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Abstract. This paper presents a new solution to the expression problem
(EP) that works in OO languages with simple generics (including Java
or C#). A key novelty of this solution is that advanced typing features,
including F-bounded quantification, wildcards and variance annotations,
are not needed. The solution is based on object algebras, which are an
abstraction closely related to algebraic datatypes and Church encodings.
Object algebras also have much in common with the traditional forms
of the Visitor pattern, but without many of its drawbacks: they are
extensible, remove the need for accept methods, and do not compromise
encapsulation. We show applications of object algebras that go beyond
toy examples usually presented in solutions for the expression problem.
In the paper we develop an increasingly more complex set of features for
a mini-imperative language, and we discuss a real-world application of
object algebras in an implementation of remote batches. We believe that
object algebras bring extensibility to the masses: object algebras work in
mainstream OO languages, and they significantly reduce the conceptual
overhead by using only features that are used by everyday programmers.

1 Introduction

The “expression problem” (EP) [38, 10, 46] is now a classical problem in program-
ming languages. It refers to the difficulty of writing data abstractions that can
be easily extended with both new operations and new data variants. Tradition-
ally the kinds of data abstraction found in functional languages can be extended
with new operations, but adding new data variants is difficult. The traditional
object-oriented approach to data abstraction facilitates adding new data variants
(classes), while adding new operations is more difficult. The Visitor Pattern [13]
is often used to allow operations to be added to object-oriented data abstractions,
but the common approach to visitors prevents adding new classes. Extensible
visitors can be created [43, 50, 31], but so far solutions in the literature require
complex and unwieldy types, or advanced programming languages.

In this paper we present a new approach to the EP based on object algebras.
An object algebra is a class that implements a generic abstract factory inter-
face, which corresponds to a particular kind of algebraic signature [18]. Object
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Abstract. Object algebras are a new programming technique that en-
ables a simple solution to basic extensibility and modularity issues in
programming languages. While object algebras excel at defining modu-
lar features, the composition mechanisms for object algebras (and fea-
tures) are still cumbersome and limited in expressiveness. In this paper
we leverage two well-studied type system features, intersection types and
type-constructor polymorphism, to provide object algebras with expres-
sive and practical composition mechanisms. Intersection types are used
for defining expressive run-time composition operators (combinators)
that produce objects with multiple (feature) interfaces. Type-constructor
polymorphism enables generic interfaces for the various object algebra
combinators. Such generic interfaces can be used as a type-safe front end
for a generic implementation of the combinators based on reflection. Ad-
ditionally, we also provide a modular mechanism to allow different forms
of self -references in the presence of delegation-based combinators. The
result is an expressive, type-safe, dynamic, delegation-based composition
technique for object algebras, implemented in Scala, which effectively
enables a form of Feature-Oriented Programming using object algebras.

1 Introduction

Feature-oriented programming (FOP) is a vision of programming in which in-
dividual features can be defined separately and then composed to build a wide
variety of particular products [5,20,41]. In an object-oriented setting, FOP breaks
classes and interfaces down into smaller units that relate to specific features. For
example, the IExp interface below is a complete object interface, while IEval and
IPrint represent interfaces for the specific features of evaluation and printing.

trait IExp {
def eval() : Int
def print() : String

}

trait IEval { def eval() : Int }

trait IPrint { def print() : String }

Existing object-oriented programming (OOP) languages make it difficult to sup-
port FOP. Traditionally OOP encourages the definition of complete interfaces
such as IExp. Such interfaces are implemented by several classes. However adding
a new feature usually involves coordinated changes in multiple classes. In other
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Abstract
Object Algebras are a recently introduced design pattern to make the
implementation of recursive data types more extensible. In this short
paper we report our experience in using Object Algebras in building
a realistic domain-specific language (DSL) for questionnaires, called
QL. This experience has led to a simple, yet powerful set of tools
for the practical and flexible implementation of highly extensible
languages.

