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Motivation

Nowadays,
- volume and velocity of data flows are sharply increasing.

Ý need of online methods to treat and adapt to data on the fly
- very large datasets are better handled by non-parametric methods
- data is getting more complicated and simple stochastic assumptions
such as i.i.d. data are often not satisfied
Ý need of robust adversarial guarantees

Goal: combine these different aspects due to large scale and arbitrary data
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Online learning

Online learning: subfield of machine learning where some learner
sequentially interacts with an environment and tries to learn and adapt on
the fly to the observed data as one goes along.

At each iteration t ≥ 1,
- the learner receives some input xt ∈ X ;
- the learner makes a prediction ŷt ∈ R
- the environment reveals the output yt ∈ R.

Remember the Tim’s talk yesterday with football prediction

France winner of the football world cup 2018
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Online learning

Online learning: subfield of machine learning where some learner
sequentially interacts with an environment and tries to learn and adapt on
the fly to the observed data as one goes along.

At each iteration t ≥ 1,
- the learner receives some input xt ∈ X ;
- the learner makes a prediction ŷt ∈ R
- the environment reveals the output yt ∈ R.

Learner’s goal: minimize his cumulative regret

Regretn(f) :=
n∑
t=1

(yt − ŷt)2 −
n∑
t=1

(
yt − f(xt)

)2
over all functions f in a space of functions H. ← infinite dimensional

parameter space
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the fly to the observed data as one goes along.

At each iteration t ≥ 1,
- the learner receives some input xt ∈ X ;
- the learner makes a prediction ŷt ∈ R
- the environment reveals the output yt ∈ R.

Learner’s goal: minimize his cumulative regret

Regretn(f) :=
n∑
t=1

(yt − ŷt)2 −
n∑
t=1

(
yt − f(xt)

)2
over all functions f in a space of functions H. ← infinite dimensional

parameter space

The inputs xt and the outputs yt are sequentially chosen by the environment
and can be arbitrary.
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Example of application

Prediction of the electricity consumption.

C
on

so
.

Mar Mer Jeu Ven Sam Dim

?

The latter is stochastic but non-i.i.d. nor stationary.

Each day,
- the learner receives some features xt (forecast of the temperature,
cloud coverage, calendar information, …)

- makes a prediction of the electricity load of the following day.

Potentially large scale with new smart-meters that measure the individual
consumptions of each household.

4



What class of functions H do we consider?

Goal: minimize the cumulative regret

Regretn(f) :=
n∑
t=1

(yt − ŷt)2 −
n∑
t=1

(
yt − f(xt)

)2
over all functions f in a space of functions H.

Choice of H: approximation-estimation trade-off.

Complexity of F

Error

Training error

Expected error

OverfittingUnderfitting

Best choice
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Reproducing kernel hilbert spaces (RKHS)

We consider Reproducing Kernel
Hilbert Space (RKHS) associated
with a kernel function

k(x, x′) = ϕ(x) · ϕ(x′).

Kernel methods embed finite di-
mensional data into infinite di-
mensional feature spaces.

Input space

Low dimension High dimension

Feature space (RKHS)

Non-linear functions          Linear processing 

Pros of RKHS:
- Many function spaces can be represented as RKHS: polynomials of
arbitrary degree, band-limited functions, analytic functions with given
decay at infinity, Sobolev spaces,…

- The kernel representation makes the computation “feasible”.
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Intrinsic complexity of the RKHS: the effective dimension

Although the feature space can be very large, the complexity of the
RKHS depends on the decay of eigenvalues in the principle component
analysis of the kernel matrix.

Effective
dimension

≈ How many components are needed to
approximate Knn at scale λ?

The complexity of the RKHS is measured by its effective dimension: for all
scale λ > 0

deff(λ) := Tr(Knn
(
Knn + λIn)−1)

where Knn :=
[
k(xi, xj)

]
1≤i,j≤n

∈ Rn×n denotes the kernel matrix at time n.
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Example of upper-bounds on the effective dimension

In the worst case, we have

deff(λ) ≲
n
λ
.

The Gaussian Kernel satisfies

deff(λ) ≲
(
log

n
λ

)d
The Sobolev space Wβ

2 (Rd) (functions from Rd → R whose
derivatives up to order β are in L2(Rd)) with β > d/2 is a RKHS and

deff(λ) ≲
(n
λ

) d
2β
.

Capacity condition

deff(λ) ≲
(n
λ

)γ

, 0 ≤ γ ≤ 1, λ > 0
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Algorithm based on non-linear ridge forecaster of [1] [2]

Nonlinear Ridge Forecaster (Probably an instance of Exponential Weights)

Regularization parameter: λ > 0. At round t ≥ 1, forecast function

f̂t ∈ arg min
f∈H

{ t−1∑
s=1

(
ys − f(xs)

)2
+ λ∥f∥2 + f(xt)2

}
.

Optimal regret (up to log factors)

Regretn(f) ≲ λ∥f∥2 + deff(λ)

[1]Azoury, K. S. and Warmuth, M. K. 2001.
[2]Vovk, V. 2001.
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Algorithm based on non-linear ridge forecaster of [1] [2]

Nonlinear Ridge Forecaster (Probably an instance of Exponential Weights)

Regularization parameter: λ > 0. At round t ≥ 1, forecast function

f̂t ∈ arg min
f∈H

{ t−1∑
s=1

(
ys − f(xs)

)2
+ λ∥f∥2 + f(xt)2

}
.

