The Many Faces of Exponential Weights in Online Learning

Tim van Erven

Joint work with: Dirk van der Hoeven, Wojciech Kotłowski, Wouter Koolen

CWI-Inria Workshop, September 17, 2019

Example: Betting on Football Games

Netherlands runner-up in Women's World Cup 2019

- Before every match t in the English Premier League, my co-author Dirk wants to predict the goal difference Y_t
- Given feature vector $X_t \in \mathbb{R}^d$, he may predict $\hat{Y}_t = X_t^\intercal \theta_t$ with a linear model
- \triangleright After the match: observe Y_t
- Measure loss by $f_t(\theta_t) = (Y_t \hat{Y}_t)^2$ and improve parameter estimates: $\theta_t \to \theta_{t+1}$

Example: Betting on Football Games

Netherlands runner-up in Women's World Cup 2019

- Before every match t in the English Premier League, my co-author Dirk wants to predict the goal difference Y_t
- ▶ Given feature vector $X_t \in \mathbb{R}^d$, he may predict $\hat{Y}_t = X_t^\intercal \theta_t$ with a linear model
- \triangleright After the match: observe Y_t
- Measure loss by $f_t(\theta_t) = (Y_t \hat{Y}_t)^2$ and improve parameter estimates: $\theta_t \to \theta_{t+1}$

Goal: Predict almost as well as the best possible parameters θ^* :

$$\mathsf{Regret}_{\mathsf{T}}(\boldsymbol{\theta}^*) = \sum_{t=1}^T f_t(\boldsymbol{\theta}_t) - \sum_{t=1}^T f_t(\boldsymbol{\theta}^*)$$

Online Convex Optimization

Parameters θ take values in a convex domain $\Theta \subset \mathbb{R}^d$

- 1: **for** t = 1, 2, ..., T **do**
- 2: Learner **estimates** $\theta_t \in \Theta$
- 3: Nature reveals convex loss function $f_t: \Theta \to \mathbb{R}$
- 4: end for

Viewed as a zero-sum game against Nature:

$$V = \min_{\theta_1} \max_{f_1} \min_{\theta_2} \max_{f_2} \cdots \min_{\theta_T} \max_{f_T} \max_{\theta^* \in \Theta} \mathsf{Regret}_T(\theta^*)$$

Online Gradient Descent

$$egin{array}{ll} ilde{ heta}_{t+1} &= & extbf{ heta}_t - \eta_t
abla f_t(heta_t) \ heta_{t+1} &= & \min_{ heta \in \Theta} \| ilde{ heta}_{t+1} - heta\| \end{array}$$

Theorem (Zinkevich, 2003)

Suppose Θ compact with diameter at most D, and $\|\nabla f_t(\theta_t)\|_2 \leq G$. Then online gradient descent with $\eta_t = \frac{D}{G \cdot \sqrt{t}}$ guarantees

$$\mathsf{Regret}_{\mathcal{T}}(\boldsymbol{\theta}^*) \leq \frac{3}{2} \mathsf{GD} \sqrt{\mathcal{T}}$$

for any choices of Nature.

Under these assumptions, this is optimal (up to a constant factor).

	Day 1	Day 2	Day 3	• • •	Day T
Expert 1					
Expert 2					
Expert 3					
Truth					

	Day 1	Day 2	Day 3	• • •	Day T
Expert 1					
Expert 2					
Expert 3				• • •	
Truth					

	Day 1	Day 2	Day 3	• • •	Day 7
Expert 1					
Expert 2					
Expert 3				• • •	
Truth					

	Day 1	Day 2	Day 3	• • •	Day T
Expert 1					
Expert 2					
Expert 3					
Truth					

	Day 1	Day 2	Day 3	• • •	Day T
Expert 1					
Expert 2					
Expert 3				• • •	
Truth					

	Day 1	Day 2	Day 3	 Day T
Expert 1				
Expert 2				
Expert 3	-		مراوانه	
Truth				

	Day 1	Day 2	Day 3		Day T
Expert 1					
Expert 2		4		•••	وووووه
Expert 3	-		مراوانه	•••	
Truth					

	Day 1	Day 2	Day 3		Day T
Expert 1					
Expert 2			-		والأواد
Expert 3					
Truth				• • •	

	Day 1	Day 2	Day 3		Day T
Expert 1					
Expert 2			-		مرازان
Expert 3				• • •	
Truth					

