
String Sanitization: A Combinatorial Approach

Giulia Bernardini1 Huiping Chen2 Alessio Conte3

Roberto Grossi3,4 Grigorios Loukides2 Nadia Pisanti3,4

Solon P. Pissis4,5 Giovanna Rosone3

1University of Milano-Bicocca
2King’s College London

3University of Pisa
4ERABLE Team, INRIA, Lyon

5CWI, Amsterdam

CWI-INRIA Workshop 2019

1 / 108

Definitions and Motivation

An alphabet Σ is a finite set whose elements are called letters.
A string W is a sequence of letters over Σ.

Σ = {a, b} W = aabaaaababbbaab

W may represent location history, search queries, DNA sequence, etc.

W fuels up location-based, web analytics, or bioinformatics apps.

Dissemination may expose patterns modeling confidential knowledge.

We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.

2 / 108

Definitions and Motivation
An alphabet Σ is a finite set whose elements are called letters.

A string W is a sequence of letters over Σ.

Σ = {a, b} W = aabaaaababbbaab

W may represent location history, search queries, DNA sequence, etc.

W fuels up location-based, web analytics, or bioinformatics apps.

Dissemination may expose patterns modeling confidential knowledge.

We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.

3 / 108

Definitions and Motivation
An alphabet Σ is a finite set whose elements are called letters.
A string W is a sequence of letters over Σ.

Σ = {a, b} W = aabaaaababbbaab

W may represent location history, search queries, DNA sequence, etc.

W fuels up location-based, web analytics, or bioinformatics apps.

Dissemination may expose patterns modeling confidential knowledge.

We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.

4 / 108

Definitions and Motivation
An alphabet Σ is a finite set whose elements are called letters.
A string W is a sequence of letters over Σ.

Σ = {a, b} W = aabaaaababbbaab

W may represent location history, search queries, DNA sequence, etc.

W fuels up location-based, web analytics, or bioinformatics apps.

Dissemination may expose patterns modeling confidential knowledge.

We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.

5 / 108

Definitions and Motivation
An alphabet Σ is a finite set whose elements are called letters.
A string W is a sequence of letters over Σ.

Σ = {a, b} W = aabaaaababbbaab

W may represent location history, search queries, DNA sequence, etc.

W fuels up location-based, web analytics, or bioinformatics apps.

Dissemination may expose patterns modeling confidential knowledge.

We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.

6 / 108

Definitions and Motivation
An alphabet Σ is a finite set whose elements are called letters.
A string W is a sequence of letters over Σ.

Σ = {a, b} W = aabaaaababbbaab

W may represent location history, search queries, DNA sequence, etc.

W fuels up location-based, web analytics, or bioinformatics apps.

Dissemination may expose patterns modeling confidential knowledge.

We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.

7 / 108

Definitions and Motivation
An alphabet Σ is a finite set whose elements are called letters.
A string W is a sequence of letters over Σ.

Σ = {a, b} W = aabaaaababbbaab

W may represent location history, search queries, DNA sequence, etc.

W fuels up location-based, web analytics, or bioinformatics apps.

Dissemination may expose patterns modeling confidential knowledge.

We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.

8 / 108

Definitions and Motivation
An alphabet Σ is a finite set whose elements are called letters.
A string W is a sequence of letters over Σ.

Σ = {a, b} W = aabaaaababbbaab

W may represent location history, search queries, DNA sequence, etc.

W fuels up location-based, web analytics, or bioinformatics apps.

Dissemination may expose patterns modeling confidential knowledge.

We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.

9 / 108

Definitions and Motivation
An alphabet Σ is a finite set whose elements are called letters.
A string W is a sequence of letters over Σ.

Σ = {a, b} W = aabaaaababbbaab

W may represent location history, search queries, DNA sequence, etc.

W fuels up location-based, web analytics, or bioinformatics apps.

Dissemination may expose patterns modeling confidential knowledge.

We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.

10 / 108

Definitions and Motivation
An alphabet Σ is a finite set whose elements are called letters.
A string W is a sequence of letters over Σ.

Σ = {a, b} W = aabaaaababbbaab

W may represent location history, search queries, DNA sequence, etc.

W fuels up location-based, web analytics, or bioinformatics apps.

Dissemination may expose patterns modeling confidential knowledge.

We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.

11 / 108

The Model: Combinatorial String Dissemination

Combinatorial String Dissemination (CSD) model

Given constraints and properties, determine the edit operations to be
applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Given W and a set of length-k sensitive patterns construct X :

C1 No length-k sensitive pattern occurs in X .
P1 The order of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on sequentiality.

P2 The frequency of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on frequency.

