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Derivatives pricing, Feynman-Kac Theorem

Fourier methods

Basics of COS method;
Parameter calibration
Initial attempts with neural networks.
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Feynman-Kac Theorem

The linear partial differential equation:

∂v(t, x)

∂t
+ Lv(t, x) + g(t, x) = 0, v(T , x) = h(x),

with operator

Lv(t, x) = µ(x)Dv(t, x) +
1

2
σ2(x)D2v(t, x).

Feynman-Kac theorem:

v(t, x) = E
[∫ T

t
g(s,Xs)ds + h(XT )

]
,

where Xs is the solution to the FSDE

dXs = µ(Xs)ds + σ(Xs)dωs , Xt = x .
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Feynman-Kac Theorem (option pricing context)

Given the final condition problem ∂v
∂t + 1

2σ
2S2 ∂2v

∂S2 + rS ∂v
∂S − rv = 0,

v(T , S) = h(ST ) = given

Then the value, v(t, S), is the unique solution of

v(t,S) = e−r(T−t)EQ{v(T , ST )|Ft}

with the sum of first derivatives square integrable, and S = St
satisfies the system of SDEs:

dSt = rStdt + σStdω
Q
t ,

Similar relations also hold for (multi-D) SDEs and PDEs!
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A pricing approach; European options

v(t0, S0) = e−r(T−t0)EQ{h(ST )|F0}

Quadrature:

v(t0, S0) = e−r(T−t0)

∫
R
h(ST )f (ST , S0)dST

Trans. PDF, f (ST ,S0), typically not available, but the characteristic
function, f̂ , often is.
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Motivation Fourier Methods

Derive pricing methods that

are computationally fast
should work as long as we have a characteristic function,

f̂ (u; x) =

∫ ∞
−∞

e iux f (x)dx ;

(available for Lévy processes and affine SDE systems).
The characteristic function of a Lévy process is known by means of the
celebrated Lévy-Khinchine formula.
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Mathematical models for option pricing

The Black-Scholes asset model,

dSt = rStdt +
√
νtStdω

s
t , St0 = S0,

The Heston model (considering stochastic volatility),

dSt = rStdt +
√
νtStdω

s
t , St0 = S0,

dνt = κ(ν̄ − νt)dt + γ
√
νtdω

ν
t , νt0 = ν0,

dωs
tdω

ν
t = ρx ,νdt,

The Bates model (considering price jumps),

dSt
St

=
(
r − λJE[eJ − 1]

)
dt +

√
νtdω

x
t +

(
eJ − 1

)
dXPt ,

dνt = κ(ν̄ − νt)dt + γ
√
νtdω

ν
t , νt0 = ν0,

dωs
tdω

ν
t = ρx ,νdt,

Kees Oosterlee ( CWI, Amsterdam ) Pricing and calibration with neural networks in financeCWI-Inria workshop, 18/9/2019 6 / 29



Heston option valuation PDE

Calibrating is to fit 5 parameters, correlation coefficient ρ, long term
variance ν̄, reversion speed κ, volatility of volatility γ, initial variance
ν0, given market option prices, vmkt

c , vmkt
p .

The Heston option pricing PDE with these five parameters,

∂v

∂t
+ rS

∂v

∂S
+ κ(ν̄ − ν)

∂v

∂ν
+

1

2
νS2 ∂

2v

∂S2

+ ργSν
∂2v

∂S∂ν
+

1

2
γ2ν

∂2v

∂ν2
− rv = 0.

where v = v(t, S , ν;K ,T ) is the option price at time t, with suitable
terminal conditions.

A European option payoff function: vc(T , ST ) = (ST − K )+,
vp(T , ST ) = (K − ST )+, with strike price K.
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Fourier-Cosine Expansions, COS Method (with Fang Fang)

The COS method:

Exponential convergence;
Greeks (derivatives) are obtained at no additional cost.

Based on the availability of a characteristic function.

The basic idea:

Replace the density by its Fourier-cosine series expansion;
Coefficients have simple relation to characteristic function.
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Series Coefficients of the Density and the ChF

Fourier-Cosine expansion of density function on interval [a, b]:

f (x) =

∞∑′

n=0

Fn cos

(
nπ

x − a

b − a

)
,

with x ∈ [a, b] ⊂ R and the coefficients defined as

Fn :=
2

b − a

∫ b

a
f (x) cos

(
nπ

x − a

b − a

)
dx .