Fits in Framework:

- Linear loss: $f_t(\theta) = g_t^{\mathsf{T}} \theta$ where $g_t \in \{0,1\}^d$ contains mistakes of d experts
- lacktriangle Compare with deterministic choice of expert $m{ heta}^* \in \{e_1, \dots, e_d\}$
- lacksquare But allow randomized predictions: $m{ heta}_t = \mathbb{E}_{P_t(i)}[e_i]$

	Day 1	Day 2	Day 3		Day T
Expert 1					
Expert 2					مرازان
Expert 3				• • •	
Truth					

Fits in Framework:

- Linear loss: $f_t(\theta) = g_t^{\mathsf{T}} \theta$ where $g_t \in \{0,1\}^d$ contains mistakes of d experts
- $lackbox{lack}$ Compare with deterministic choice of expert $oldsymbol{ heta}^* \in \{oldsymbol{e}_1, \ldots, oldsymbol{e}_d\}$
- lacktriangle But allow randomized predictions: $m{ heta}_t = \mathbb{E}_{P_t(i)}[e_i]$

GD Regret Bound Optimal Regret Bound
$$O(GD\sqrt{T}) = O(\sqrt{dT})$$
 $O(\sqrt{\log(d)T})$

Exponential Weights for Expert Advice

- ▶ Given prior distribution P_1 on experts $\{1, ..., d\}$
- ► Choose expert *i* with probability

$$P_{t+1}(i) = \frac{\exp\left(-\eta_t \sum_{s=1}^t g_{s,i}\right) P_1(i)}{\sum_{j=1}^d \exp\left(-\eta_t \sum_{s=1}^t g_{s,j}\right) P_1(j)}$$

Exponential Weights for Expert Advice

- ▶ Given prior distribution P_1 on experts $\{1, ..., d\}$
- ► Choose expert *i* with probability

$$P_{t+1}(i) = \frac{\exp(-\eta_t \sum_{s=1}^t g_{s,i}) P_1(i)}{\sum_{j=1}^d \exp(-\eta_t \sum_{s=1}^t g_{s,j}) P_1(j)}$$

Theorem (Vovk, 1990, Littlestone, Warmuth, 1994)

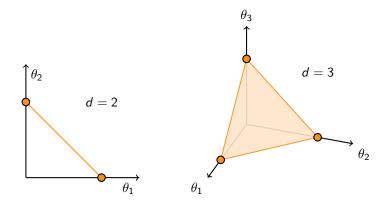
Exponential weights for expert advice with uniform prior P_1 and $\eta_t = \sqrt{\frac{8\log(d)}{T}}$ guarantees

$$\mathsf{Regret}_{\mathcal{T}}(\boldsymbol{\theta}^*) \leq \sqrt{\frac{1}{2}\log(d)\mathcal{T}}$$

for any choices of Nature.

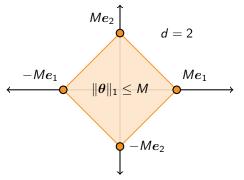
This is optimal for experts (with exactly these constants).

A Broader View of Exponential Weights



- ightharpoonup Linear loss: $f_t(\theta) = g_t^{\mathsf{T}} \theta$
- ▶ Prior P_1 supported on corners of simplex $\{e_1, \ldots, e_d\}$
- ▶ Distribution of predictions is mean of P_t : $\theta_t = \mathbb{E}_{P_t(\theta)}[\theta]$

Scaling up Exponential Weights



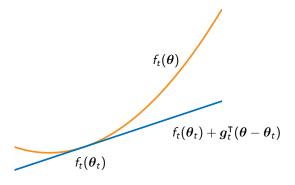
Theorem (EG[±], Kivinen, Warmuth, 1997)

Suppose $f_t(\theta) = g_t^\intercal \theta$ and $\|g_t\|_\infty \leq G$. Then exponential weights with uniform prior on $\{\pm Me_1,\ldots,\pm Me_d\}$ and $\eta_t = \sqrt{\frac{2\log(2d)}{M^2G^2T}}$ guarantees

$$\mathsf{Regret}_T(\theta^*) \leq GM\sqrt{2\log(2d)T}$$

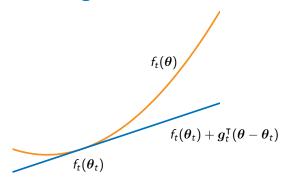
for all θ^* with $\|\theta^*\|_1 \leq M$.

