String Sanitization: A Combinatorial Approach

Giulia Bernardini¹ Huiping Chen² Alessio Conte³ Roberto Grossi^{3,4} Grigorios Loukides² Nadia Pisanti^{3,4} **Solon P. Pissis**^{4,5} Giovanna Rosone³

¹University of Milano-Bicocca
 ²King's College London
 ³University of Pisa
 ⁴ERABLE Team, INRIA, Lyon
 ⁵CWI, Amsterdam

CWI-INRIA Workshop 2019

An **alphabet** Σ is a finite set whose elements are called letters.

An **alphabet** Σ is a finite set whose elements are called letters. A **string** W is a sequence of letters over Σ .

An **alphabet** Σ is a finite set whose elements are called letters. A **string** W is a sequence of letters over Σ .

$$\Sigma = \{ \mathtt{a}, \mathtt{b} \}$$
 $W = \mathtt{aabaaaababbbaab}$

An **alphabet** Σ is a finite set whose elements are called letters. A **string** W is a sequence of letters over Σ .

$\Sigma = \{ \mathtt{a}, \mathtt{b} \}$ $W = \mathtt{aabaaaababbbaab}$

• W may represent location history, search queries, DNA sequence, etc.

An **alphabet** Σ is a finite set whose elements are called letters. A **string** W is a sequence of letters over Σ .

$\Sigma = \{ \mathtt{a}, \mathtt{b} \}$ $W = \mathtt{aabaaaababbbaab}$

W may represent location history, search queries, DNA sequence, etc. *W* fuels up location-based, web analytics, or bioinformatics apps.

An **alphabet** Σ is a finite set whose elements are called letters. A **string** W is a sequence of letters over Σ .

$\Sigma = \{ \mathtt{a}, \mathtt{b} \}$ $W = \mathtt{aabaaaababbbaab}$

- W may represent location history, search queries, DNA sequence, etc.
- W fuels up location-based, web analytics, or bioinformatics apps.
- Dissemination may expose patterns modeling confidential knowledge.

An **alphabet** Σ is a finite set whose elements are called letters. A **string** W is a sequence of letters over Σ .

$\Sigma = \{ \mathtt{a}, \mathtt{b} \}$ $W = \mathtt{aabaaaababbbaab}$

- W may represent location history, search queries, DNA sequence, etc.
- W fuels up location-based, web analytics, or bioinformatics apps.
- Dissemination may expose patterns modeling confidential knowledge.
- We call these patterns sensitive.

An **alphabet** Σ is a finite set whose elements are called letters. A **string** W is a sequence of letters over Σ .

$\Sigma = \{ \mathtt{a}, \mathtt{b} \}$ $W = \mathtt{aabaaaababbbaab}$

- W may represent location history, search queries, DNA sequence, etc.
- W fuels up location-based, web analytics, or bioinformatics apps.
- Dissemination may expose patterns modeling confidential knowledge.
- We call these patterns sensitive.

An **alphabet** Σ is a finite set whose elements are called letters. A **string** W is a sequence of letters over Σ .

$\Sigma = \{ \mathtt{a}, \mathtt{b} \}$ $W = \mathtt{aabaaaababbbaab}$

- W may represent location history, search queries, DNA sequence, etc.
- W fuels up location-based, web analytics, or bioinformatics apps.
- Dissemination may expose patterns modeling confidential knowledge.
- We call these patterns sensitive.

The goal: String sanitization

Conceal sensitive patterns in W while maintaining data utility.

Combinatorial String Dissemination (CSD) model

Given **constraints** and **properties**, determine the **edit operations** to be applied to W so that the properties are satisfied subject to the constraints.

Combinatorial String Dissemination (CSD) model

Given **constraints** and **properties**, determine the **edit operations** to be applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Combinatorial String Dissemination (CSD) model

Given **constraints** and **properties**, determine the **edit operations** to be applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

Combinatorial String Dissemination (CSD) model

Given **constraints** and **properties**, determine the **edit operations** to be applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

- Given W and a set of length-k sensitive patterns construct X:
 - C1 No length-k sensitive pattern occurs in X.

