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@ Derivatives pricing, Feynman-Kac Theorem
o Fourier methods

e Basics of COS method:;
o Parameter calibration
o Initial attempts with neural networks.
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@ Derivatives pricing, Feynman-Kac Theorem
o Fourier methods

e Basics of COS method:;
o Parameter calibration
o Initial attempts with neural networks.

@ Joint work with Shuaiqgiang Liu, Sander Bohte, Anastasia Borovykh
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Feynman-Kac Theorem

@ The linear partial differential equation:
dv(t,x)
ot

with operator

+ Lv(t,x) + g(t,x) =0, v(T,x)= h(x),

Lv(t,x) = p(x)Dv(t,x) + 502(X)D2v(t,x).
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Feynman-Kac Theorem

@ The linear partial differential equation:
dv(t,x)
ot

with operator

+ Lv(t,x) + g(t,x) =0, v(T,x)= h(x),

Lv(t,x) = p(x)Dv(t,x) + 502(X)D2v(t,x).

Feynman-Kac theorem:

T
v(t,x)=E {/t g(s, Xs)ds + h(X71)

where X; is the solution to the FSDE

dXs = pu(Xs)ds + o(Xs)dws, X = x.
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Feynman-Kac Theorem (option pricing context)

Given the final condition problem

ov 1 2c20% ov _

m —+ §US@+I’5%_I'V—O,
v(T,S) = h(S57)= given

Then the value, v(t,S), is the unique solution of

v(t,S) = e "TORQ{Y(T, S7)|F:}

with the sum of first derivatives square integrable, and S = S;
satisfies the system of SDEs:

dSt = rStdt + O'Std(d?,

e Similar relations also hold for (multi-D) SDEs and PDEs!
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A pricing approach; European options

v(to, So) = e T EQ{h(ST)| Fo}

Quadrature:

v(to,so):e'<“o>/ h(ST)f (ST, So)dST
R

@ Trans. PDAF, f(S1,50), typically not available, but the characteristic
function, f, often is.
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Motivation Fourier Methods

@ Derive pricing methods that

e are computationally fast
e should work as long as we have a characteristic function,

/f\(u;x) :/ e f(x)dx;
(available for Lévy processes and affine SDE systems).

e The characteristic function of a Lévy process is known by means of the
celebrated Lévy-Khinchine formula.
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Mathematical models for option pricing

@ The Black-Scholes asset model,
dS; = rSedt + /v Sedwi, Si, = So,

@ The Heston model (considering stochastic volatility),
dS; = rS¢dt + /v Sedwi, Sy, = So,
dve = k(U — ve)dt + y\/vedwy, vy, = 10,
dwidw{ = pxpdt,

@ The Bates model (considering price jumps),

5 _ (r — \E[e! - 1]) dt + \/vedwf + (eJ - 1) dXx?,

St
dve = k(U — ve)dt + y\/vedwy, vy, = 10,

dwidwy = px,dt,
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Heston option valuation PDE

o Calibrating is to fit 5 parameters, correlation coefficient p, long term

variance 7, reversion speed r, volatility of volatility -, initial variance

Vo, given market option prices, v/, v;’,”kt.

@ The Heston option pricing PDE with these five parameters,

AL 1 )@jtl 20
ot Pos T T, 952
v 1 2y (?2v
+ vauaSO + 8——rv—0.

where v = v(t,S,v; K, T) is the option price at time t, with suitable
terminal conditions.

@ A European option payoff function: v.(T,57) = (St — K)*
Vo(T,S7) = (K — S7)7, with strike price K.
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Fourier-Cosine Expansions, COS Method (with Fang Fang)

@ The COS method:

e Exponential convergence;

o Greeks (derivatives) are obtained at no additional cost.
@ Based on the availability of a characteristic function.
@ The basic idea:

o Replace the density by its Fourier-cosine series expansion;
e Coefficients have simple relation to characteristic function.
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Series Coefficients of the Density and the ChF

@ Fourier-Cosine expansion of density function on interval [a, b]:

f(x) = Z/ F, cos <n7rz : z> ,
n=0

with x € [a, b] C R and the coefficients defined as

2 b x—a
Fn = b—a,/a f(x) cos <n7rb_a> dx.
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Series Coefficients of the Density and the ChF

@ Fourier-Cosine expansion of density function on interval [a, b]:
> /
x—a
f(x) = Z F, cos <n7rb a> ,
n=0
with x € [a, b] C R and the coefficients defined as

2 b X —a
F, = .
b—a,/a f(x)cos(mrb_a> dx

e F, has direct relation to the ChF, f(u) := Jg F(x)e™ dx
(Jryap F(X¥) = 0),
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Pricing European Options

@ Start from the risk-neutral valuation formula:

v(to, x) = e "ATEQ (T, y)| Fo] = e "A¢ /R v(T,y)f(y,x)dy.

@ Truncate the integration range:

ltox) =2 [ UToy)i(yx)dy +e
[a,b]

@ Replace the density by the COS approximation, and interchange
summation and integration:

N—-1
R _r / -~ nm —inm—2—
0(to,x) = e Af;) %{f(b_a;x)e }H

where the series coefficients of the payoff, 7 ,, are analytic.