12 / 108

The Model: Combinatorial String Dissemination

Combinatorial String Dissemination (CSD) model

Given constraints and properties, determine the edit operations to be
applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Given W and a set of length-k sensitive patterns construct X :

C1 No length-k sensitive pattern occurs in X .
P1 The order of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on sequentiality.

P2 The frequency of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on frequency.

13 / 108

The Model: Combinatorial String Dissemination

Combinatorial String Dissemination (CSD) model

Given constraints and properties, determine the edit operations to be
applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Given W and a set of length-k sensitive patterns construct X :

C1 No length-k sensitive pattern occurs in X .
P1 The order of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on sequentiality.

P2 The frequency of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on frequency.

14 / 108

The Model: Combinatorial String Dissemination

Combinatorial String Dissemination (CSD) model

Given constraints and properties, determine the edit operations to be
applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Given W and a set of length-k sensitive patterns construct X :

C1 No length-k sensitive pattern occurs in X .
P1 The order of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on sequentiality.

P2 The frequency of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on frequency.

15 / 108

The Model: Combinatorial String Dissemination

Combinatorial String Dissemination (CSD) model

Given constraints and properties, determine the edit operations to be
applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Given W and a set of length-k sensitive patterns construct X :

C1 No length-k sensitive pattern occurs in X .

P1 The order of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on sequentiality.

P2 The frequency of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on frequency.

16 / 108

The Model: Combinatorial String Dissemination

Combinatorial String Dissemination (CSD) model

Given constraints and properties, determine the edit operations to be
applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Given W and a set of length-k sensitive patterns construct X :

C1 No length-k sensitive pattern occurs in X .
P1 The order of length-k non-sensitive patterns is preserved in X .

⇒ No utility loss for tasks based on sequentiality.
P2 The frequency of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on frequency.

17 / 108

The Model: Combinatorial String Dissemination

Combinatorial String Dissemination (CSD) model

Given constraints and properties, determine the edit operations to be
applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Given W and a set of length-k sensitive patterns construct X :

C1 No length-k sensitive pattern occurs in X .
P1 The order of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on sequentiality.

P2 The frequency of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on frequency.

18 / 108

The Model: Combinatorial String Dissemination

Combinatorial String Dissemination (CSD) model

Given constraints and properties, determine the edit operations to be
applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Given W and a set of length-k sensitive patterns construct X :

C1 No length-k sensitive pattern occurs in X .
P1 The order of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on sequentiality.

P2 The frequency of length-k non-sensitive patterns is preserved in X .

⇒ No utility loss for tasks based on frequency.

19 / 108

The Model: Combinatorial String Dissemination

Combinatorial String Dissemination (CSD) model

Given constraints and properties, determine the edit operations to be
applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Given W and a set of length-k sensitive patterns construct X :

C1 No length-k sensitive pattern occurs in X .
P1 The order of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on sequentiality.

P2 The frequency of length-k non-sensitive patterns is preserved in X .
⇒ No utility loss for tasks based on frequency.

20 / 108

Our Results

TFS (Total order, Frequency, Sanitization) problem

Construct the shortest string X that satisfies P1, P2, and C1.

Example. Let Σ = {a, b}, W = aabaaaababbbaab, k = 4, and the set of
sensitive patterns be {baaa,aaaa,bbaa}.

X = aabaa#aaababbba#baab
where # is a letter not in Σ.

Theorem

The length of X is in Θ(k |W |). TFS-ALGO solves TFS in the optimal
O(k |W |) time.

21 / 108

Our Results
TFS (Total order, Frequency, Sanitization) problem

Construct the shortest string X that satisfies P1, P2, and C1.

Example. Let Σ = {a, b}, W = aabaaaababbbaab, k = 4, and the set of
sensitive patterns be {baaa,aaaa,bbaa}.

X = aabaa#aaababbba#baab
where # is a letter not in Σ.

Theorem

The length of X is in Θ(k |W |). TFS-ALGO solves TFS in the optimal
O(k |W |) time.

22 / 108

Our Results
TFS (Total order, Frequency, Sanitization) problem

Construct the shortest string X that satisfies P1, P2, and C1.

Example. Let Σ = {a, b}, W = aabaaaababbbaab, k = 4, and the set of
sensitive patterns be {baaa,aaaa,bbaa}.

X = aabaa#aaababbba#baab
where # is a letter not in Σ.

Theorem

The length of X is in Θ(k |W |). TFS-ALGO solves TFS in the optimal
O(k |W |) time.

23 / 108

Our Results
TFS (Total order, Frequency, Sanitization) problem

Construct the shortest string X that satisfies P1, P2, and C1.