Linearizing General Convex Losses



For
$$g_t = \nabla f_t(\theta_t)$$
, the linear loss $\tilde{f}_t(\theta) = g_t^\mathsf{T} \theta$ satisfies
$$f_t(\theta_t) - f_t(\theta^*) \leq g_t^\mathsf{T} (\theta_t - \theta^*) = \tilde{f}_t(\theta_t) - \tilde{f}_t(\theta^*)$$

Linearizing General Convex Losses

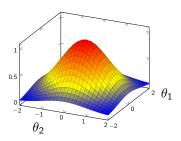


For $g_t = \nabla f_t(\theta_t)$, the linear loss $\tilde{f}_t(\theta) = g_t^\mathsf{T} \theta$ satisfies

$$f_t(heta_t) - f_t(heta^*) \leq g_t^\intercal(heta_t - heta^*) = ilde{f}_t(heta_t) - ilde{f}_t(heta^*)$$

- ▶ To prevent infinite regret, need $|\tilde{f}_t(\theta)|$ to be bounded.
- ► Hence dual norms to bound domain and gradients: $|\tilde{f}_t(\theta)| \le ||g_t||_p \cdot ||\theta||_q$ for 1/p + 1/q = 1

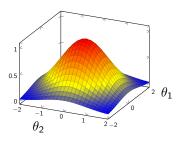
Exponential Weights for *L*₂**-Domains**



- ▶ Multivariate Gaussian prior: $P_1 = \mathcal{N}(0, I)$
- ► Linearized losses

$$\mathrm{d}P_{t+1}(oldsymbol{ heta}) \propto \exp\left(-\eta_t \sum_{s=1}^t oldsymbol{g}_s^\intercal oldsymbol{ heta} - rac{1}{2} oldsymbol{ heta}^\intercal oldsymbol{ heta}
ight) \mathrm{d}oldsymbol{ heta}$$

Exponential Weights for *L*₂**-Domains**

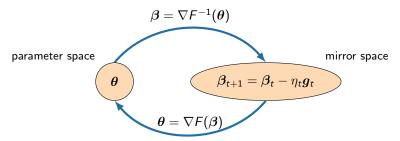


- ▶ Multivariate Gaussian prior: $P_1 = \mathcal{N}(0, I)$
- ► Linearized losses

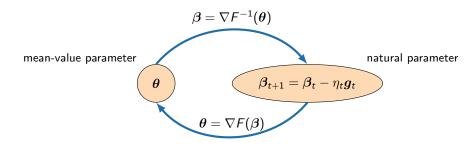
$$\mathrm{d}P_{t+1}(oldsymbol{ heta}) \propto \exp\left(-\eta_t \sum_{s=1}^t oldsymbol{g}_s^\intercal oldsymbol{ heta} - rac{1}{2} oldsymbol{ heta}^\intercal oldsymbol{ heta}
ight) \mathrm{d}oldsymbol{ heta}$$

Recover gradient descent! $P_{t+1} = \mathcal{N}(-\eta_t \sum_{s=1}^t g_s, I)$

Mirror Descent



Mirror Descent



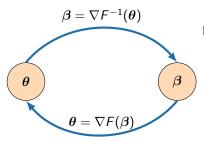
Theorem

Mirror descent is the mean of exponential weights with prior P_1 if $\{\beta: F(\beta) < \infty\}$ is an open set and

$$F(oldsymbol{eta}) = \ln \, \int e^{oldsymbol{eta}^{ au} oldsymbol{ heta}} \mathrm{d} P_1(oldsymbol{ heta}).$$

Interpretation: F is the cumulant generating function of a regular exponential family with carrier P_1 .