Combinatorial String Dissemination (CSD) model

Given **constraints** and **properties**, determine the **edit operations** to be applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

- Given W and a set of length-k sensitive patterns construct X:
 - **C1** No length-k sensitive pattern occurs in X.
 - **P1** The order of length-k non-sensitive patterns is preserved in X.

Combinatorial String Dissemination (CSD) model

Given **constraints** and **properties**, determine the **edit operations** to be applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

- **C1** No length-k sensitive pattern occurs in X.
- P1 The order of length-k non-sensitive patterns is preserved in X.
 ⇒ No utility loss for tasks based on sequentiality.

Combinatorial String Dissemination (CSD) model

Given **constraints** and **properties**, determine the **edit operations** to be applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

- **C1** No length-k sensitive pattern occurs in X.
- P1 The order of length-k non-sensitive patterns is preserved in X.
 ⇒ No utility loss for tasks based on sequentiality.
- **P2** The frequency of length-k non-sensitive patterns is preserved in X.

Combinatorial String Dissemination (CSD) model

Given **constraints** and **properties**, determine the **edit operations** to be applied to W so that the properties are satisfied subject to the constraints.

Our CSD setting

- **C1** No length-k sensitive pattern occurs in X.
- P1 The order of length-k non-sensitive patterns is preserved in X.
 ⇒ No utility loss for tasks based on sequentiality.
- **P2** The frequency of length-k non-sensitive patterns is preserved in X. \Rightarrow No utility loss for tasks based on frequency.

↓ □ → ↓ □ → ↓ ■ → ↓ ■ → ↓ ■ → ↓ ○ へ ○
21/108

TFS (Total order, Frequency, Sanitization) problem

Construct the **shortest** string X that satisfies P1, P2, and C1.

TFS (Total order, Frequency, Sanitization) problem

Construct the **shortest** string X that satisfies **P1**, **P2**, and **C1**.

Example. Let $\Sigma = \{a, b\}$, W = aabaaaababbbaab, k = 4, and the set of sensitive patterns be {baaa,aaaa,bbaa}.

TFS (Total order, Frequency, Sanitization) problem

Construct the **shortest** string X that satisfies **P1**, **P2**, and **C1**.

Example. Let $\Sigma = \{a, b\}$, W = aabaaaababbbaab, k = 4, and the set of sensitive patterns be {baaa,aaaa,bbaa}.

TFS (Total order, Frequency, Sanitization) problem

Construct the **shortest** string X that satisfies **P1**, **P2**, and **C1**.

Example. Let $\Sigma = \{a, b\}$, W = aabaaaababbbaab, k = 4, and the set of sensitive patterns be {baaa,aaaa,bbaa}.

X = aabaa#aaababbba#baab

TFS (Total order, Frequency, Sanitization) problem

Construct the **shortest** string X that satisfies **P1**, **P2**, and **C1**.

Example. Let $\Sigma = \{a, b\}$, W = aabaaaababbbaab, k = 4, and the set of sensitive patterns be {baaa,aaaa,bbaa}.

X = aabaa#aaababbba#baab

where **#** is a letter not in Σ .

TFS (Total order, Frequency, Sanitization) problem

Construct the **shortest** string X that satisfies **P1**, **P2**, and **C1**.

Example. Let $\Sigma = \{a, b\}$, W = aabaaaababbbaab, k = 4, and the set of sensitive patterns be {baaa,aaaa,bbaa}.

X = aabaa#aaababbba#baab

where **#** is a letter not in Σ .

Theorem

The length of X is in $\Theta(k|W|)$. TFS-ALGO solves TFS in the optimal O(k|W|) time.

Could we generally hope for a shorter string?

Could we generally hope for a shorter string? Relax the total order (P1).

Could we generally hope for a shorter string? Relax the total order (P1). Employ $\Pi 1$: order of length-*k* patterns in-between #s remains unchanged.

Could we generally hope for a shorter string? Relax the total order (P1). Employ $\Pi 1$: order of length-*k* patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a **shortest** string Y that satisfies Π **1**, **P2**, and **C1**.

Could we generally hope for a shorter string? Relax the total order (P1). Employ $\Pi 1$: order of length-*k* patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a **shortest** string Y that satisfies Π **1**, **P2**, and **C1**.