Categories and Subject Descriptors D.2.11 [Software Architec-
ture]: Languages; D.3.2 [Language Classifications]: Extensible
Languages; D.3.3 [Language Constructs and Features]: Frame-
works

General Terms Design, Languages
Keywords Object Algebras; extensibility; interpreter

1. Introduction
Object Algebras are a programming technique to make the imple-
mentation of recursive data types more extensible [2]. As a solution
to the “expression problem” [4], it supports modular extension of
both language constructs (e.g., expressions) and operations (e.g.,
evaluation, type checking, etc.).

The key idea of Object Algebras is to describe the abstract syntax
of a language using generic factory interfaces. Each factory method
corresponds to a constructor of a data type variant. For instance, the
following interface declares a data type for expressions, supporting
literals and addition:

interface ExpAlg<E> {
E lit(int n);
E add(E l, E r);

}

Operations over the data type are realized by implementing this
interface and instantiating the type parameter to a concrete type. For
instance, evaluation could be realized as follows1:

1 We will use Java 8 features such as functional interfaces and closure literals
throughout.
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interface IEval { int eval(); }

class Eval implements ExpAlg<IEval> {
IEval lit(int n) { return () -> n; }
IEval add(IEval l, IEval r) {
return () -> l.eval() + r.eval();

}
}

The functional interface IEval captures the operation we’re interested
in. The class Eval acts as a factory for creating expressions that can
be evaluated.

Operations for particular expressions are created by calling
factory methods on implementations of the generic interface. For
instance, the following generic method creates the expression “1 +
2” over a specific algebra alg:

<X> X make(ExpAlg<X> alg) {
return alg.add(alg.lit(1), alg.lit(2));

}

To evaluate expressions, one would call this method with an instance
of Eval.

Implementing a different operation involves implementing the
generic interface again. This solves half of the expression problem:
extensibility of operations. The other half, extension of variants,
is solved by first extending the generic interface, for instance,
MulAlg<E> extends ExpAlg<E>). Operations are then extended by
implementing the extended interface and subclassing the class
representing the base operation. For instance, EvalMul extends Eval
implements MulAlg<IEval>.

A consequence of the object algebra style in the context of
language implementation is that the notion of an AST in a sense
disappears. Instead, each operation requires the (re)construction of
the program structure over the algebra that performs that operation.

Object Algebras were invented only recently (2012) and have
never been applied in a realistic language implementation project.
In this short paper we share our experience in using Object Algebras
in the implementation of a DSL for questionnaires, called QL. In
particular, we address the following problems:
• In practical language implementation, program structures are

created by a parser. To prevent parsing multiple times for each
operation (e.g., type checking, evaluation etc.) we present a
recorder combinator which delays the instantiation of a program
into a concrete algebras till after parsing

• In our experience, the use of inheritance tends to lead to inflexi-
ble designs. We present a dynamic union combinator to combine
languages without the use of inheritance.

• Although Object Algebras support extension of abstract syntax,
they do not solve the problem of extensible concrete syntax. We
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Abstract
The goal of modular language development is to enable the
definition of new languages as assemblies of pre-existing
ones. Recent approaches in this area are plentiful but usu-
ally suffer from two main problems: either they do not sup-
port modular language composition both at the specification
and implementation levels, or they require advanced knowl-
edge of specific paradigms which hampers wide adoption
in the industry. In this paper, we introduce a non-intrusive
approach tomodular development of language concerns with
well-defined interfaces that can be composed modularly
at the specification and implementation levels. We present
an implementation of our approach atop the Eclipse Mod-
eling Framework, namely Alex—an object-oriented meta-
language for semantics definition and language composition.
We evaluate Alex in the development of a new DSL for IoT
systems modeling resulting from the composition of three
independently defined languages (UML activity diagrams,
Lua, and the OMG Interface Description Language). We eval-
uate the effort required to implement and compose these
languages using Alex with regards to similar approaches of
the literature.
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1 Introduction
As recently demonstrated in the context of programming lan-
guages [4] and modeling languages [25], many software lan-
guages, including Domain-Specific Languages (DSLs), have
a lot to share, e.g., recurrent constructs and paradigms. As
“software languages are software too” [12], such recurrent
pieces of software language specification and implementa-
tion would benefit from being developed separately to be
eventually reused in new contexts.