Mirror Descent



Examples:

► Gradient descent:

$$F(\beta) = \frac{1}{2} ||\beta||_2^2, P_1 = \mathcal{N}(0, I)$$

► Unnormalized relative entropy:

$$F(\beta) = \sum_{i=1}^{d} e^{\beta_i},$$

 $P_1 = \prod_{i=1}^{d} P_{\lambda_i}(\theta_i)$ is product of Poisson distributions

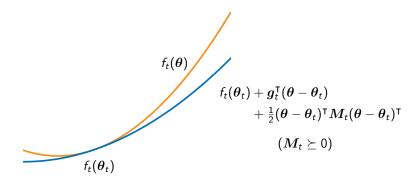
Theorem

Mirror descent is the mean of exponential weights with prior P_1 if $\{\beta: F(\beta) < \infty\}$ is an open set and

$$F(oldsymbol{eta}) = \ln \int e^{oldsymbol{eta}^{ au} oldsymbol{ heta}} \mathrm{d} P_1(oldsymbol{ heta}).$$

Interpretation: F is the cumulant generating function of a regular exponential family with carrier P_1 .

Quadratic Lower-bounded Losses



The quadratic loss
$$\tilde{f}_t(\theta) = g_t^{\mathsf{T}}\theta + \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}}M_t(\theta - \theta_t)^{\mathsf{T}}$$
 satisfies
$$f_t(\theta_t) - f_t(\theta^*) \leq \tilde{f}_t(\theta_t) - \tilde{f}_t(\theta^*)$$

Theorem

Exponential weights with Gaussian prior $P_1 = \mathcal{N}(0, \mathbf{I})$ and constant $\eta_t = \eta$ produces Gaussian distributions $P_{t+1} = \mathcal{N}(\boldsymbol{\theta}_{t+1}, \boldsymbol{\Sigma}_{t+1})$ and guarantees

$$\mathsf{Regret}_{\mathcal{T}}(\boldsymbol{\theta}^*) \leq \frac{1}{2\eta} \|\boldsymbol{\theta}^*\|^2 + \frac{\eta}{2} \sum_{t=1}^T \boldsymbol{g}_t^\mathsf{T} \boldsymbol{\Sigma}_{t+1} \boldsymbol{g}_t,$$

where
$$\Sigma_{t+1} = (I + \eta \sum_{s=1}^t M_s)^{-1}$$
 and $\theta_{t+1} = \theta_t - \eta \Sigma_{t+1} g_t$.

Theorem

Exponential weights with Gaussian prior $P_1 = \mathcal{N}(0, \mathbf{I})$ and constant $\eta_t = \eta$ produces Gaussian distributions $P_{t+1} = \mathcal{N}(\boldsymbol{\theta}_{t+1}, \boldsymbol{\Sigma}_{t+1})$ and guarantees

$$\mathsf{Regret}_{\mathcal{T}}(\boldsymbol{\theta}^*) \leq \frac{1}{2\eta} \|\boldsymbol{\theta}^*\|^2 + \frac{\eta}{2} \sum_{t=1}^{\mathcal{T}} \boldsymbol{g}_t^{\mathsf{T}} \boldsymbol{\Sigma}_{t+1} \boldsymbol{g}_t,$$

where
$$\Sigma_{t+1} = (I + \eta \sum_{s=1}^t M_s)^{-1}$$
 and $\theta_{t+1} = \theta_t - \eta \Sigma_{t+1} g_t$.

Example 1: Online Regression

- $ightharpoonup f_t(\theta) = (Y_t X_t^{\mathsf{T}}\theta)^2, \quad \eta = 1$

$$\mathsf{Regret}_{\mathcal{T}}(\boldsymbol{\theta}^*) = O(\|\boldsymbol{\theta}^*\|^2 + d\log(\mathcal{T}))$$

Theorem

Exponential weights with Gaussian prior $P_1 = \mathcal{N}(0, I)$ and constant $\eta_t = \eta$ produces Gaussian distributions $P_{t+1} = \mathcal{N}(\theta_{t+1}, \Sigma_{t+1})$ and guarantees

$$\mathsf{Regret}_{\mathcal{T}}(\boldsymbol{\theta}^*) \leq \frac{1}{2\eta} \|\boldsymbol{\theta}^*\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \boldsymbol{g}_t^\mathsf{T} \boldsymbol{\Sigma}_{t+1} \boldsymbol{g}_t,$$

where
$$\Sigma_{t+1} = (I + \eta \sum_{s=1}^{t} M_s)^{-1}$$
 and $\theta_{t+1} = \theta_t - \eta \Sigma_{t+1} g_t$.