Could we generally hope for a shorter string? Relax the total order (P1). Employ $\Pi 1$: order of length-*k* patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a **shortest** string Y that satisfies Π **1**, **P2**, and **C1**.

X = aabaa#aaababbba#baab

Could we generally hope for a shorter string? Relax the total order (P1). Employ $\Pi 1$: order of length-*k* patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a **shortest** string Y that satisfies Π **1**, **P2**, and **C1**.

X = aabaa#aaababbba#baabY = aaababbba#aabaab

Could we generally hope for a shorter string? Relax the total order (P1). Employ $\Pi 1$: order of length-*k* patterns in-between #s remains unchanged.

PFS (Partial order, Frequency, Sanitization) problem

Construct a **shortest** string Y that satisfies Π **1**, **P2**, and **C1**.

X = aabaa#aaababbba#baabY = aaababbba#aabaab

Theorem

PFS-ALGO solves **PFS** in the optimal O(|W| + |Y|) time.

< ロ > < 同 > < 回 > < 回 >
Observation: #s in Y may reveal the location of sensitive patterns.

Observation: #s in Y may reveal the location of sensitive patterns. **Replacing** #s with alphabet letters creates spurious patterns:

Observation: #s in Y may reveal the location of sensitive patterns.

Replacing #s with alphabet letters creates spurious patterns:

 $\tau\text{-}\mathbf{ghosts}$ are patterns with frequency $<\tau$ in W and $\geq\tau$ after sanitization.

Observation: #s in Y may reveal the location of sensitive patterns.

Replacing #s with alphabet letters creates spurious patterns:

 τ -ghosts are patterns with frequency $< \tau$ in W and $\geq \tau$ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Observation: #s in Y may reveal the location of sensitive patterns.

Replacing #s with alphabet letters creates spurious patterns:

 $\tau\text{-}\mathbf{ghosts}$ are patterns with frequency $<\tau$ in W and $\geq\tau$ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y:

Observation: #s in Y may reveal the location of sensitive patterns.

Replacing #s with alphabet letters creates spurious patterns:

 $\tau\text{-}\mathbf{ghosts}$ are patterns with frequency $<\tau$ in W and $\geq\tau$ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y: (I) the total **weight** of letter **replacements** is bounded by θ ;

Observation: #s in Y may reveal the location of sensitive patterns.

Replacing #s with alphabet letters creates spurious patterns:

 $\tau\text{-}\mathbf{ghosts}$ are patterns with frequency $<\tau$ in W and $\geq\tau$ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y: (I) the total **weight** of letter **replacements** is bounded by θ ; (II) the total **cost** of τ -**ghost** occurrences of in Z is **minimum**;

Observation: #s in Y may reveal the location of sensitive patterns.

Replacing #s with alphabet letters creates spurious patterns:

 $\tau\text{-}\mathbf{ghosts}$ are patterns with frequency $<\tau$ in W and $\geq\tau$ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y: (I) the total **weight** of letter **replacements** is bounded by θ ; (II) the total **cost** of τ -**ghost** occurrences of in Z is **minimum**; (III) **C1** is satisfied.

Observation: #s in Y may reveal the location of sensitive patterns.

Replacing #s with alphabet letters creates spurious patterns:

 $\tau\text{-}\mathbf{ghosts}$ are patterns with frequency $<\tau$ in W and $\geq\tau$ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y: (I) the total **weight** of letter **replacements** is bounded by θ ; (II) the total **cost** of τ -**ghost** occurrences of in Z is **minimum**; (III) **C1** is satisfied.

Observation: #s in Y may reveal the location of sensitive patterns.

Replacing #s with alphabet letters creates spurious patterns:

 $\tau\text{-}\mathbf{ghosts}$ are patterns with frequency $<\tau$ in W and $\geq\tau$ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y: (I) the total **weight** of letter **replacements** is bounded by θ ; (II) the total **cost** of τ -**ghost** occurrences of in Z is **minimum**; (III) **C1** is satisfied.

Y = aaababbba#aabaabZ = aaababbba**b**aabaab

Observation: #s in Y may reveal the location of sensitive patterns.