The promise of modular language development is to liber-
ate language designers from the burden of developing every
new language from scratch and enable them to reuse, as-
semble, and customize existing language concerns to ease
the definition of new ones [7]. Recent approaches in the
area of modular language development are plentiful. Dedi-
cated paradigms and underlying implementations have been
explored to bring specific properties in language specifica-
tions, e.g., formal composability [4], or off-the-shelf specifi-
cation in Spoofax [16], Monticore [17], and Neverlang [27].
However, the specific knowledge required to manipulate the
corresponding paradigms hampers their wide adoption in
the industry (i.e., for the masses). Other approaches, such as
Lisa [22] or Melange [9], provide language reuse capabilities
within frameworks and ecosystems relying on mainstream
language engineering technologies (e.g., the Eclipse Mod-
eling Framework which uses well-known object-oriented
programming concepts [26]) but currently fail to support
modularity at the language implementation level (e.g., the set
of Java classes generated from an Ecore metamodel) which
prevents opportunistic reuse of existing languages.

In this paper, we present a non-intrusive approach to mod-
ular language development that (i) can easily be integrated
intomainstream (object-oriented) language engineering tech-
nologies, and (ii) is fully modular at the specification and
implementation levels of language concerns.

At the specification level, language concerns expose clear
interfaces that foster abstraction and information hiding [10].
The interface of a language concern expresses its require-
ments towards other concerns and encapsulates the internals
of its implementation. Interfaces do not make any assump-
tion on the internals of the syntax and semantics of required
constructs.

At the implementation level, we present an object-oriented
pattern supporting the composition of language concerns. It
supports separate type-checking and compilation, and can be
automatically generated from language specifications. This
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Abstract—Executable Domain-Specific Modeling Languages
(xDSMLs) are typically defined by metamodels that specify
their abstract syntax, and model interpreters or compilers that
define their execution semantics. To face the proliferation of
xDSMLs in many domains, it is important to provide language
engineering facilities for opportunistic reuse, extension, and
customization of existing xDSMLs to ease the definition of
new ones. Current approaches to language reuse either require
to anticipate reuse, make use of advanced features that are
not widely available in programming languages, or are not
directly applicable to metamodel-based xDSMLs. In this paper,
we propose a new language implementation pattern, named
REVISITOR, that enables independent extensibility of the syntax
and semantics of metamodel-based xDSMLs with incremental
compilation and without anticipation. We seamlessly implement
our approach alongside the compilation chain of the Eclipse
Modeling Framework, thereby demonstrating that it is directly
and broadly applicable in various modeling environments. We
show how it can be employed to incrementally extend both the
syntax and semantics of the fUML language without requiring an-
ticipation or re-compilation of existing code, and with acceptable
performance penalty compared to classical handmade visitors.

I. INTRODUCTION

The integration of domain-specific concepts and development
best practices into modeling languages significantly improves
software and systems engineers’ productivity and system
quality (e.g., [1], [2], [3]). Yet, the development of modeling
languages has only been recently recognized as a significant
and challenging software engineering task itself, which requires
specialized knowledge.

Recent efforts in the modeling community provided various
facilities to support the definition of new modeling languages.
For example, the Eclipse Modeling Framework [4] (EMF) relies
on the object-oriented paradigm to support the definition of
both the abstract syntax and semantics of a modeling language.
In this context, an Executable Domain-Specific Modeling
Language (xDSML) typically consists of a metamodel that
defines its abstract syntax, and an interpreter or compiler that
defines its execution semantics. The latter can be expressed on
top of the abstract syntax using different paradigms (Objects,
Aspects, Rules, etc.), all requiring a traversal of the abstract
syntax either explicitly (e.g., using the Visitor pattern [5])
or implicitly (e.g., in the underlying execution engine of a
declarative specification). The execution semantics is thus
eventually implemented through a visitor-like pattern that

traverses the abstract syntax [6], and interprets or compiles
model elements.