Optimal regret (up to log factors)

Regretn(f) ≲ λ∥f∥2 + deff(λ)

Closed form solution by solving a t× t linear system:

f̂t(x) =
t∑
i=1

k(x, xi)ci with (Ktt + λI)−1c = y1:t

[1]Azoury, K. S. and Warmuth, M. K. 2001.
[2]Vovk, V. 2001.
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Better complexity?

The issue of the previous algorithm is that it needs to compute and inverse
the Kernel matrix:

Knn =
[
k(xi, xj)

]
1≤i,j≤n

of size n× n.

Per-round (time and space) complexity:
O(n2) ← Prohibitive for large datasets.

Can we improve it?

Hopefully, the eigenvalues decrease rapidly and Knn could be
approximated with deff(λ) principal components.
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Nyström [3]

The solution of the Nonlinear Ridge forecaster equals

f̂ Ridget (x) =
t∑
i=1

k(xi, x)ci with (Ktt + λI)−1c = y1:t

It belongs to Span
(
k(x1, ·), . . . , k(xt, ·)

)
.

Nyström + Nonlinear Ridge forecaster
1. Sequentially update a dictionary It ⊂ {x1, . . . , xt} of size mt ≪ t
2. Solve the problem on Ĥt = Span

{
k(x, ·), x ∈ It

}
.

f̂t ∈ arg min
f∈H̃t

{ t−1∑
s=1

(
ys − f(xs)

)2
+ λ∥f∥2 + f(xt)2

}
.

That is keep only the m columns in It before solving the linear system:

f̂t(x) =
∑
i:xi∈It

k(xi, x)ci with (K̂⊤tmtKtmt + λKmtmt)
−1c = K⊤tmty1:t

[3]Smola, A., Schölkopf, B., and Langley, P. 2000. 11



Complexity

To compute our prediction we need to solve the linear system:

f̂t(x) =
∑
i:xi∈It

k(xi, x)ci with (K̂⊤tmtKtmt + λKmtmt)
−1c = K⊤tmty1:t

Per-round space and time complexity:���O(t2) → O(m2
t )

How to build the dictionary and what size should it be?
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How to build the dictionary?

The inputs xt might be included into the dictionary independently
and uniformly at random.

Calandriello, Lazaric, and Valko 2017 propose the KORS(µ) algorithm
that evaluate the importance of including xt to obtain an accurate
approximation based on the leverage score.

Theorem
Let µ, λ > 0. The final dictionary is of size m = deff(µ) and

Regretn(f) ≲ λ∥f∥2 + deff(λ) +
mnµ
λ

.

The algorithm runs in O(m2) time per-iteration.
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Regret for Gaussian kernel

For parameters µ, λ > 0,

Regretn(f) ≲ λ∥f∥2 + deff(λ) +
mnµ
λ

Corollary (Gaussian kernel)
For the Gaussian kernel, for the choices λ = 1 and µ = n−2, we get

Regretn(f) ≲ ∥f∥
2 +

(
log n

)d+1
.

with a per-round complexity O(log(n)2d).

This is known to be optimal for the Gaussian kernel.

14



Explicit rate under capacity condition

For parameters µ, λ > 0,

Regretn(f) ≲ λ∥f∥2 + deff(λ) +
mnµ
λ

Corollary (Capacity condition)
Let n ≥ 1 and m ≥ 1, γ > 0. Assume that deff(λ

′) ≤ (n/λ′)γ for all λ′ > 0.
Then, with µ = nm−1/γ the dictionary is of size |In| ≲ m then w.h.p.

Rn ≲
{

n
γ
1+γ if m ≥ n

2γ
1−γ2 for λ = n

γ
1+γ

nm
1
2−

1
2γ otherwise for λ = nm

1
2−

1
2γ

.

The per-round space and time complexity of the algorithm is O(m2) per
iteration.

The algorithm recovers the optimal regret O(n
γ
1+γ ) with a dictionary of size

m≪ n for γ < 1/2.

For smaller dictionaries, there is a computational-regret trade-off.
15



Regret rate according to the dictionary size (deff(λ) ≤ (n/λ)0.25)
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Comparison of the theoretical regret rate Regretn = n□ according to
the size of the dictionary n□ when deff(λ) ≤ (n/λ)γ with γ = 0.25.
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Regret rate according to the dictionary size (deff(λ) ≤ (n/λ)0.5)
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Beforehand known features

Sequence of feature vectors xt is given in advance to the learner
while only the outputs yt are sequentially revealed.

The dictionary |In| may be computed beforehand.

Theorem
Using the parameter µ = nm−1/γ , the non-linear Ridge forecaster
with dictionary |In| achieves w.h.p

Rn ≲
{
n

γ
1+γ if m ≥ n

2γ
1+γ for λ = n

γ
1+γ

nm− 1
2γ otherwise for λ = nm− 1

2γ
.

Furthermore, w.h.p. the dictionary is of size |In| ≲ m leading to a
per-round space and time complexity O(m2).
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Regret rate according to the dictionary size (deff(λ) ≤ (n/λ)0.25)
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Experiment on classification dataset

Classification dataset cod-rna: Detection of non-coding RNAs

n = 2.7 · 105,d = 8

Average loss Running time
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Experiment on a classification dataset

Classification dataset SUSY: distinguish between a signal process which
produces supersymmetric particles and a background process which does
not.

n = 6 · 106,d = 22

Average loss Running time
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Summary

Online learning methods are important for very large datasets n≫ 1.

We proposed a method to perform Kernel Online Learning more
efficiently while keeping optimal regret.

Better projections can be obtained in specific cases (Gaussian
kernel)
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