Replacing #s with alphabet letters creates spurious patterns:

 $\tau\text{-}\mathbf{ghosts}$ are patterns with frequency $<\tau$ in W and $\geq\tau$ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y: (I) the total **weight** of letter **replacements** is bounded by θ ; (II) the total **cost** of τ -**ghost** occurrences of in Z is **minimum**; (III) **C1** is satisfied.

$$Y =$$
 aaababbba#aabaab

$$Z = aaababbbabaabaab$$

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

Observation: #s in Y may reveal the location of sensitive patterns.

Replacing #s with alphabet letters creates spurious patterns:

 $\tau\text{-}\mathbf{ghosts}$ are patterns with frequency $<\tau$ in W and $\geq\tau$ after sanitization.

MCSR (Minimum-Cost Separators Replacement)

Construct a string Z by deleting or replacing each # in Y: (I) the total **weight** of letter **replacements** is bounded by θ ; (II) the total **cost** of τ -**ghost** occurrences of in Z is **minimum**; (III) **C1** is satisfied.

$$Y =$$
 aaababbba#aabaab

$$Z = aaababbbabaabaab$$

Theorem

MCSR is NP-hard via the Multiple-Choice Knapsack (MCK).

We also develop MCSR-ALGO, an effective heuristic to solve MCSR.

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < C 50 / 108

• Read W from left to right.

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:
 - R1: ... baaa \rightarrow ... baa#aaa

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:
 - **R1**: ... baaa \rightarrow ... baa#aaa (because we must hide baaa).

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:
 - **R1**: ... baaa \rightarrow ... baa#aaa (because we must hide baaa).
 - **R2**: ... \underline{aaa} # \underline{aaa} b \rightarrow ... \underline{aaab}

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:
 - **R1**: ... baaa \rightarrow ... baa#aaa (because we must hide baaa).
 - **R2**: ... <u>aaa</u>#<u>aaa</u>b \rightarrow ... aaab (because a shorter string is possible).

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:
 - **R1**: ... baaa \rightarrow ... baa#aaa (because we must hide baaa).
 - **R2**: ... <u>aaa</u>#<u>aaa</u>b \rightarrow ... aaab (because a shorter string is possible).

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:
 - **R1**: ... baaa \rightarrow ... baa#aaa (because we must hide baaa).
 - R2: ... <u>aaa</u>#<u>aaa</u>b → ... aaab (because a shorter string is possible).

X = aabaa#aaababbba#baab

• Implementing **R1** and **R2** carefully produces X in O(k|W|) time.

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:
 - **R1**: ... baaa \rightarrow ... baa#aaa (because we must hide baaa).
 - **R2**: ... <u>aaa</u>#<u>aaa</u>b \rightarrow ... aaab (because a shorter string is possible).

W = aabaaaababbbaab

- Implementing **R1** and **R2** carefully produces X in O(k|W|) time.
- This is optimal because the length of X is $\Omega(k|W|)$.

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:
 - **R1**: ... baaa \rightarrow ... baa#aaa (because we must hide baaa).
 - **R2**: ... <u>aaa</u>#<u>aaa</u>b \rightarrow ... aaab (because a shorter string is possible).

W = aabaaaababbbaab

- Implementing **R1** and **R2** carefully produces X in O(k|W|) time.
- This is optimal because the length of X is $\Omega(k|W|)$.
- **Tightness** proof:

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:
 - **R1**: ... baaa \rightarrow ... baa#aaa (because we must hide baaa).
 - **R2**: ... <u>aaa</u>#<u>aaa</u>b \rightarrow ... aaab (because a shorter string is possible).

W = aabaaaababbbaab

- Implementing **R1** and **R2** carefully produces X in O(k|W|) time.
- This is optimal because the length of X is $\Omega(k|W|)$.
- Tightness proof:
 - Construct the de Bruijn string W of order k 1 over Σ .

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:
 - **R1**: ... baaa \rightarrow ... baa#aaa (because we must hide baaa).
 - **R2**: ... <u>aaa</u>#<u>aaa</u>b \rightarrow ... aaab (because a shorter string is possible).