Example 1: Online Regression

 $ightharpoonup f_t(\theta) = (Y_t - X_t^{\mathsf{T}}\theta)^2, \quad \eta = 1$

Recovers online ridge regression!

$$\mathsf{Regret}_{\mathcal{T}}(\boldsymbol{\theta}^*) = O(\|\boldsymbol{\theta}^*\|^2 + d\log(T))$$

Theorem

Exponential weights with Gaussian prior $P_1 = \mathcal{N}(0, \mathbf{I})$ and constant $\eta_t = \eta$ produces Gaussian distributions $P_{t+1} = \mathcal{N}(\boldsymbol{\theta}_{t+1}, \boldsymbol{\Sigma}_{t+1})$ and guarantees

$$\mathsf{Regret}_{\mathcal{T}}(\boldsymbol{\theta}^*) \leq \frac{1}{2\eta} \|\boldsymbol{\theta}^*\|^2 + \frac{\eta}{2} \sum_{t=1}^{\mathcal{T}} \boldsymbol{g}_t^\mathsf{T} \boldsymbol{\Sigma}_{t+1} \boldsymbol{g}_t,$$

where
$$\Sigma_{t+1} = (I + \eta \sum_{s=1}^t M_s)^{-1}$$
 and $\theta_{t+1} = \theta_t - \eta \Sigma_{t+1} g_t$.

Example 2: Online Logistic Regression

- $lackbox{lack} M_t = rac{1+e^{-1}}{4} oldsymbol{g}_t oldsymbol{g}_t^{\intercal} ext{ if } \|oldsymbol{X}_t\|_2 \leq 1, \|oldsymbol{ heta}\|_2 \leq 1$
- $\eta = \frac{1+e^{-1}}{4}$

$$\mathsf{Regret}(\boldsymbol{\theta}^*) = O(d \log T)$$

Theorem

Exponential weights with Gaussian prior $P_1 = \mathcal{N}(0, I)$ and constant $\eta_t = \eta$ produces Gaussian distributions $P_{t+1} = \mathcal{N}(\boldsymbol{\theta}_{t+1}, \boldsymbol{\Sigma}_{t+1})$ and guarantees

$$\mathsf{Regret}_{\mathcal{T}}(\boldsymbol{\theta}^*) \leq \frac{1}{2\eta} \|\boldsymbol{\theta}^*\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \boldsymbol{g}_t^\mathsf{T} \boldsymbol{\Sigma}_{t+1} \boldsymbol{g}_t,$$

where
$$\Sigma_{t+1} = (I + \eta \sum_{s=1}^t M_s)^{-1}$$
 and $\theta_{t+1} = \theta_t - \eta \Sigma_{t+1} g_t$.

Example 2: Online Logistic Regression

- $lackbox{igspace} oldsymbol{M}_t = rac{1+e^{-1}}{4} oldsymbol{g}_t oldsymbol{g}_t^{\intercal} ext{ if } \|oldsymbol{X}_t\|_2 \leq 1, \|oldsymbol{ heta}\|_2 \leq 1$
- $\eta = \frac{1 + e^{-1}}{4}$

Recovers online Newton step!

$$\mathsf{Regret}(\boldsymbol{\theta}^*) = O(d \log T)$$

$$\mathsf{Regret}_{\mathcal{T}}(e_i) = O(\sqrt{\log(d)\mathcal{T}})$$
 for d experts

- ▶ Q. What if two experts always make the same predictions?
- ► A. They should count as one expert!

$$\mathsf{Regret}_{\mathcal{T}}(e_i) = O(\sqrt{\log(d)\mathcal{T}})$$
 for d experts

- ▶ Q. What if two experts always make the same predictions?
- ► A. They should count as one expert!

Improvement 1:

$$\sum_{t=1}^{T} f_t(\boldsymbol{\theta}_t) - \underset{Q(i)}{\mathbb{E}} \left[\sum_{t=1}^{T} f_t(\boldsymbol{e}_i) \right] = O\left(\sqrt{\mathsf{KL}(Q \| P_1) T}\right)$$

for all distributions Q on experts

▶ If $Q = \delta_i$ and P_1 is uniform, then $KL(Q||P_1) = \log(d)$.

$$\mathsf{Regret}_{\mathcal{T}}(e_i) = O(\sqrt{\mathsf{log}(d)\mathcal{T}})$$
 for d experts

- ▶ Q. What if in some round all experts make the same prediction?
- ▶ A. Then we should not incur regret on that round!

$$\mathsf{Regret}_{\mathcal{T}}(e_i) = O(\sqrt{\mathsf{log}(d)\mathcal{T}})$$
 for d experts

- ▶ Q. What if in some round all experts make the same prediction?
- ▶ A. Then we should not incur regret on that round!