Example. Let Σ = {a, b}, W = aabaaaababbbaab, k = 4, and the set of
sensitive patterns be {baaa,aaaa,bbaa}.

X = aabaa#aaababbba#baab
where # is a letter not in Σ.

Theorem

The length of X is in Θ(k |W |). TFS-ALGO solves TFS in the optimal
O(k |W |) time.

24 / 108

Our Results
TFS (Total order, Frequency, Sanitization) problem

Construct the shortest string X that satisfies P1, P2, and C1.

Example. Let Σ = {a, b}, W = aabaaaababbbaab, k = 4, and the set of
sensitive patterns be {baaa,aaaa,bbaa}.

X = aabaa#aaababbba#baab

where # is a letter not in Σ.

Theorem

The length of X is in Θ(k |W |). TFS-ALGO solves TFS in the optimal
O(k |W |) time.

25 / 108

Our Results
TFS (Total order, Frequency, Sanitization) problem

Construct the shortest string X that satisfies P1, P2, and C1.

Example. Let Σ = {a, b}, W = aabaaaababbbaab, k = 4, and the set of
sensitive patterns be {baaa,aaaa,bbaa}.

X = aabaa#aaababbba#baab
where # is a letter not in Σ.

Theorem

The length of X is in Θ(k |W |). TFS-ALGO solves TFS in the optimal
O(k |W |) time.

26 / 108

Our Results
TFS (Total order, Frequency, Sanitization) problem

Construct the shortest string X that satisfies P1, P2, and C1.

Example. Let Σ = {a, b}, W = aabaaaababbbaab, k = 4, and the set of
sensitive patterns be {baaa,aaaa,bbaa}.

X = aabaa#aaababbba#baab
where # is a letter not in Σ.

Theorem

The length of X is in Θ(k |W |). TFS-ALGO solves TFS in the optimal
O(k |W |) time.

27 / 108

Our Results

Could we generally hope for a shorter string? Relax the total order (P1).
Employ Π1: order of length-k patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a shortest string Y that satisfies Π1, P2, and C1.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

Theorem

PFS-ALGO solves PFS in the optimal O(|W |+ |Y |) time.

28 / 108

Our Results

Could we generally hope for a shorter string?

Relax the total order (P1).
Employ Π1: order of length-k patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a shortest string Y that satisfies Π1, P2, and C1.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

Theorem

PFS-ALGO solves PFS in the optimal O(|W |+ |Y |) time.

29 / 108

Our Results

Could we generally hope for a shorter string? Relax the total order (P1).

Employ Π1: order of length-k patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a shortest string Y that satisfies Π1, P2, and C1.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

Theorem

PFS-ALGO solves PFS in the optimal O(|W |+ |Y |) time.

30 / 108

Our Results

Could we generally hope for a shorter string? Relax the total order (P1).
Employ Π1: order of length-k patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a shortest string Y that satisfies Π1, P2, and C1.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

Theorem

PFS-ALGO solves PFS in the optimal O(|W |+ |Y |) time.

31 / 108

Our Results

Could we generally hope for a shorter string? Relax the total order (P1).
Employ Π1: order of length-k patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a shortest string Y that satisfies Π1, P2, and C1.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

Theorem

PFS-ALGO solves PFS in the optimal O(|W |+ |Y |) time.

32 / 108

Our Results

Could we generally hope for a shorter string? Relax the total order (P1).
Employ Π1: order of length-k patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a shortest string Y that satisfies Π1, P2, and C1.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

Theorem

PFS-ALGO solves PFS in the optimal O(|W |+ |Y |) time.

33 / 108

Our Results

Could we generally hope for a shorter string? Relax the total order (P1).
Employ Π1: order of length-k patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a shortest string Y that satisfies Π1, P2, and C1.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

Theorem

PFS-ALGO solves PFS in the optimal O(|W |+ |Y |) time.

34 / 108

Our Results

Could we generally hope for a shorter string? Relax the total order (P1).
Employ Π1: order of length-k patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a shortest string Y that satisfies Π1, P2, and C1.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

Theorem

PFS-ALGO solves PFS in the optimal O(|W |+ |Y |) time.

35 / 108

Our Results

Could we generally hope for a shorter string? Relax the total order (P1).
Employ Π1: order of length-k patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a shortest string Y that satisfies Π1, P2, and C1.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

Theorem

PFS-ALGO solves PFS in the optimal O(|W |+ |Y |) time.

36 / 108

Our Results

Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

37 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.

Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

38 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:

τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

39 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

40 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

41 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :

(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

42 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;

(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

43 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;

(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

44 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

45 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

46 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

47 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

48 / 108

Our Results
Observation: #s in Y may reveal the location of sensitive patterns.
Replacing #s with alphabet letters creates spurious patterns:
τ -ghosts are patterns with frequency < τ in W and ≥ τ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y :
(I) the total weight of letter replacements is bounded by θ;
(II) the total cost of τ -ghost occurrences of in Z is minimum;
(III) C1 is satisfied.

Y = aaababbba#aabaab

Z = aaababbbabaabaab

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

49 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

50 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

51 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

52 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

53 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa

(because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

54 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).

R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

55 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab

(because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

56 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

57 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

58 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

59 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

60 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

61 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.

Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k|W |) because no overlap exists.

62 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.

Then X is of length Ω(k|W |) because no overlap exists.

63 / 108

String Sanitization: TFS-ALGO

Read W from left to right.

If the length-k substring read is non-sensitive append it to X .

Otherwise:

R1: . . . baaa→ . . . baa#aaa (because we must hide baaa).
R2: . . . aaa#aaab→ . . . aaab (because a shorter string is possible).

Implementing R1 and R2 carefully produces X in O(k |W |) time.

This is optimal because the length of X is Ω(k |W |).

Tightness proof:

Construct the de Bruijn string W of order k − 1 over Σ.
Assign every other consecutive length-k substring to be sensitive.
Then X is of length Ω(k |W |) because no overlap exists.

64 / 108

String Sanitization: PFS-ALGO

If blocks in-between #s overlap by k − 1 letters, then we can further
apply R2 while still satisfying Π1.

Looks bad: Shortest Common Superstring (SCS) is NP-complete.

Observation: Overlaps allowed are of fixed length k − 1.

Idea:

Assign ids to blocks’ prefixes and suffixes of length k − 1.
Ignore the middle part of the blocks (it plays no role).
Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

Result: Linear time!

65 / 108

String Sanitization: PFS-ALGO

If blocks in-between #s overlap by k − 1 letters, then we can further
apply R2 while still satisfying Π1.

Looks bad: Shortest Common Superstring (SCS) is NP-complete.

Observation: Overlaps allowed are of fixed length k − 1.

Idea:

Assign ids to blocks’ prefixes and suffixes of length k − 1.
Ignore the middle part of the blocks (it plays no role).
Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

Result: Linear time!

66 / 108

String Sanitization: PFS-ALGO

If blocks in-between #s overlap by k − 1 letters, then we can further
apply R2 while still satisfying Π1.

Looks bad: Shortest Common Superstring (SCS) is NP-complete.

Observation: Overlaps allowed are of fixed length k − 1.

Idea:

Assign ids to blocks’ prefixes and suffixes of length k − 1.
Ignore the middle part of the blocks (it plays no role).
Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

Result: Linear time!

67 / 108

String Sanitization: PFS-ALGO

If blocks in-between #s overlap by k − 1 letters, then we can further
apply R2 while still satisfying Π1.

Looks bad: Shortest Common Superstring (SCS) is NP-complete.

Observation: Overlaps allowed are of fixed length k − 1.

Idea:

Assign ids to blocks’ prefixes and suffixes of length k − 1.
Ignore the middle part of the blocks (it plays no role).
Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

Result: Linear time!

68 / 108

String Sanitization: PFS-ALGO

If blocks in-between #s overlap by k − 1 letters, then we can further
apply R2 while still satisfying Π1.

Looks bad: Shortest Common Superstring (SCS) is NP-complete.

Observation: Overlaps allowed are of fixed length k − 1.

Idea:

Assign ids to blocks’ prefixes and suffixes of length k − 1.
Ignore the middle part of the blocks (it plays no role).
Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

Result: Linear time!

69 / 108

String Sanitization: PFS-ALGO

If blocks in-between #s overlap by k − 1 letters, then we can further
apply R2 while still satisfying Π1.

Looks bad: Shortest Common Superstring (SCS) is NP-complete.

Observation: Overlaps allowed are of fixed length k − 1.

Idea:

Assign ids to blocks’ prefixes and suffixes of length k − 1.
Ignore the middle part of the blocks (it plays no role).
Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

Result: Linear time!

70 / 108

String Sanitization: PFS-ALGO

If blocks in-between #s overlap by k − 1 letters, then we can further
apply R2 while still satisfying Π1.

Looks bad: Shortest Common Superstring (SCS) is NP-complete.

Observation: Overlaps allowed are of fixed length k − 1.

Idea:

Assign ids to blocks’ prefixes and suffixes of length k − 1.

Ignore the middle part of the blocks (it plays no role).
Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

Result: Linear time!

71 / 108

String Sanitization: PFS-ALGO

If blocks in-between #s overlap by k − 1 letters, then we can further
apply R2 while still satisfying Π1.