W = aabaaaababbbaab

- Implementing **R1** and **R2** carefully produces X in O(k|W|) time.
- This is optimal because the length of X is $\Omega(k|W|)$.
- Tightness proof:
 - Construct the de Bruijn string W of order k 1 over Σ .
 - Assign every other consecutive length-k substring to be sensitive.

- Read W from left to right.
- If the length-k substring read is non-sensitive append it to X.
- Otherwise:
 - **R1**: ... baaa \rightarrow ... baa#aaa (because we must hide baaa).
 - **R2**: ... <u>aaa</u>#<u>aaa</u>b \rightarrow ... aaab (because a shorter string is possible).

W = aabaaaababbbaab

- Implementing **R1** and **R2** carefully produces X in O(k|W|) time.
- This is optimal because the length of X is $\Omega(k|W|)$.
- Tightness proof:
 - Construct the de Bruijn string W of order k 1 over Σ .
 - Assign every other consecutive length-k substring to be sensitive.
 - Then X is of length $\Omega(k|W|)$ because no overlap exists.

• If blocks in-between #s overlap by k - 1 letters, then we can further apply **R2** while still satisfying $\Pi \mathbf{1}$.

• If blocks in-between #s overlap by k - 1 letters, then we can further apply **R2** while still satisfying $\Pi \mathbf{1}$.

• If blocks in-between #s overlap by k - 1 letters, then we can further apply **R2** while still satisfying $\Pi \mathbf{1}$.

X = aabaa#aaababbba#baab

• Looks bad: Shortest Common Superstring (SCS) is NP-complete.

• If blocks in-between #s overlap by k - 1 letters, then we can further apply **R2** while still satisfying $\Pi \mathbf{1}$.

X = aabaa#aaababbba#baab

- Looks bad: Shortest Common Superstring (SCS) is NP-complete.
- **Observation**: Overlaps allowed are of fixed length k 1.

• If blocks in-between #s overlap by k - 1 letters, then we can further apply **R2** while still satisfying $\Pi \mathbf{1}$.

X = aabaa#aaababbba#baab

- Looks bad: Shortest Common Superstring (SCS) is NP-complete.
- **Observation**: Overlaps allowed are of fixed length k 1.
- Idea:

• If blocks in-between #s overlap by k - 1 letters, then we can further apply **R2** while still satisfying $\Pi \mathbf{1}$.

X = aabaa#aaababbba#baab

- Looks bad: Shortest Common Superstring (SCS) is NP-complete.
- **Observation**: Overlaps allowed are of fixed length k 1.
- Idea:
 - Assign **ids** to blocks' prefixes and suffixes of length k 1.

• If blocks in-between #s overlap by k - 1 letters, then we can further apply **R2** while still satisfying $\Pi \mathbf{1}$.

X = aabaa#aaababbba#baab

- Looks bad: Shortest Common Superstring (SCS) is NP-complete.
- **Observation**: Overlaps allowed are of fixed length k 1.
- Idea:
 - Assign **ids** to blocks' prefixes and suffixes of length k 1.
 - Ignore the middle part of the blocks (it plays no role).
• If blocks in-between #s overlap by k - 1 letters, then we can further apply **R2** while still satisfying $\Pi \mathbf{1}$.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

- Looks bad: Shortest Common Superstring (SCS) is NP-complete.
- **Observation**: Overlaps allowed are of fixed length k 1.
- Idea:
 - Assign **ids** to blocks' prefixes and suffixes of length k 1.
 - Ignore the middle part of the blocks (it plays no role).
 - Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].

• If blocks in-between #s overlap by k - 1 letters, then we can further apply **R2** while still satisfying $\Pi \mathbf{1}$.

X = aabaa#aaababbba#baab

Y = aaababbba#aabaab

- Looks bad: Shortest Common Superstring (SCS) is NP-complete.
- **Observation**: Overlaps allowed are of fixed length k 1.
- Idea:
 - Assign **ids** to blocks' prefixes and suffixes of length k 1.
 - Ignore the middle part of the blocks (it plays no role).
 - Solve SCS for two-letter strings [Gallant et al., JCSS, 1980].
- Result: Linear time!