Following the increasing use of xDSMLs in more and more
application domains, development and evolution of xDSMLs
become recurrent tasks for software and systems engineers.
While every xDSML is specifically tailored to a particular
purpose (either a specific application domain or a specific
system concern), many xDSMLs share recurrent paradigms [7].
For instance, there exist many syntactic and semantic variation
points for state machines, which have led to different modeling
languages [8]. Similarly, many xDSMLs require an action
language to express localized behaviors (e.g., Xbase [9]).

To face the proliferation of xDSMLs and foster reuse between
them, a disciplined approach to ease reuse of existing xDSMLs
in the development of new ones is of utmost importance.
More specifically, this requires supporting extension of xDSML
along the syntax and semantics axes in a non-linear way,
and the recombination of such extensions (i.e., independent
extensibility). This should happen without having to antici-
pate these extensions (i.e., to support opportunistic reuse),
and without having to recompile existing language modules
(i.e., incremental compilation). We detail these requirements
and provide an overview of our approach in Section II.

Existing approaches fail to comply with the requirements
mentioned above. Traditional techniques such as object-oriented
interpreters, or the Visitor pattern, offer limited extensibility
because of the Expression Problem [10]: interpreters support
modular syntax extension, and visitors support adding new
operations, but neither support both. Existing solutions to
the Expression Problem either use advanced programming
features (e.g., path-dependent and value types [11]) unavailable
in mainstream languages used in most modeling frameworks
(e.g., Java for EMF), or give up on explicit abstract syntax
structure (e.g., [12]). Other approaches, such as Melange,
overcome these limitations [13], but do not support incremental
compilation.

In this paper, we propose a new language implementation
pattern, called REVISITOR (Section III), that enables indepen-
dent extensibility of the syntax and semantics of metamodel-
based xDSMLs with incremental compilation and without
anticipation. This pattern is inspired by the Object Algebra
design pattern [12] as an alternative to the Visitor pattern. The
underlying intuition is to combine the behavioral extensibility
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machine Button
  state On
    on push ⇒ Off
  end
  state Off
    on push ⇒ On
  end
end

System
Integrator

Domain
Expert 2

Domain
Expert 1

OffOn

push

push

FSM fsm =

 new FSMBuilder("Button")
  .init("On")

   .to("Off").on("push")

  .state("Off")

   .to("On").on("push")

 .build();

Interpreter, refactorings Simulator, persistence Integration, reuse

Figure 1. Three incarnations of the same FSM model in
three language vehicles: di�erent representations and tools
for di�erent users and tasks.

Java to o�er a �uent API for advanced users who focus on
its integration with other system concerns.

Using today’s techniques, it is possible to de�ne the same
FSM language in these three LVs separately. It is not possible,
however, to apply the tools of a given LV on the models or
programs created in another LV—for instance, animating
a FSM model written in EMF using the Rascal interpreter,
or synchronizing a textual FSM model in Rascal with its
equivalent incarnation as a Java AST. Achieving this goal
requires to e�ciently synchronize the diverse representations
of the same model in di�erent LVs; for instance to let the FSM
interpreter written in Rascal update its own representation
of an FSM model after each execution step and synchronize
it with the representation of the same model in EMF for
animation purposes.
In this paper, we envision a language engineering ap-

proach enabling (i) language designers to combine tools from
multiple LVs to engineer diverse shapes for a single DSL and
(ii) language users to manipulate language constructs in the
most appropriate shape. We present the notion of shape-
diverse DSL in Section 2. We then present our prototype
approach, P����, in Section 3, and discuss our implementa-
tion of a shape-diverse FSM language in Section 4. Finally,
we discuss open questions and next steps in Section 5.

