Fast Flexible Space-Filling Designs for Nonrectangular Regions. Qual. Reliab. Engng. Int., 31: 829–837. doi: 10.1002/qre.1640.

1. Initialize the centroids possibly randomly $X_t = (x_{c_1},...x_{c_{nt}})$

1. Initialize the centroids possibly randomly

$$X_t = (x_{c_1}, \dots x_{c_{nt}})$$

2. Assign each sample of the dataset to its closest centroid to create clusters

$$C_i = \{x : d(x, Xt) = ||x - x_{C_i}||\}$$

1. Initialize the centroids possibly randomly

$$X_t = (x_{c_1}, \dots x_{c_{nt}})$$

2. Assign each sample of the dataset to its closest centroid to create clusters

$$C_i = \{x : d(x, Xt) = ||x - x_{C_i}||\}$$

3. Redefine the centroids as barycenters of each cluster

$$x_{c_1} = \frac{1}{card(C_i)} \sum_{x \in C_i} x$$

1. Initialize the centroids possibly randomly

$$X_t = (x_{c_1}, \dots x_{c_{nt}})$$

2. Assign each sample of the dataset to its closest centroid to create clusters

$$C_i = \{x : d(x, Xt) = ||x - x_{C_i}||\}$$

$$x_{c_1} = \frac{1}{card(C_i)} \sum_{x \in C_i} x$$

4. Iterate 2 and 3 until convergence

SoGP training with clustering

- 1. Generate an initial LHS training set
- 2. Use it to train GP 1
- 3. Propagate a large number of samples using GP1
- 4. Use the samples to run a clustering algorithm
- 5. Use the centroids of each cluster as training points of GP2 (alternatively one random sample from each cluster)
- 6. Repeat 2 to 5 for GP3

Numerical tests

1D test

system of two solvers

Results

Centroids do not follow the distribution but present a better coverage

Test case 8D

Kmeans centroids or random perform equally well

Scatter matrices of the training sets

Kmeans avoids the edge of the domain but features alignments

Space Object Breakup Prediction

Uncertainty modeling

22 uncertain parameters :

- Deorbiting boost conditions
- Initial orbit conditions
- Atmosphere uncertainties
- Material characteristics
- Breakup model parameters

Schematic model of upper stage

Results

Very similar results.

- The mapping between intermediate variables and output very linear
- The output distributions do not present peaks where LHS typically accumulates points

Training set comparisons

Propagated LHS

Clustering

Conclusions

- Propagation of LHS training sets is not optimal for intermediate solvers
- We presented a clustering based approach to re-sample training sets
- The methods performs better :
 - When the intermediate variable distribution features high probability regions
 - When the intermediate solver is complex to learn
- The clustering approach with centroids does not seem to have good projection properties in lower dimensional spaces.
- This problem can be alleviated by picking a point at random per cluster