↓ □ ▶ ↓ □ ▶ ↓ ■ → へこ → ■ → へつ ○
75 / 108

Create an instance of MCK from an instance of **MCSR**:

Create an instance of MCK from an instance of MCSR:

• Compute the set of all candidate ghost patterns.

Create an instance of MCK from an instance of MCSR:

- Compute the set of all **candidate ghost** patterns.
- Assign a **cost** to each candidate ghost.

Create an instance of MCK from an instance of MCSR:

- Compute the set of all **candidate ghost** patterns.
- Assign a **cost** to each candidate ghost.
- Assign a weight to each possible letter replacement.

Create an instance of MCK from an instance of MCSR:

- Compute the set of all **candidate ghost** patterns.
- Assign a **cost** to each candidate ghost.
- Assign a **weight** to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995].

Create an instance of MCK from an instance of MCSR:

- Compute the set of all **candidate ghost** patterns.
- Assign a **cost** to each candidate ghost.
- Assign a **weight** to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995]. Translate the solution back to **MCSR**.

Create an instance of MCK from an instance of MCSR:

- Compute the set of all candidate ghost patterns.
- Assign a **cost** to each candidate ghost.
- Assign a **weight** to each possible letter replacement.

Solve the MCK instance [Pissinger, Eur J Oper Res, 1995]. Translate the solution back to **MCSR**.

- X = aabaa#aaababbba#baab
- Y = aaababbba#aabaab
- Z = aaababbba**b**aabaab

イロト 不得 トイヨト イヨト

 We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO, referred to as TPM, in terms of *data utility* and *efficiency*.

- We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO, referred to as TPM, in terms of *data utility* and *efficiency*.
- Four real datasets (OLD, TRU, MSN, DNA) and a synthetic (SYN).

- We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO, referred to as TPM, in terms of *data utility* and *efficiency*.
- Four real datasets (OLD, TRU, MSN, DNA) and a synthetic (SYN).

Dataset	Data domain	Length	Alphabet	# sensitive	# sensitive	Pattern
		n	size Σ	patterns	positions $ \mathcal{S} $	length k
OLD	Movement	85,563	100	[30, 240] (60)	[600, 6103]	[3,7] (4)
TRU	Transportation	5,763	100	[30, 120] (10)	[324, 2410]	[2,5] (4)
MSN	Web	4,698,764	17	[30, 120] (60)	[6030, 320480]	[3,8] (4)
DNA	Genomic	4,641,652	4	[25, 500] (100)	[163, 3488]	[5, 15] (13)
SYN	Synthetic	20,000,000	10	[10, 1000] (1000)	[10724, 20171]	[3,6] (6)

- We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO, referred to as TPM, in terms of *data utility* and *efficiency*.
- Four real datasets (OLD, TRU, MSN, DNA) and a synthetic (SYN).

Dataset	Data domain	Length	Alphabet	# sensitive	# sensitive	Pattern
		n	size Σ	patterns	positions $ \mathcal{S} $	length k
OLD	Movement	85,563	100	[30, 240] (60)	[600, 6103]	[3,7] (4)
TRU	Transportation	5,763	100	[30, 120] (10)	[324, 2410]	[2,5] (4)
MSN	Web	4,698,764	17	[30, 120] (60)	[6030, 320480]	[3,8] (4)
DNA	Genomic	4,641,652	4	[25, 500] (100)	[163, 3488]	[5, 15] (13)
SYN	Synthetic	20,000,000	10	[10, 1000] (1000)	[10724, 20171]	[3,6] (6)

• We compared **TPM** against a greedy baseline, referred to as **BA**.

- We evaluate the pipeline TFS-ALGO→PFS-ALGO→MCSR-ALGO, referred to as TPM, in terms of *data utility* and *efficiency*.
- Four real datasets (OLD, TRU, MSN, DNA) and a synthetic (SYN).

Dataset	Data domain	Length	Alphabet	# sensitive	# sensitive	Pattern
		n	size Σ	patterns	positions $ \mathcal{S} $	length k
OLD	Movement	85,563	100	[30, 240] (60)	[600, 6103]	[3,7] (4)
TRU	Transportation	5,763	100	[30, 120] (10)	[324, 2410]	[2,5] (4)
MSN	Web	4,698,764	17	[30, 120] (60)	[6030, 320480]	[3, 8] (4)
DNA	Genomic	4,641,652	4	[25, 500] (100)	[163, 3488]	[5,15] (13)
SYN	Synthetic	20,000,000	10	[10, 1000] (1000)	[10724, 20171]	[3,6] (6)

- We compared **TPM** against a greedy baseline, referred to as **BA**.
- BA replaces #s greedily from left to right based on letter frequencies.