2 Shape-Diverse DSLs
The cornerstone artifact de�ning a DSL in any LV is its
abstract syntax. The way abstract syntax is expressed dif-
fers drastically from one LV to another: GEMOC [4] and
Xtext [3] use Ecore metamodels [13], MPS uses concepts [16],
Rascal [8] uses Algebraic Data Types (ADT), etc. Language
embedding techniques, on the other hand, use the constructs
of a host language to materialize the constructs of a DSL
in the host language itself (e.g., a set of Java classes). Con-
crete models are then built as instances of the corresponding
abstract syntax formalism: Ecore models, ADT values, Java
ASTs, etc. The tools de�ned within a particular LV (an in-
terpreter in Rascal, an editor in EMF) manipulate models in

Figure 2. Languages are implemented as shapes in LVs
and models are projected as incarnations conforming to the
shapes.

the corresponding formalism (respectively, ADT values and
Ecore models). These formalisms radically di�er in many
ways [7]: object-oriented vs. functional, graphs vs. trees, mu-
table vs. immutable datatypes, cross-references vs. symbolic
names, etc. As LVs are developed by independent groups of
people and rely on di�erent underlying theories, it is nei-
ther possible nor desirable to establish a common foundation
upon which all LVs would agree.

Figure 2 gives an overview of the concept of shape-diverse
language and the terminology we use throughout the pa-
per. A shape-diverse language L (e.g., the FSM language
of Figure 1) is a language that is implemented in multiple
LVs through multiple shapes Si . As mentioned earlier, Ecore
metamodels, ADT de�nitions, and Java APIs, along with
their associated tooling, are examples of shapes. Similarly, a
“conceptual” modelm that uses the constructs of L (e.g., the
simple Button machine) is projected1 as an incarnation Ii
conforming to the shape Si in a LV: an Ecore model, an ADT
value, or a Java AST.

As the same model is incarnated many times, each of its
incarnations Ii must remain synchronized. This synchro-
nization mechanism must ensure three essential properties.
First, it must be e�cient. This rules out any synchroniza-
tion mechanism that would require a full traversal or full
(de)serialization of the incarnations after every update. Sec-
ond, it must account for any extra shape-speci�c information
the various LVs have to maintain to function properly, such
as layout information in a textual or graphical editor, or run-
time state in a simulation environment. The synchronization
mechanism must thus isolate the information that relates
to the model itself from the information that is speci�c to
a particular shape. Third, the synchronization mechanism
must be language-agnostic, meaning it should not have to
be re-implemented for every shape-diverse DSL.

1The notion of projection here is unrelated to the notion of projectional
editing [17] as there is no underlying AST to project from.
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Prism

Projection
Incarnation

#1

1: Produce
      Patch

3: Apply Patch

3: Apply Patch
2: Dispatch

Incarnation
#2

Incarnation
#3

Model

Figure 3. Using P���� to synchronize three incarnations of
the same model. Here, a change occurs on Incarnation #1
and the resulting patch is shipped to Incarnation #2 and #3.

3 Synchronizing Incarnations with P����
Figure 3 depicts our prototype approach to the problem of
synchronizing various incarnations of a model, P����. P����
acts as a communication bus between LVs that remain fully
independent. The key idea is that every change occurring
on one incarnation is shipped to all other incarnations of
the same model in the form of a patch. This patch represents
the exact set of changes that occurred on one incarnation. It
allows synchronizing incarnations online e�ciently without
requiring serialization or a full traversal of any of the incar-
nation. P���� keeps track of a matrix that associates every
conceptual model to its incarnations in various LVs. When
a change occurs on one incarnation, for instance resulting
from a user edit or an execution step of an interpreter, the
LV hosting this incarnation generates a patch describing the
change as a set of CRUD-like operations. In our prototype
implementation, the structure of this patch is prescribed by
the Rascal ADT shown in Listing 1, largely inspired by edit
scripts [15]. Essentially, patches consist of a set of operations
attached to identities [7] that represent particular objects in
the model. To ensure that every LV can apply the operations
on the right elements, identities are preserved across LVs
and, in our case, they are represented by URIs [2].
Every LV then interprets the patch in its own way to

keep its incarnations synchronized. In EMF, for instance,
the patch is interpreted as a set of changes that impact a
model conforming to an Ecore metamodel, while in Rascal it
is interpreted as a set of changes that impact an ADT value.
As mentioned earlier, each LV may want to preserve ex-

tra shape-speci�c information across the patches. A textual
editor in Rascal, for instance, needs to keep some of the pars-
ing information to maintain layout whenever patches are
applied. So it should be possible to apply the patch while
maintaining the extra information speci�c to a given LV.
Intuitively, our approach supposes that all the information
that does not directly relate to the constructs of a language
is “extra” and therefore should not be part of the patch itself.
There might be cases where sharing extra-information from