Fn has direct relation to the ChF, f̂ (u) :=
∫
R f (x)e iuxdx

(
∫
R\[a,b] f (x) ≈ 0),

Fn ≈ Pn :=
2

b − a

∫
R
f (x) cos

(
nπ

x − a

b − a

)
dx

=
2

b − a
<
{
f̂

(
nπ

b − a

)
exp

(
−i naπ

b − a

)}
.
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Pricing European Options

Start from the risk-neutral valuation formula:

v(t0, x) = e−r∆tEQ [v(T , y)|F0] = e−r∆t

∫
R
v(T , y)f (y , x)dy .

Truncate the integration range:

v(t0, x) = e−r∆t

∫
[a,b]

v(T , y)f (y , x)dy + ε.

Replace the density by the COS approximation, and interchange
summation and integration:

v̂(t0, x) = e−r∆t

N−1∑′

n=0

<
{
f̂

(
nπ

b − a
; x

)
e−inπ

a
b−a

}
Hn,

where the series coefficients of the payoff, Hn, are analytic.
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Pricing European Options

Log-asset prices: x := log(S0/K ) and y := log(ST/K ).

The payoff for European call options reads

v(T , y) ≡ max (K (ey − 1), 0).

For a call option, we obtain

Hcall
k =

2

b − a

∫ b

0
K (ey − 1) cos

(
kπ

y − a

b − a

)
dy

=
2

b − a
K (χk(0, b)− ψk(0, b)) .

For a vanilla put, we find

Hput
k =

2

b − a
K (−χk(a, 0) + ψk(a, 0)) .
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Results, Heston stochastic volatility PDE

GPU computing: Multiple strikes for parallelism, 21 IC’s.

Heston model

N 64 128 256

MATLAB
msec 3.850890 7.703350 15.556240

max.abs.err 6.0991e-04 2.7601e-08 < 10−14

GPU msec 0.177860 0.209093 0.333786

Table 1: Maximum absolute error when pricing a vector of 21 strikes.

Exponential convergence, Error analysis in our papers.

Also work with wavelets instead of cosines.
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Implied Volatility

Implied Volatility: ”The wrong number in the wrong formula to get the
right price”. [Rebonato 1999]

Mathematically, we have:

vc(t,S) = BS(σ, r ,T ,K , S0)

where BS is monotonically increasing in σ (higher volatility corresponds to
higher prices). Now, assume the existence of some inverse function

gσ(·) = BS−1(·)

where
σimpl := gσ(vc , r ,T ,K ,S0).
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Solving the inverse pricing model function

How to find implied volatility?
The inverse of the BS pricing function BS , gσ(·), is not known in
closed-form. A root-finding technique is used to solve the equation:

BS(σimpl , r ,T ,K ,S0)− vmkt
c = 0.

There are many ways to solve this equation, like ”Newton-Raphson” or
”Brent” iteration 1. Since the options prices can move very quickly, it is
often important to use the most efficient method when calculating implied
volatilities.

1http://en.wikipedia.org/wiki/Brent’s method
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CaNN for option pricing models

CaNN consists of two stages, a forward pass and a backward pass.
For example, Heston-CaNN:

Forward pass:
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“Neural Networks”

– Generate the sample data points for input parameters,

– Calculate the corresponding output with PDE or MC (option price or
implied volatility), to form a complete set with in- and outputs,

– Split the above data set into a training and a test part,

– Train the ANN on the training data set,

– Evaluate the ANN on the test data set,

– Replace the original solver by the trained ANN in applications.
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4.1 Implied volatility

A gradient squashing technique is used to deal with an gradient in the
volatilities wrt. option prices (see [Shuaiqiang et al, 2018]).

Obtain a time value by subtracting a intrinsic value,

V̂ = V ∗t −max(St − Ke−rτ , 0)

Log-scale the intrinsic value, log (V̂ /K )

MSE MAE R2

Input: S , K , τ , r , V /K
Output: σ∗ 6.36 ·10−4 1.24 ·10−2 0.97510

almond Input: S , K ,τ , r , log(Ṽ /K )
Output: σ∗ 1.55 ·10−8 9.73 ·10−5 0.9999998
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ANN-based model calibration

Calculating IV is the most frequently executed numerical task in
practice. The paper [S. Liu et al., 2019] developed a neural network
solver to learn the 1D inversion of Black-Scholes.