Looks bad: Shortest Common Superstring (SCS) is NP-complete.

Observation: Overlaps allowed are of fixed length k − 1.

Idea:

Assign ids to blocks’ prefixes and suffixes of length k − 1.
Ignore the middle part of the blocks (it plays no role).

Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

Result: Linear time!

72 / 108

String Sanitization: PFS-ALGO

If blocks in-between #s overlap by k − 1 letters, then we can further
apply R2 while still satisfying Π1.

Looks bad: Shortest Common Superstring (SCS) is NP-complete.

Observation: Overlaps allowed are of fixed length k − 1.

Idea:

Assign ids to blocks’ prefixes and suffixes of length k − 1.
Ignore the middle part of the blocks (it plays no role).
Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

Result: Linear time!

73 / 108

String Sanitization: PFS-ALGO

If blocks in-between #s overlap by k − 1 letters, then we can further
apply R2 while still satisfying Π1.

Looks bad: Shortest Common Superstring (SCS) is NP-complete.

Observation: Overlaps allowed are of fixed length k − 1.

Idea:

Assign ids to blocks’ prefixes and suffixes of length k − 1.
Ignore the middle part of the blocks (it plays no role).
Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

Result: Linear time!

74 / 108

String Sanitization: MSCR-ALGO

Create an instance of MCK from an instance of MCSR:
Compute the set of all candidate ghost patterns.

Assign a cost to each candidate ghost.

Assign a weight to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995].
Translate the solution back to MCSR.

75 / 108

String Sanitization: MSCR-ALGO
Create an instance of MCK from an instance of MCSR:

Compute the set of all candidate ghost patterns.

Assign a cost to each candidate ghost.

Assign a weight to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995].
Translate the solution back to MCSR.

76 / 108

String Sanitization: MSCR-ALGO
Create an instance of MCK from an instance of MCSR:

Compute the set of all candidate ghost patterns.

Assign a cost to each candidate ghost.

Assign a weight to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995].
Translate the solution back to MCSR.

77 / 108

String Sanitization: MSCR-ALGO
Create an instance of MCK from an instance of MCSR:

Compute the set of all candidate ghost patterns.

Assign a cost to each candidate ghost.

Assign a weight to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995].
Translate the solution back to MCSR.

78 / 108

String Sanitization: MSCR-ALGO
Create an instance of MCK from an instance of MCSR:

Compute the set of all candidate ghost patterns.

Assign a cost to each candidate ghost.

Assign a weight to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995].
Translate the solution back to MCSR.

79 / 108

String Sanitization: MSCR-ALGO
Create an instance of MCK from an instance of MCSR:

Compute the set of all candidate ghost patterns.

Assign a cost to each candidate ghost.

Assign a weight to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995].

Translate the solution back to MCSR.

80 / 108

String Sanitization: MSCR-ALGO
Create an instance of MCK from an instance of MCSR:

Compute the set of all candidate ghost patterns.

Assign a cost to each candidate ghost.

Assign a weight to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995].
Translate the solution back to MCSR.

81 / 108

String Sanitization: MSCR-ALGO
Create an instance of MCK from an instance of MCSR:

Compute the set of all candidate ghost patterns.

Assign a cost to each candidate ghost.

Assign a weight to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995].
Translate the solution back to MCSR.

82 / 108

Experiments: The Datasets

We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO,
referred to as TPM, in terms of data utility and efficiency.

Four real datasets (OLD, TRU, MSN, DNA) and a synthetic (SYN).

Dataset Data domain Length Alphabet # sensitive # sensitive Pattern
n size |Σ| patterns positions |S| length k

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4)
TRU Transportation 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4)
MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4)
DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13)
SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6)

We compared TPM against a greedy baseline, referred to as BA.

BA replaces #s greedily from left to right based on letter frequencies.

83 / 108

Experiments: The Datasets

We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO,
referred to as TPM, in terms of data utility and efficiency.

Four real datasets (OLD, TRU, MSN, DNA) and a synthetic (SYN).

Dataset Data domain Length Alphabet # sensitive # sensitive Pattern
n size |Σ| patterns positions |S| length k

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4)
TRU Transportation 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4)
MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4)
DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13)
SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6)

We compared TPM against a greedy baseline, referred to as BA.

BA replaces #s greedily from left to right based on letter frequencies.

84 / 108

Experiments: The Datasets

We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO,
referred to as TPM, in terms of data utility and efficiency.

Four real datasets (OLD, TRU, MSN, DNA) and a synthetic (SYN).

Dataset Data domain Length Alphabet # sensitive # sensitive Pattern
n size |Σ| patterns positions |S| length k

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4)
TRU Transportation 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4)
MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4)
DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13)
SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6)

We compared TPM against a greedy baseline, referred to as BA.