Kees Oosterlee ( CWI, Amsterdam )  Pricing and calibration with neural networks CWI-Inria workshop, 18/9/2019



Pricing European Options

o Log-asset prices: x := log(So/K) and y :=log(S7/K).
@ The payoff for European call options reads

v(T,y) = max(K(e¥ —1),0).

@ For a call option, we obtain

2 b

call y—a

H K(e¥ — co k7 d
K b—a/o ( ) S( b— a) Y

_ éK (xx(0, b) — 1, (0, b)) .

@ For a vanilla put, we find

put _
Hk -

b 3 K (—xk(2,0) + ¢k(a,0))
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Results, Heston stochastic volatility PDE

@ GPU computing: Multiple strikes for parallelism, 21 1C's.

Heston model
N 64 128 256
msec 3.850890 7.703350 15.556240
MATLAB max.abs.err | 6.0991e-04 | 2.7601e-08 | < 1014
GPU msec 0.177860 0.209093 0.333786

Table 1: Maximum absolute error when pricing a vector of 21 strikes.

@ Exponential convergence, Error analysis in our papers.

@ Also work with wavelets instead of cosines.
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Implied Volatility

Implied Volatility: ” The wrong number in the wrong formula to get the
right price”. [Rebonato 1999]

Mathematically, we have:
ve(t,S) = BS(o,r, T, K, So)

where BS is monotonically increasing in o (higher volatility corresponds to
higher prices). Now, assume the existence of some inverse function

g-(-) = BS7'()

where
Oimpl = grf(Vm r, T7 K, 50)
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Solving the inverse pricing model function

How to find implied volatility?
The inverse of the BS pricing function BS, g, (), is not known in
closed-form. A root-finding technique is used to solve the equation:

BS(O’,‘mp/, r, T, K,So) - Vénkt =0.

There are many ways to solve this equation, like " Newton-Raphson” or
"Brent” iteration !. Since the options prices can move very quickly, it is
often important to use the most efficient method when calculating implied
volatilities.

"http://en.wikipedia.org/wiki/Brent's_method
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CaNN for option pricing models

@ CaNN consists of two stages, a forward pass and a backward pass.
For example, Heston-CaNN:

@ Forward pass:

P,k V0, %,y | | Heston |COSmethod| Option Brent Implied
Ground Truth: K.7,5 model price volatility

i TP,k V0, V.7 | | Heston |Heston-ANN|  Option | V-ANN[ mplied
Two-ANNSs' Approach: M price volatility

' TP,k v0,V, 7 __,| Heston Heston-IV-ANN Implied
On-ANN's A [ |

Kees Oosterlee ( CWI, Amsterdam )
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“Neural Networks"

Generate the sample data points for input parameters,

Calculate the corresponding output with PDE or MC (option price or
implied volatility), to form a complete set with in- and outputs,

Split the above data set into a training and a test part,
Train the ANN on the training data set,
Evaluate the ANN on the test data set,

Replace the original solver by the trained ANN in applications.
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4.1 Implied volatility

@ A gradient squashing technique is used to deal with an gradient in the
volatilities wrt. option prices (see [Shuaigiang et al, 2018]).

e Obtain a time value by subtracting a intrinsic value,

V =V} —max(S; — Ke™'",0)

o Log-scale the intrinsic value, log (V//K)

MSE | MAE | FR°
Input: S, K, 7, r, V/K
Output: o 6.36 -10 * | 1.24 -10% | 0.97510
almond Input: S, K,7, r, log(V/K)
Output: o* 1.55-107% | 9.73 -10~° | 0.9999998
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ANN-based model calibration

o Calculating IV is the most frequently executed numerical task in
practice. The paper [S. Liu et al., 2019] developed a neural network
solver to learn the 1D inversion of Black-Scholes.

Iterative algorithm | GPU (sec) | CPU (sec) | Robust
Newton-Raphson 19.68 23.06 No
Brent 52.08 60.67 Yes
Bi-section 337.94 390.91 Yes
IV-ANN 0.20 1.90 Yes

Table 2:  The total time over 20,000 different cases. CPU (Intel i5) and GPU

(Tesla P100). Robustness means no initial value is required.

Kees Oosterlee ( CWI, Amsterdam )  Pricing and calibration with neural networks CWI-Inria workshop, 18/9/2019 18 /29



Asset model calibration

@ The difference between model value @ and market value Q*,
IV -
J(©) = wil|Q(r:, mi; ©) — Q*(ri, mi)|| + |6},
i=1

where @ could be either an option price or implied volatility (1V),
with moneyness m = S/K and time to maturity 7 = T — t, N the
number of samples, \ a regularization factor.

@ The objective function,

argmin J(©),
OcR"

with n the number of parameters to calibrate. For Heston,
© = [p, K,v, 7, 1]; for Bates, © := [p, k,v, 7, v, Ay, fg, 0];
for Black-Scholes, © := [o];
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Asset model calibration

@ The inverse problem is computationally intensive, and the objective
functions are often non-convex and non-linear, especially for
high-dimensional model calibration.