@doc{A patch consists of a sequence of edits}
alias Patch = tuple[Id root, Edits edits];

@doc{Edits are operations attached to object identities}
alias Edits = lrel[Id obj, Edit edit];

data Edit = put(str field, value val)
| unset(str field)
| ins(str field, int pos, value val)
| del(str field, int pos)
| create(str class)
| destroy();

Listing 1. CRUD-like patch de�nition in Rascal.

one shape to the other is desirable, for instance to share
layout information between two textual editors. We discuss
this point further in Section 5.
New LVs can be connected to P���� by implementing

a simple interface that consists of two operations, namely
(i) produce which creates a patch materializing the changes
on an incarnation and noti�es P����, and (ii) apply which
receives a patch from P���� and interprets it to update an
incarnation, taking into account the speci�cities of the LV.
The way changes are detected in an incarnation and patches
are produced is not prescribed by our approach. For instance,
our Rascal implementation computes patches from a di�
operation between two ADT values, while our EMF imple-
mentation captures the result of transactions on an Ecore
model to produce the patches. The produce and apply opera-
tions are implemented once for every LV and do not have to
be re-implemented for every language.

A cornerstone artifact in P���� is the dispatch mechanism
that routes patches to the appropriate incarnations. When
receiving a patch, P���� looks up its internal matrix to de-
termine which other incarnations of the same model should
be updated. The patch is then copied and routed accordingly.
Our current implementation of the dispatch mechanism is
kept simple, and we leave for future work the support of
concurrent edits on di�erent incarnations of the same model.
This will allow P���� to scale to advanced scenarios that go
beyond the scope of this paper, such as collaborative editing.

4 A Shape-Diverse FSM Language
To illustrate P����, we build a shape-diverse FSM language
conjointly in Rascal, EMF, and Java, available on a companion
webpage [14]. Figure 4 depicts the implementation of the
abstract syntax of this FSM language in the three LVs. The
corresponding incarnations are those given in Figure 1.

We use Rascal to de�ne a textual editor and a simple trans-
formation that inserts a new state in a machine. We use EMF
to de�ne two graphical editors: a classical tree editor and
a domain-speci�c representation with Sirius. We build the
Java API following a simple systematic convention, so as to
easily pinpoint which parts of the Java AST have changed (to
compute a patch) or need to be updated (to apply a patch).
Using P����, the Rascal and EMF shapes synchronize

seamlessly, but we noticed a number of challenges with the
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• Live programming: make programming experience 

more fluid by getting rid of slow edit-compile-run 
cycle 

• Live modeling: do the same for domain-specific 
modeling languages 

• Question: when the language user changes the 
program, how should we migrate the run-time 
state? 
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Abstract Live programming is a style of development char-
acterized by incremental change and immediate feedback.
Instead of long edit-compile cycles, developers modify a
running program by changing its source code, receiving
immediate feedback as it instantly adapts in response. In this
paper, we propose an approach to bridge the gap between
running programs and textual domain-specific languages
(DSLs). The first step of our approach consists of applying
a novel model differencing algorithm, tmdiff, to the textual
DSL code. By leveraging ordinary text differencing and ori-
gin tracking, tmdiff produces deltas defined in terms of the
metamodel of a language. In the second step of our approach,
the model deltas are applied at run time to update a running
system, without having to restart it. Since the model deltas
are derived from the static source code of the program, they
are unaware of any run-time state maintained during model
execution. We therefore propose a generic, dynamic patch
architecture, rmpatch, which can be customized to cater for
domain-specific state migration. We illustrate rmpatch in a
case study of a live programming environment for a simple
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DSL implemented in Rascal for simultaneously defining
and executing state machines.