BA replaces #s greedily from left to right based on letter frequencies.

85 / 108

Experiments: The Datasets

We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO,
referred to as TPM, in terms of data utility and efficiency.

Four real datasets (OLD, TRU, MSN, DNA) and a synthetic (SYN).

Dataset Data domain Length Alphabet # sensitive # sensitive Pattern
n size |Σ| patterns positions |S| length k

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4)
TRU Transportation 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4)
MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4)
DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13)
SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6)

We compared TPM against a greedy baseline, referred to as BA.

BA replaces #s greedily from left to right based on letter frequencies.

86 / 108

Experiments: The Datasets

We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO,
referred to as TPM, in terms of data utility and efficiency.

Four real datasets (OLD, TRU, MSN, DNA) and a synthetic (SYN).

Dataset Data domain Length Alphabet # sensitive # sensitive Pattern
n size |Σ| patterns positions |S| length k

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4)
TRU Transportation 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4)
MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4)
DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13)
SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6)

We compared TPM against a greedy baseline, referred to as BA.

BA replaces #s greedily from left to right based on letter frequencies.

87 / 108

Experiments: The Datasets

We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO,
referred to as TPM, in terms of data utility and efficiency.

Four real datasets (OLD, TRU, MSN, DNA) and a synthetic (SYN).

Dataset Data domain Length Alphabet # sensitive # sensitive Pattern
n size |Σ| patterns positions |S| length k

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4)
TRU Transportation 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4)
MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4)
DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13)
SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6)

We compared TPM against a greedy baseline, referred to as BA.

BA replaces #s greedily from left to right based on letter frequencies.

88 / 108

Experiments: Frequency Distortion

∑
U(FreqW (U)− FreqZ (U))2, where U is a non-sensitive pattern.

0 ⋅ 10
+0

5 ⋅ 10
+4

1 ⋅ 10
+5

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
BA

OLD

0 ⋅ 10
+0

2 ⋅ 10
+3

4 ⋅ 10
+3

6 ⋅ 10
+3

3
600

4
1935

6
621

7
671

k
|S|

D
is

to
rt

io
n

TPM
BA

OLD

S denotes the set of occurrences of sensitive patterns.

89 / 108

Experiments: Frequency Distortion∑
U(FreqW (U)− FreqZ (U))2, where U is a non-sensitive pattern.

0 ⋅ 10
+0

5 ⋅ 10
+4

1 ⋅ 10
+5

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
BA

OLD

0 ⋅ 10
+0

2 ⋅ 10
+3

4 ⋅ 10
+3

6 ⋅ 10
+3

3
600

4
1935

6
621

7
671

k
|S|

D
is

to
rt

io
n

TPM
BA

OLD

S denotes the set of occurrences of sensitive patterns.

90 / 108

Experiments: Frequency Distortion∑
U(FreqW (U)− FreqZ (U))2, where U is a non-sensitive pattern.

0 ⋅ 10
+0

5 ⋅ 10
+4

1 ⋅ 10
+5

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
BA

OLD

0 ⋅ 10
+0

2 ⋅ 10
+3

4 ⋅ 10
+3

6 ⋅ 10
+3

3
600

4
1935

6
621

7
671

k
|S|

D
is

to
rt

io
n

TPM
BA

OLD

S denotes the set of occurrences of sensitive patterns.

91 / 108

Experiments: Lost and Ghost Patterns

τ -losts are patterns with frequency > τ in W and ≤ τ in Z .
τ -ghosts are patterns with frequency < τ in W and ≥ τ in Z .
We used τ = 20.

606

 9

1254

22

2667

 22

6103

 37

10
+0

10
+1

10
+2

10
+3

10
+4

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

L
o
s
t
a
n
d
 G

h
o
s
t
(l
o
g
 s

c
a
le

)

TPM
BA

OLD

8

 1

19

 0
15

 0
10

 0

0

10

20

30

40

3
600

4
1935

6
621

7
671

k
|S|

L
o
s
t
a

n
d

 G
h
o

s
t TPM

BA

OLD

x
y on the top of each bar for BA denotes x τ -lost and y τ -ghost.

92 / 108

Experiments: Lost and Ghost Patterns
τ -losts are patterns with frequency > τ in W and ≤ τ in Z .

τ -ghosts are patterns with frequency < τ in W and ≥ τ in Z .
We used τ = 20.