Iterative algorithm GPU (sec) CPU (sec) Robust

Newton-Raphson 19.68 23.06 No
Brent 52.08 60.67 Yes

Bi-section 337.94 390.91 Yes

IV-ANN 0.20 1.90 Yes

Table 2: The total time over 20,000 different cases. CPU (Intel i5) and GPU

(Tesla P100). Robustness means no initial value is required.
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Asset model calibration

The difference between model value Q and market value Q∗,

J(Θ) :=
N∑
i=1

wi ||Q(τi ,mi ; Θ)− Q∗(τi ,mi )||+ λ̄||Θ||,

where Q could be either an option price or implied volatility (IV),
with moneyness m = S/K and time to maturity τ = T − t, N the
number of samples, λ̄ a regularization factor.

The objective function,
argmin

Θ∈Rn
J(Θ),

with n the number of parameters to calibrate. For Heston,
Θ := [ρ, κ, γ, ν̄, ν0]; for Bates, Θ := [ρ, κ, γ, ν̄, ν0, λJ , µJ , σJ ];
for Black-Scholes, Θ := [σ];
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Asset model calibration

The inverse problem is computationally intensive, and the objective
functions are often non-convex and non-linear, especially for
high-dimensional model calibration.
A fast and generic calibration framework should (at least) comprise
three components, an efficient solver, a global optimizer and a parallel
computing environment.

Figure 1: Multiple minima when calibrating Heston [Gilli and Schumann, 2011].
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Calibration neural networks

Training/prediction phases learn the numerical solvers, while the
calibration phase inverts the trained ANN.

The three phases are viewed as a whole, and the difference is just to
change the learnable units.

[Training phase (offline)]

[Calibration phase (online) ]
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CaNN for option pricing models

Backward pass:
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The forward pass

The training data set with IV being the target quantity:

ANN Parameters Value Range Method

ANN Input

Moneyness, m = S0/K [0.6, 1.4] LHS
Time to maturity, τ [0.05, 3.0](year) LHS

Risk free rate, r [0.0%, 5%] LHS
Correlation, ρ [-0.90, 0.0] LHS

Reversion speed, κ (0, 3.0] LHS
Volatility of volatility, γ (0.01, 0.8] LHS

Long average variance, ν̄ (0.01, 0.5] LHS
Initial variance, ν0 (0.05, 0.5] LHS

- European put price, v (0, 0.6) COS
ANN Output implied volatility, σ (0, 0.76) Brent

Table 3: LHS=Latin Hypercube Sampling, COS [Fang and Oosterlee, 2008] to solve Heston, and Brent for implied vol.

The evaluation result suggests no over-fitting.

Heston-CaNN MSE MAE MAPE R2

Training 8.07× 10−8 2.15× 10−4 5.83× 10−4 0.9999936
Testing 1.23× 10−7 2.40× 10−4 7.20× 10−4 0.9999903

Kees Oosterlee ( CWI, Amsterdam ) Pricing and calibration with neural networks in financeCWI-Inria workshop, 18/9/2019 23 / 29



The backward pass of the CaNN

Calibration on 35 samples (7 strike prices and 5 maturity time).

Heston-CaNN averaged performance over 15,625 test cases.

Deviation from true Θ∗ Averaged Cost/Error

|ν†0 − ν
∗
0 | 4.39× 10−4 CPU time (seconds) 0.85

|ν̄† − ν̄∗| 4.54× 10−3 GPU time (seconds) 0.48

|γ† − γ∗| 3.28× 10−2 Function evaluations 193, 249

|ρ† − ρ∗| 4.84× 10−2 Data points 35

|κ† − κ∗| 4.88× 10−2 Calibration error J(Θ) 2.52× 10−6

parameter lower upper points CaNN search space

ρ -0.75 -0.25 5 [-0.85,-0.05]
ν̄ 0.15 0.35 5 [0.05, 0.45]
γ 0.3 0.5 5 [0.05, 0.75]

ν0 0.15 0.35 5 [0.05, 0.45]
κ 0.5 1.0 5 [0.1, 2.0]
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Summary

The problem of financial model calibration is converted into a
machine learning problem.