Keywords Live programming · Domain-specific
languages · Text differencing · Model patching · Adapting
models ·Models at run time

1 Introduction

The “gulf of evaluation” represents the cognitive gapbetween
an action performed by a user and the feedback provided to
her about the effect of that action [23]. Live programming
aims to bridge the gulf of evaluation by shortening the feed-
back loop between editing a program’s textual source code
and observing its behavior. In a live programming environ-
ment, the running program is updated instantly after every
change in the code [34]. As a result, developers immediately
see the behavioral effects of their actions and learn predict-
ing how the program adapts to targeted improvements to the
code. In this paper, we are concerned with providing generic,
reusable frameworks for developing “live DSLs”, languages
whose users enjoy the immediate feedback of live execu-
tion. We consider such techniques to be first steps toward
providing automated support for live languages in language
workbenches [8].

In particular, we propose two reusable components, tmd-
iff and rmpatch to ease the development of textual live
DSLs, based on a foundation of metamodeling and model
interpretation. tmdiff is used to obtain model-based deltas
from textual source code of a DSL. These deltas are then
applied at run time by rmpatch to migrate the execution of
the DSL program [38]. This enables the users of a DSL to
modify the source and immediately see the effect.
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benefits have not yet been explored from the perspective
of executable domain-specific modeling languages. In this
paper, we have described a framework for developing “live
textual languages,” basedon ametamodeling foundation.Our
framework consists of two components.

First, we presented tmdiff, a novel model differencing
algorithm, based on textual differencing and origin track-
ing. Origin tracking traces the identity of an element back
to the symbolic name that defines it in the textual source
of a model. Using textual differencing, these names can be
aligned between versions of a model. Combining the origin
relation and the alignment of names is sufficient to identify
the model elements themselves. It then becomes possible to
apply standard model differencing algorithms. tmdiff is a
fully language parametric approach to textual model differ-
encing. A prototype of tmdiff has been implemented in the
Rascal metaprogramming language [16].

The second component, rmpatch, represents an architec-
ture for dynamically adapting run-timemodels which encode
the execution of the model. rmpatch receives model deltas
from tmdiff and evolves the execution accordingly. To avoid
information loss and invalid run-time states, rmpatch can
be extended to define custom, language-specific migration
policies. rmpatch is used in the development of a live state
machine DSL, which allows simultaneous editing and using
of state machine definitions.

To the best of our knowledge, this paper is the first work
connecting the worlds of model differencing and dynamic
adaptation of models at run time. Nevertheless, some impor-
tant directions for further research remain. The most impor-
tant directions are formalizing the relation between static
metamodel and (extended) run-time metamodel of a DSL,
investigating how dependencies between edit operations can
be inferred and used to (re)order their application, and deter-
mining how to separately model and maintain run-time
state migration scenarios at a higher level of abstraction.
Ultimately, we expect that delta-based run-time adaptation
provides a fertile foundation for developing live program-
ming support for executable DSLs.

Acknowledgements We thank the reviewers for their insightful com-
ments that helped improve this paper.
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Implementing run-time 
state migration 

manually, is language-
specific, tedious and 

error-prone

Future work



Nextep: constraint-based 
run-time state migration

• Describe the relation between the abstract syntax 
of the language and its run-time state structure 
using constraints 

• When a program is edited, use constraint solving 
to find a new run-time state compatible with the 
new version





https://versen.nl/



Future of ALE
• Applying for new term 2020-2023 

• Continue in the same research line 

• New topics to explore: 

• Live computational notebooks 

• Collaborative live modeling



Towards Live Notebooks
• Notebooks: popular style of literate programming 

• data science, scientific programming 

• think: Mathematica 

• Generic techniques for constructing notebooks for 
arbitrary DSLs 

• Making notebooks “live”







Agile Language Engineering

• Productive collaboration between CWI SWAT and 
INRIA DiverSE 

• Improving language engineering and language use 
in the context of domain-specific languages 

• 5 publications, numerous workshops, 3 awards. 

• On to version 2.0! 

http://gemoc.org/ale/