606

 9

1254

22

2667

 22

6103

 37

10
+0

10
+1

10
+2

10
+3

10
+4

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

L
o
s
t
a
n
d
 G

h
o
s
t
(l
o
g
 s

c
a
le

)

TPM
BA

OLD

8

 1

19

 0
15

 0
10

 0

0

10

20

30

40

3
600

4
1935

6
621

7
671

k
|S|

L
o
s
t
a

n
d

 G
h
o

s
t TPM

BA

OLD

x
y on the top of each bar for BA denotes x τ -lost and y τ -ghost.

93 / 108

Experiments: Lost and Ghost Patterns
τ -losts are patterns with frequency > τ in W and ≤ τ in Z .
τ -ghosts are patterns with frequency < τ in W and ≥ τ in Z .

We used τ = 20.

606

 9

1254

22

2667

 22

6103

 37

10
+0

10
+1

10
+2

10
+3

10
+4

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

L
o
s
t
a
n
d
 G

h
o
s
t
(l
o
g
 s

c
a
le

)

TPM
BA

OLD

8

 1

19

 0
15

 0
10

 0

0

10

20

30

40

3
600

4
1935

6
621

7
671

k
|S|

L
o
s
t
a

n
d

 G
h
o

s
t TPM

BA

OLD

x
y on the top of each bar for BA denotes x τ -lost and y τ -ghost.

94 / 108

Experiments: Lost and Ghost Patterns
τ -losts are patterns with frequency > τ in W and ≤ τ in Z .
τ -ghosts are patterns with frequency < τ in W and ≥ τ in Z .
We used τ = 20.

606

 9

1254

22

2667

 22

6103

 37

10
+0

10
+1

10
+2

10
+3

10
+4

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

L
o
s
t
a
n
d
 G

h
o
s
t
(l
o
g
 s

c
a
le

)

TPM
BA

OLD

8

 1

19

 0
15

 0
10

 0

0

10

20

30

40

3
600

4
1935

6
621

7
671

k
|S|

L
o
s
t
a

n
d

 G
h
o

s
t TPM

BA

OLD

x
y on the top of each bar for BA denotes x τ -lost and y τ -ghost.

95 / 108

Experiments: Lost and Ghost Patterns
τ -losts are patterns with frequency > τ in W and ≤ τ in Z .
τ -ghosts are patterns with frequency < τ in W and ≥ τ in Z .
We used τ = 20.

606

 9

1254

22

2667

 22

6103

 37

10
+0

10
+1

10
+2

10
+3

10
+4

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

L
o
s
t
a
n
d
 G

h
o
s
t
(l
o
g
 s

c
a
le

)

TPM
BA

OLD

8

 1

19

 0
15

 0
10

 0

0

10

20

30

40

3
600

4
1935

6
621

7
671

k
|S|

L
o
s
t
a
n
d
 G

h
o
s
t TPM

BA

OLD

x
y on the top of each bar for BA denotes x τ -lost and y τ -ghost.

96 / 108

Experiments: Output Size

Length of X and Y (output of TFS-ALGO and PFS-ALGO, resp.).

38K

118K

222K

271K

309K

|W|

4.7 ⋅ 10
6

4.8 ⋅ 10
6

4.9 ⋅ 10
6

5 ⋅ 10
6

5.1 ⋅ 10
6

40
45053

60
77248

80
113597

100
153508

120
196084

#sensitive patterns
|S|

L
e
n
g
th

Length of X
Length of Y

DNA

32K 42K

8K

2K
1K

|W|

4.7 ⋅ 10
6

4.8 ⋅ 10
6

4.9 ⋅ 10
6

5 ⋅ 10
6

10
44405

11
44070

13
44720

14
44993

15
44204

k
|S|

L
e
n
g
th

Length of X
Length of Y

DNA

On the top of each pair of bars we plot |X | − |Y |.

97 / 108

Experiments: Output Size

Length of X and Y (output of TFS-ALGO and PFS-ALGO, resp.).

38K

118K

222K

271K

309K

|W|

4.7 ⋅ 10
6

4.8 ⋅ 10
6

4.9 ⋅ 10
6

5 ⋅ 10
6

5.1 ⋅ 10
6

40
45053

60
77248

80
113597

100
153508

120
196084

#sensitive patterns
|S|

L
e
n
g
th

Length of X
Length of Y

DNA

32K 42K

8K

2K
1K

|W|

4.7 ⋅ 10
6

4.8 ⋅ 10
6

4.9 ⋅ 10
6

5 ⋅ 10
6

10
44405

11
44070

13
44720

14
44993

15
44204

k
|S|

L
e
n
g
th

Length of X
Length of Y

DNA

On the top of each pair of bars we plot |X | − |Y |.

98 / 108

Experiments: Output Size

Length of X and Y (output of TFS-ALGO and PFS-ALGO, resp.).