Experiments: Frequency Distortion

<ロト < 回ト < 目ト < 目ト < 目ト 目 の Q (C 89 / 108

Experiments: Frequency Distortion $\sum_{U} (Freq_{W}(U) - Freq_{Z}(U))^{2}$, where U is a non-sensitive pattern.

Experiments: Frequency Distortion $\sum_{U} (Freq_{W}(U) - Freq_{Z}(U))^{2}$, where U is a non-sensitive pattern.

S denotes the set of occurrences of sensitive patterns.

(日)

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q (C 92/108

 τ -losts are patterns with frequency $> \tau$ in W and $\leq \tau$ in Z.

 τ -losts are patterns with frequency $> \tau$ in W and $\leq \tau$ in Z. τ -ghosts are patterns with frequency $< \tau$ in W and $\geq \tau$ in Z.

 τ -losts are patterns with frequency $> \tau$ in W and $\leq \tau$ in Z. τ -ghosts are patterns with frequency $< \tau$ in W and $\geq \tau$ in Z. We used $\tau = 20$.

 τ -losts are patterns with frequency $> \tau$ in W and $\leq \tau$ in Z. τ -ghosts are patterns with frequency $< \tau$ in W and $\geq \tau$ in Z. We used $\tau = 20$.

 y_y^{\times} on the top of each bar for **BA** denotes $x \tau$ -lost and $y \tau$ -ghost.

< ロ > < 同 > < 回 > < 回 >

Experiments: Output Size

Experiments: Output Size

Length of X and Y (output of TFS-ALGO and PFS-ALGO, resp.).

Experiments: Output Size

Length of X and Y (output of TFS-ALGO and PFS-ALGO, resp.).

On the top of each pair of bars we plot |X| - |Y|.

Experiments: Speed

◆□ → < □ → < Ξ → < Ξ → < Ξ → ○ < ○ 100/108

Experiments: Speed

◆□ → < □ → < ■ → < ■ → < ■ → < ■ → < ■ → < ○ へ ○ 102/108

• Introduced the Combinatorial String Dissemination model which focuses on guaranteeing **privacy-utility trade-offs**.

- Introduced the Combinatorial String Dissemination model which focuses on guaranteeing **privacy-utility trade-offs**.
- Defined three problems (**TFS**, **PFS**, and **MCSR**) to sanitize a string while preserving certain utility properties.

- Introduced the Combinatorial String Dissemination model which focuses on guaranteeing **privacy-utility trade-offs**.
- Defined three problems (**TFS**, **PFS**, and **MCSR**) to sanitize a string while preserving certain utility properties.
- Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO) for solving these problems.

- Introduced the Combinatorial String Dissemination model which focuses on guaranteeing **privacy-utility trade-offs**.
- Defined three problems (**TFS**, **PFS**, and **MCSR**) to sanitize a string while preserving certain utility properties.
- Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO) for solving these problems.
- Our experiments show that our methods are effective and efficient.

- Introduced the Combinatorial String Dissemination model which focuses on guaranteeing **privacy-utility trade-offs**.
- Defined three problems (**TFS**, **PFS**, and **MCSR**) to sanitize a string while preserving certain utility properties.
- Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO) for solving these problems.
- Our experiments show that our methods are effective and efficient.

Conference version: ECML/PKDD 2019

- Introduced the Combinatorial String Dissemination model which focuses on guaranteeing **privacy-utility trade-offs**.
- Defined three problems (**TFS**, **PFS**, and **MCSR**) to sanitize a string while preserving certain utility properties.
- Developed methods (TFS-ALGO, PFS-ALGO, and MCSR-ALGO) for solving these problems.
- Our experiments show that our methods are effective and efficient.

Conference version: ECML/PKDD 2019 Full version: arxiv.org/abs/1906.11030