@ A fast and generic calibration framework should (at least) comprise
three components, an efficient solver, a global optimizer and a parallel
computing environment.

volatility of volatility 0 o ed of .
speed of mean reversion

Figure 1: Multiple minima when calibrating Heston [Gilli and Schumann, 2011].
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Calibration neural networks

@ Training/prediction phases learn the numerical solvers, while the
calibration phase inverts the trained ANN.

@ The three phases are viewed as a whole, and the difference is just to
change the learnable units.
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CaNN for option pricing models

@ Backward pass:

P K, V0, V.7
Forward pass: —>| Heston-CaNN |—> Cimp

.
Backward pass: Pk Vo, V. ¥ ‘ Heston-CaNN }1—%
K,7,8,r
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The forward pass

@ The training data set with |V being the target quantity:

ANN Parameters Value Range Method
Moneyness, m = Sp/K [0.6, 1.4] LHS
Time to maturity, 7 [0.05, 3.0](year) | LHS
Risk free rate, r [0.0%, 5%] LHS
Correlation, p [-0.90, 0.0] LHS
ANN Input Reversion speed, (0, 3.0] LHS
Volatility of volatility, (0.01, 0.8] LHS
Long average variance, 7 (0.01, 0.5] LHS
Initial variance, g (0.05, 0.5] LHS
- European put price, v (0,0.6) COS
ANN Output implied volatility, o (0,0.76) Brent

Table 3: LHs=Latin Hypercube Sampling, COS [Fang and Oosterlee, 2008] to solve Heston, and Brent for implied vol.

@ The evaluation result suggests no over-fitting.

Heston-CaNN MSE MAE MAPE R?
Training | 8.07 x 10°° | 2.15 x 10 % | 5.83 x 10 * | 0.9999936
Testing 1.23x 1077 | 2.40 x 107 | 7.20 x 10~* | 0.9999903

Kees Oosterlee ( CWI, Amsterdam )
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The backward pass of the CaNN

e Calibration on 35 samples (7 strike prices and 5 maturity time).
@ Heston-CaNN averaged performance over 15,625 test cases.

Deviation from true ©* Averaged Cost/Error

vl — 5| 439 x107* | CPU time (seconds) 0.85
|7t —7%|  4.54 x 107* | GPU time (seconds) 0.48
~T—~*  3.28 x 1072 | Function evaluations 193,249
lp" —p*| 4.84 x 1072 | Data points 35
kT —Kk*| 4.88x 1072 | Calibration error J(©) 2.52 x 107°

parameter | lower upper points | CaNN search space
P -0.75 -0.25 5 [-0.85,-0.05]
1% 0.15 0.35 5 [0.05, 0.45]
5 0.3 0.5 5 [0.05, 0.75]
Vo 0.15 0.35 5 [0.05, 0.45]
K 05 1.0 5 [0.1, 2.0]
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@ The problem of financial model calibration is converted into a
machine learning problem.

@ We need robust components (many different parameter sets)!

@ The robust and generic framework CaNN rapidly reaches a global
solution with ANN's inherent parallelism.

@ One neural network solves two problems, e.g., the forwards pass for a
numerical solution of models, the backward pass for model calibration
and sensitivity analysis. i

@ Training is highly efficient with the COS method
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When we don't know the characteristic function 17

First discretize!

We can write the Euler, Milstein, and 2.0 weak Taylor discretization
schemes in the following general form

Xn%+1 = x + m(x)At + s(x)Awmt1 + /<;(><)(Acum+1)27 Xn% = x.

For the Euler scheme:

m(x) = u(x), s(x)
For the Milstein scheme:
m(x) = pu(x) — 2oox(x), s(x) =o(x), K(x)=Fo0(x).
For the order 2.0 weak Taylor scheme:
m(x) = pu(x) — 3o0x(x) + 3 (ppx(x) + Spxo?(x)) At,
s(x) = o(x) + 3 (uxo(x) + pox(x) + 2owa?(x)) At,

K(x) = Soox(x).
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Characteristic function

2
X2 | = x+ m(x)At + k(x <Awm+1 i))> i;(())
ix+m()At—i;((X)) K(x)A (m+1+F)

52 X
with A(x) := 7 (i)it Unt1 ~N(0,1). (Unt1+ /A ~ x2(A(x))
non-central chi-squared distributed.

The characteristic function of XHA,H, given XA = x

fXAH(U|X,§ =x)=E {exp (ian%H) ’XA = x}

u 52 X
= exp (iux + ium(x)At — M) (1 — 2iur(x)At) Y2,
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When we do not know the ChF II? “Taylor expansion”

@ In Pascucci's group (U. Bologna), the adjoint expansion method for
the approximation of the ChF in local Lévy models was developed;
@ Taylor expansion-based formulas for the ChF possess a structure that
allows for the FFT in COS for early-exercise options.
= An efficient second-order accurate Bermudan COS pricing formula
results.

e J. Math. Anal. Applic. paper with A. Borovykh, A. Pascucci:
“Pricing options under local Lévy models with default”;
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