Improvement 2:

$$\sum_{t=1}^T f_t(\theta_t) - \underset{Q(i)}{\mathbb{E}} \big[\sum_{t=1}^T f_t(e_i) \big] = O\Big(\sqrt{\mathsf{KL}(Q \| P_1) V_{\mathcal{T}}(Q)} \Big)$$

for all distributions Q on experts,

where
$$V_T(Q) = \mathbb{E}_{Q(i)}\left[\sum_{t=1}^T (f_t(\theta_t) - f_t(e_i))^2\right] \leq T$$
.

Adaptivity via a Reduction

General Reduction:

▶ Play distribution $P_t(\eta, i)$ for a surrogate loss $\ell_t(\eta, i)$

$$\blacktriangleright \; \boldsymbol{\theta}_t = \frac{\mathbb{E}_{P_t}[\eta \boldsymbol{e}_i]}{\mathbb{E}_{P_t}[\eta]}$$

Adaptivity via a Reduction

General Reduction:

- ▶ Play distribution $P_t(\eta, i)$ for a surrogate loss $\ell_t(\eta, i)$
- $\blacktriangleright \; \boldsymbol{\theta}_t = \frac{\mathbb{E}_{P_t}[\eta \boldsymbol{e}_i]}{\mathbb{E}_{P_t}[\eta]}$

Surrogate loss:

$$lacksquare \ell_t(\eta,i) = -\ln(1+\eta r_t(i))$$
 iProd [Koolen, Van Erven, 2015]

$$m \ell_t(\eta,i) = -\eta r_t(i) + \eta^2 r_t(i)^2$$
 Squint [Koolen, Van Erven, 2015]

$$\ell_t(\eta,i) = -\frac{1+r_t(i)}{2}\ln(1+\eta) - \frac{1-r_t(i)}{2}\ln(1-\eta)$$
 Coin Betting [Orabona, Pál, 2016]

where
$$r_t(i) := f_t(oldsymbol{ heta}_t) - f_t(oldsymbol{e}_i)$$

Adaptivity via a Reduction

General Reduction:

- ▶ Play distribution $P_t(\eta, i)$ for a surrogate loss $\ell_t(\eta, i)$
- $\blacktriangleright \; \boldsymbol{\theta}_t = \frac{\mathbb{E}_{P_t}[\eta \boldsymbol{e}_i]}{\mathbb{E}_{P_t}[\eta]}$

Surrogate loss:

iProd [Koolen, Van Erven, 2015]

$$\ell_t(\eta, i) = -\eta r_t(i) + \eta^2 r_t(i)^2$$

Squint [Koolen, Van Erven, 2015]

$$ho$$
 $\ell_t(\eta, i) = -\frac{1+r_t(i)}{2} \ln(1+\eta) - \frac{1-r_t(i)}{2} \ln(1-\eta)$

Coin Betting [Orabona, Pál, 2016]

where
$$r_t(i) := f_t(\boldsymbol{\theta}_t) - f_t(\boldsymbol{e}_i)$$

Using Exponential Weights for P_t :

► Coin Betting: improvement 1

$$O\left(\sqrt{\mathsf{KL}(Q\|P_1)T}\right)$$

▶ iProd, Squint: improvements 1 and 2

$$\tilde{O}\left(\sqrt{\mathsf{KL}(Q\|P_1)V_{\mathcal{T}}(Q)}\right)$$

Summary

Setting: Online Convex Optimization for sequential data

- ► Football prediction and other online regression tasks
- Prediction with expert advice
- Online logistic regression
- **.**..

The versatile **Exponential Weights** algorithm

By changing the prior:

- \triangleright Optimal for L_1 and L_2 -bounded domains
- Recovers mirror descent, online ridge regression, online Newton step
- Recovers Squint and Coin Betting for adaptive prediction with expert advice
- **.**..

Papers

- D. van der Hoeven, T. van Erven and W. Kotłowski The Many Faces of Exponential Weights in Online Learning Conference on Learning Theory (COLT), 2018.
- ► W. M. Koolen and T. van Erven

 Second-order Quantile Methods for Experts and Combinatorial

 Games

 Conference on Learning Theory (COLT), 2015.