38K

118K

222K

271K

309K

|W|

4.7 ⋅ 10
6

4.8 ⋅ 10
6

4.9 ⋅ 10
6

5 ⋅ 10
6

5.1 ⋅ 10
6

40
45053

60
77248

80
113597

100
153508

120
196084

#sensitive patterns
|S|

L
e
n
g
th

Length of X
Length of Y

DNA

32K 42K

8K

2K
1K

|W|

4.7 ⋅ 10
6

4.8 ⋅ 10
6

4.9 ⋅ 10
6

5 ⋅ 10
6

10
44405

11
44070

13
44720

14
44993

15
44204

k
|S|

L
e
n
g
th

Length of X
Length of Y

DNA

On the top of each pair of bars we plot |X | − |Y |.

99 / 108

Experiments: Speed

n

R
u

n
ti
m

e
 (

s
)

5M 10M 15M 20M

1
0

2
0

3
0

4
0

5
0

BA
TPM
linear with n

Prefixes of SYN

k

R
u

n
ti
m

e
 (

s
)

3 4 5 6

1
0

2
0

3
0

4
0

BA
TPM

SYN

100 / 108

Experiments: Speed

n

R
u

n
ti
m

e
 (

s
)

5M 10M 15M 20M

1
0

2
0

3
0

4
0

5
0

BA
TPM
linear with n

Prefixes of SYN

k

R
u

n
ti
m

e
 (

s
)

3 4 5 6

1
0

2
0

3
0

4
0

BA
TPM

SYN

101 / 108

Final Remarks

Introduced the Combinatorial String Dissemination model which
focuses on guaranteeing privacy-utility trade-offs.

Defined three problems (TFS, PFS, and MCSR) to sanitize a string
while preserving certain utility properties.

Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO)
for solving these problems.

Our experiments show that our methods are effective and efficient.

Conference version: ECML/PKDD 2019
Full version: arxiv.org/abs/1906.11030

102 / 108

arxiv.org/abs/1906.11030

Final Remarks

Introduced the Combinatorial String Dissemination model which
focuses on guaranteeing privacy-utility trade-offs.

Defined three problems (TFS, PFS, and MCSR) to sanitize a string
while preserving certain utility properties.

Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO)
for solving these problems.

Our experiments show that our methods are effective and efficient.

Conference version: ECML/PKDD 2019
Full version: arxiv.org/abs/1906.11030

103 / 108

arxiv.org/abs/1906.11030

Final Remarks

Introduced the Combinatorial String Dissemination model which
focuses on guaranteeing privacy-utility trade-offs.

Defined three problems (TFS, PFS, and MCSR) to sanitize a string
while preserving certain utility properties.

Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO)
for solving these problems.

Our experiments show that our methods are effective and efficient.

Conference version: ECML/PKDD 2019
Full version: arxiv.org/abs/1906.11030

104 / 108

arxiv.org/abs/1906.11030

Final Remarks

Introduced the Combinatorial String Dissemination model which
focuses on guaranteeing privacy-utility trade-offs.

Defined three problems (TFS, PFS, and MCSR) to sanitize a string
while preserving certain utility properties.

Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO)
for solving these problems.

Our experiments show that our methods are effective and efficient.

Conference version: ECML/PKDD 2019
Full version: arxiv.org/abs/1906.11030

105 / 108

arxiv.org/abs/1906.11030

Final Remarks

Introduced the Combinatorial String Dissemination model which
focuses on guaranteeing privacy-utility trade-offs.

Defined three problems (TFS, PFS, and MCSR) to sanitize a string
while preserving certain utility properties.

Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO)
for solving these problems.

Our experiments show that our methods are effective and efficient.

Conference version: ECML/PKDD 2019
Full version: arxiv.org/abs/1906.11030

106 / 108

arxiv.org/abs/1906.11030

Final Remarks

Introduced the Combinatorial String Dissemination model which
focuses on guaranteeing privacy-utility trade-offs.

Defined three problems (TFS, PFS, and MCSR) to sanitize a string
while preserving certain utility properties.

Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO)
for solving these problems.

Our experiments show that our methods are effective and efficient.

Conference version: ECML/PKDD 2019

Full version: arxiv.org/abs/1906.11030

107 / 108

arxiv.org/abs/1906.11030

Final Remarks

Introduced the Combinatorial String Dissemination model which
focuses on guaranteeing privacy-utility trade-offs.

Defined three problems (TFS, PFS, and MCSR) to sanitize a string
while preserving certain utility properties.

Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO)
for solving these problems.

Our experiments show that our methods are effective and efficient.

Conference version: ECML/PKDD 2019
Full version: arxiv.org/abs/1906.11030

108 / 108

arxiv.org/abs/1906.11030

