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Definitions and Motivation

An alphabet Σ is a finite set whose elements are called letters.
A string W is a sequence of letters over Σ.

Σ = {a, b} W = aabaaaababbbaab

W may represent location history, search queries, DNA sequence, etc.

W fuels up location-based, web analytics, or bioinformatics apps.

Dissemination may expose patterns modeling confidential knowledge.

We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.
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The Model: Combinatorial String Dissemination

Combinatorial String Dissemination (CSD) model

Given constraints and properties, determine the edit operations to be
applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Given W and a set of length-k sensitive patterns construct X :

C1 No length-k sensitive pattern occurs in X .
P1 The order of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on sequentiality.

P2 The frequency of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on frequency.
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Our Results

TFS (Total order, Frequency, Sanitization) problem

Construct the shortest string X that satisfies P1, P2, and C1.

Example. Let Σ = {a, b}, W = aabaaaababbbaab, k = 4, and the set of
sensitive patterns be {baaa,aaaa,bbaa}.

X = aabaa#aaababbba#baab
where # is a letter not in Σ.

Theorem

The length of X is in Θ(k |W |). TFS-ALGO solves TFS in the optimal
O(k |W |) time.
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Our Results

Could we generally hope for a shorter string? Relax the total order (P1).
Employ Π1: order of length-k patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a shortest string Y that satisfies Π1, P2, and C1.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

Theorem

PFS-ALGO solves PFS in the optimal O(|W |+ |Y |) time.
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Our Results

Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.
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String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.
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String Sanitization: PFS-ALGO

If blocks in-between #s overlap by k − 1 letters, then we can further
apply R2 while still satisfying Π1.

Looks bad: Shortest Common Superstring (SCS) is NP-complete.

Observation: Overlaps allowed are of fixed length k − 1.

Idea:

Assign ids to blocks’ prefixes and suffixes of length k − 1.
Ignore the middle part of the blocks (it plays no role).
Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

Result: Linear time!
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String Sanitization: MSCR-ALGO

Create an instance of MCK from an instance of MCSR:
Compute the set of all candidate ghost patterns.

Assign a cost to each candidate ghost.

Assign a weight to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995].
Translate the solution back to MCSR.
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Experiments: The Datasets

We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO,
referred to as TPM, in terms of data utility and efficiency.

Four real datasets (OLD, TRU, MSN, DNA) and a synthetic (SYN).

Dataset Data domain Length Alphabet # sensitive # sensitive Pattern
n size |Σ| patterns positions |S| length k

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4)
TRU Transportation 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4)
MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4)
DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13)
SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6)

We compared TPM against a greedy baseline, referred to as BA.

BA replaces #s greedily from left to right based on letter frequencies.
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Experiments: Frequency Distortion

∑
U(FreqW (U)− FreqZ (U))2, where U is a non-sensitive pattern.
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Experiments: Lost and Ghost Patterns

τ -losts are patterns with frequency > τ in W and ≤ τ in Z .
τ -ghosts are patterns with frequency < τ in W and ≥ τ in Z .
We used τ = 20.
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Experiments: Output Size

Length of X and Y (output of TFS-ALGO and PFS-ALGO, resp.).
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On the top of each pair of bars we plot |X | − |Y |.
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Experiments: Speed
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Final Remarks

Introduced the Combinatorial String Dissemination model which
focuses on guaranteeing privacy-utility trade-offs.

Defined three problems (TFS, PFS, and MCSR) to sanitize a string
while preserving certain utility properties.

Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO)
for solving these problems.

Our experiments show that our methods are effective and efficient.

Conference version: ECML/PKDD 2019
Full version: arxiv.org/abs/1906.11030
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