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 Development of efficient UQ-forward propagation method 
 Data-inferred stochastic modeling when a limited amount of 

data is available for unsteady non-linear systems 
 Numerical simulation of fluids (CFD) for energy application 

(high number of uncertainties, optimization under uncertainty, etc) 
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Some main activities

• Workshop of COMMUNES Team, 
December 3-4 at CWI, 11 
participants.

• Several visits (to INRIA and CWI)
• MS Organization at SIAM UQ 2018 
• Joint Paper at Eccomas Conference 

2018

• International Conference UQOP on 
UQ and Optimization, Paris 2019
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Uncertainty Quantification
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Different types of data
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Monte Carlo sampling
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Smart sampling - independent data
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Smart sampling - k-means
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Gaussian processes (GPs)
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Gaussian processes (GPs)
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Work in progress

▶ GPs have length scales

▶ Rate of variance growth for each variable

▶ Combine the GP length scales with k-means to improve the
prediction
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Context : forward propagation of 
uncertainties in a system of solvers 

Solver

Solver Solver

Solver

Solver

Example : Tsunami simulation, Space object reentry
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How to propagate uncertainties through a system 
of solvers at minimal computational cost ?
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How to propagate uncertainties through a system 
of solvers at minimal computational cost ?

Build a cheap surrogate of the system and use Monte Carlo methods  
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A naive strategy : the black box approach 

Solver

Solver Solver

Solver

Solver

Computationally expensive and not optimal 
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Solver

Solver

Computationally expensive and not optimal 
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A naive strategy : the black box approach 

Solver

Solver Solver

Solver

Solver

Black Box

Computationally expensive and not optimal 
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Our strategy : systems of Gaussian 
Processes 

GP

GP GP

GP

GP
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Predictions with Gaussian processes   

Define a distribution of possible 
functions given observations 

The first two moments can be 
computed analytically

Training evaluations



10

  Mean predictions with SoGPs  

GP
1

GP
2

● Composition of average :

● Average of composition :

The integral cannot be computed analytically and have to be 
approximated (MC,inducing points, Taylor series expansion) 

x
0

x
1 x

2



11

Generating training sets for SoGPs
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GP

GP GP

GP

GP

Initial LHS

LHS training 

LHS are smart techniques for independent variables, are those properties 
propagated through the layers ?
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GP

GP GP

GP

GP

Initial LHS
Propagated LHS

LHS training 

LHS are smart techniques for independent variables, are those properties 
propagated through the layers ?
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Latin Hyper Cube sampling

No shared rows and columns

Taken from Schultze, V.; Schillig, B.; IJsselsteijn, R.; Scholtes, T.; Woetzel, S.; Stolz, R. An Optically Pumped 
Magnetometer Working in the Light-Shift Dispersed Mz Mode. Sensors 2017, 17, 561. 
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Limitation of LHS training

Initial LHS

The good properties of LHS : no alignments, good 
coverage are not assured after propagation 
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Limitation of LHS training

Initial LHS After one layer 

The good properties of LHS : no alignments, good 
coverage are not assured after propagation 

Solver 1
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Limitation of LHS training

Initial LHS After one layer 

The good properties of LHS : no alignments, good 
coverage are not assured after propagation 

After  two layers 

Solver 1 Solver 2
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Use clustering to resample the training 
set at each layer

Local distorsion :

Distorsion :

Kmeans minimizes for X
t 
 the 

distorsion

Lekivetz, R., and Jones, B. (2015) Fast Flexible Space‐Filling Designs for Nonrectangular Regions. Qual. Reliab. Engng. Int., 31: 829–837. doi: 
10.1002/qre.1640. 
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Lloyd algorithm for cluster construction

1. Initialize the centroids
 
 possibly 

randomly
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Lloyd algorithm for cluster construction

1. Initialize the centroids
 
 possibly 

randomly

2. Assign each sample of the dataset to its 
closest centroid to create clusters
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Lloyd algorithm for cluster construction

1. Initialize the centroids
 
 possibly 

randomly

2. Assign each sample of the dataset to its 
closest centroid to create clusters

3. Redefine the centroids as barycenters 
of each cluster 
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Lloyd algorithm for cluster construction

1. Initialize the centroids
 
 possibly 

randomly

2. Assign each sample of the dataset to its 
closest centroid to create clusters

3. Redefine the centroids as barycenters 
of each cluster 

4. Iterate 2 and 3 until convergence  
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SoGP training with clustering

1. Generate an initial LHS training set

2. Use it to train GP 1

3. Propagate a large number of samples 
using GP1

4. Use the samples to run a clustering 
algorithm

5. Use the centroids of each cluster as 
training points of GP2 (alternatively one 
random sample from each cluster)

6. Repeat 2 to 5 for GP3 

GP1 GP2 GP3

LHS clustering



Numerical tests
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 system of two solvers

Solver 1 (f
1
) Solver 2 (f

2
) System output (f

1
o f

2
) 

1D test
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Results
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Centroids do not follow the distribution but present a better coverage
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Polynomial*sin

Polynomial*
arctan

Polynomial

Polynomial*
sin*cos

Kmeans centroids or random perform equally well

Test case 8D
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Lhs Kmeans centroids

Kmeans avoids the edge of the domain but features alignments

Scatter matrices of the training sets
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Space Object Breakup Prediction









Initial conditions, object aerodynamics ?



Initial conditions, object aerodynamics ?

Breakup criteria ?



Initial conditions, object aerodynamics ?

Breakup criteria ?

Debris shape, release conditions  ?
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Uncertainty modeling

22 uncertain parameters :

● Deorbiting boost conditions
● Initial orbit conditions
● Atmosphere uncertainties
● Material characteristics
● Breakup model parameters

7 m

5 m

Schematic model of upper stage
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Results

Very similar results :
● The mapping between intermediate variables and output very linear
● The output distributions do not present peaks where LHS typically accumulates points
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Training set comparisons 

Propagated LHS Clustering
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Conclusions

● Propagation of LHS training sets is not optimal for intermediate solvers

● We presented a clustering based approach to re-sample training sets

● The methods performs better :
● When the intermediate variable distribution features high probability 

regions 
● When the intermediate solver is complex to learn 

● The clustering approach with centroids does not seem to have good 
projection properties in lower dimensional spaces. 

● This problem can be alleviated by picking a point at random per cluster
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