We need robust components (many different parameter sets)!

The robust and generic framework CaNN rapidly reaches a global
solution with ANN’s inherent parallelism.

One neural network solves two problems, e.g., the forwards pass for a
numerical solution of models, the backward pass for model calibration
and sensitivity analysis. i

Training is highly efficient with the COS method
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1 S. Liu, C.W. Oosterlee, S.M. Bohté. (2019). Pricing options and computing
implied volatilities using neural networks, Risks, 7(1), 16.

2 S. Liu, A. Borovykh, L.A. Grzelak, C.W. Oosterlee (2019) A neural network-based
framework for financial model calibration, arXiv:1904.10523.

3 Justin S. et al.(2018). A deep learning algorithm for solving partial differential
equations, Journal of Computational Physics, Volume 375.

4 Gilli M., Schumann E. (2011). Calibrating Option Pricing Models with Heuristics.
Natural Computing in Computational Finance, vol 380. Springer, Berlin,
Heidelberg.

5 Jarmo Ilonen et al., (2003). Differential Evolution Training Algorithm for
Feed-Forward Neural Networks, J. Neural Processing Letters, Volume 17.

6 Cybenko, G. (1989). Approximations by superpositions of sigmoidal functions,
Mathematics of Control, Signals and Systems, Volume 2, Issue 4.

Kees Oosterlee ( CWI, Amsterdam ) Pricing and calibration with neural networks in financeCWI-Inria workshop, 18/9/2019 26 / 29



When we don’t know the characteristic function I?

First discretize!
We can write the Euler, Milstein, and 2.0 weak Taylor discretization
schemes in the following general form

X∆
m+1 = x + m(x)∆t + s(x)∆ωm+1 + κ(x)(∆ωm+1)2, X∆

m = x .

For the Euler scheme:

m(x) = µ(x), s(x) = σ(x), κ(x) = 0.

For the Milstein scheme:

m(x) = µ(x)− 1
2σσx(x), s(x) = σ(x), κ(x) = 1

2σσx(x).

For the order 2.0 weak Taylor scheme:

m(x) = µ(x)− 1
2σσx(x) + 1

2

(
µµx(x) + 1

2µxxσ
2(x)

)
∆t,

s(x) = σ(x) + 1
2

(
µxσ(x) + µσx(x) + 1

2σxxσ
2(x)

)
∆t,

κ(x) = 1
2σσx(x).

Kees Oosterlee ( CWI, Amsterdam ) Pricing and calibration with neural networks in financeCWI-Inria workshop, 18/9/2019 27 / 29



Characteristic function

X∆
m+1 = x + m(x)∆t + κ(x)

(
∆ωm+1 +

1

2

s(x)

κ(x)

)2

− 1

4

s2(x)

κ(x)

d
= x + m(x)∆t − 1

4

s2(x)

κ(x)
+ κ(x)∆t

(
Um+1 +

√
λ(x)

)2
,

with λ(x) := 1
4

s2(x)
κ2(x)∆t

, Um+1 ∼ N (0, 1). (Um+1 +
√
λ(x))2 ∼ χ′21 (λ(x))

non-central chi-squared distributed.

The characteristic function of X∆
m+1, given X∆

m = x

f̂X∆
m+1

(u|X∆
m = x) = E

[
exp

(
iuX∆

m+1

) ∣∣∣X∆
m = x

]
= exp

(
iux + ium(x)∆t −

1
2u

2s2(x)∆t

1−2iuκ(x)∆t

)
(1− 2iuκ(x)∆t)−1/2 .
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When we do not know the ChF II? “Taylor expansion”

In Pascucci’s group (U. Bologna), the adjoint expansion method for
the approximation of the ChF in local Lévy models was developed;

Taylor expansion-based formulas for the ChF possess a structure that
allows for the FFT in COS for early-exercise options.

⇒ An efficient second-order accurate Bermudan COS pricing formula
results.

J. Math. Anal. Applic. paper with A. Borovykh, A. Pascucci:
“Pricing options under local Lévy models with default”;
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