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Example: Betting on Football Games

» Before every match t in the English Premier
League, my co-author Dirk wants to predict
the goal difference Y;

» Given feature vector X; € RY, he may predict
Y: = X[ 0; with a linear model

_ > After the match: observe Y;
Netherlands runner-up in

Women's World Cup 2019 » Measure IOSS by ft(et) — (Yt _ \’}t)2 and
improve D0 — 0
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Example: Betting on Football Games

» Before every match t in the English Premier
League, my co-author Dirk wants to predict
the goal difference Y;

» Given feature vector X; € RY, he may predict
Y: = X[ 0; with a linear model

_ > After the match: observe Y;
Netherlands runner-up in

Women's World Cup 2019 » Measure IOSS by ft(ot) — (Yt _ \I}t)2 and
improve D0 — 0

Goal: Predict almost as well as the best possible parameters 6*:

(6°)=> fi(6:)— > £(67)
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RN

Online Convex Optimization

Parameters 6 take values in a convex domain © C R?
fort=1,2,..., T do
Learner estimates 0, € ©
Nature reveals i :©—=R
end for

Viewed as a zero-sum game against Nature:

V' = minmax minmax --- minmax max Regret,(6")
6. i 6 0r fr 6*coO
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Online Gradient Descent

0~t+1 = 0, — 771_*Vf1:(0t)

0:i1 = min |61 — 0
t+1 g‘e'g” t+1 [

Theorem (Zinkevich, 2003)

Suppose © compact with diameter at most D, and ||V 1(0:)]2 <
Then online gradient descent with n; = # guarantees

Regret(0*) < gGDﬁ

for any choices of Nature.

Under these assumptions, this is optimal (up to a constant factor).
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Example: Prediction with Expert Advice

Day 1 Day 2
Expert 1

Expert 2

Expert 3

Truth

Day 3

Day T
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Example: Prediction with Expert Advice
Day 1 Day 2 Day 3 Day T

Expert 1

Expert 2

Expert 3

Truth

Fits in Framework:

> Linear loss: (0) = gl 0
where g; € {0,1}¢ contains mistakes of d experts

» Compare with deterministic choice of expert 8* € {e1,...,eq}
> But allow randomized predictions: 6; = Ep,(i[ei]
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Example: Prediction with Expert Advice
Day 1 Day 2 Day 3 Day T

Expert 1

Expert 2

Expert 3

Truth

Fits in Framework:

> Linear loss: (0) = gl 0
where g; € {0,1}¢ contains mistakes of d experts

» Compare with deterministic choice of expert 8* € {e1,...,eq}
> But allow randomized predictions: 6; = Ep,(i[ei]

GD Regret Bound Optimal Regret Bound
O(GDVT) = O(/dT) O(\/log(d)T)
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Exponential Weights for Expert Advice

» Given prior distribution Py on experts {1,...,d}
» Choose expert i with probability

exp (—77t 2;21 gs,i) P1(i)

Pt+1 ) = 7 -
v 27:1 exp (1t Yooy 85,) P1(J)
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Exponential Weights for Expert Advice

» Given Py on experts {1,...,d}
» Choose expert i with probability

exXp (_nt 2;21 gs,i) Pl(i)
27:1 exp (—1e Y &) P1(j)

Pt+1(i) =

Theorem (Vovk, 1990, Littlestone, Warmuth, 1994)

Exponential weights for expert advice with uniform prior P; and

Ny = B'LT(‘” guarantees

Regret(0*) < /3 log(d)T

for any choices of Nature.

This is optimal for experts (with exactly these constants).

6/17



A Broader View

of Exponential Weights

02 d=3
(@] d=2
O\
Ve b
T o6 t1
» Linear loss: (0) = gl 0
» Prior Py supported on corners of simplex {e1,...,eq}

» Distribution of predictions is mean of P:: 8; = Ep, (4[]
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Scaling up Exponential Weights
Mezl
d=2

—M61 M61
—o0 [flpi<M o——

T—MEQ

Theorem (EG*, Kivinen, Warmuth, 1997)

Suppose f(0) = gf0 and ||g:|lc < C. Then exponential weights with

uniform prior on {£Mey, ..., £Mey} and n; = 2,\;‘;3(53‘71.) guarantees

Regret+(0*) < GMy/2log(2d) T

for all 0* with [|0%]); <
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Linearizing General Convex Losses

f(0)

f(6:) + g{ (0 — 6:)

ft(6:)

For g. = V£(8;), the linear loss £,(8) = g] @ satisfies

fo(6:) — :(67) < g1 (6: — 67) = #(6) — 1:(6")
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Linearizing General Convex Losses

f(0)

f(6:) + g{ (0 — 6:)

ft(6:)

For g. = V£(8;), the linear loss £,(8) = g] @ satisfies

fo(6:) — :(67) < g1 (6: — 67) = #(6) — 1:(6")

> To prevent infinite regret, need |%(8)| to be bounded.

> Hence dual norms to bound domain and gradients:
#(0) < llgellp - 16lq for 1/p+1/q =1
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Exponential Weights for L,-Domains

> Multivariate Gaussian prior: P; = N(0,1)
» Linearized losses

t
1
dP,1(6) x exp (—m > gl0- §49T0> 46
s=1
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Exponential Weights for L,-Domains

> Multivariate Gaussian prior: P; = N(0,1)
» Linearized losses

t
1
dP,1(6) x exp <_77t > gl0- §9T0> 46
s=1

{Recover gradient descent! Pii1 = N (—1: > i, gs, I)J
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Mirror Descent
B=VF(6)

parameter space mirror space

Biy1 = Bt — 1:9:
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Mirror Descent

B=VF i)

mean-value parameter natural parameter

Biy1 = Bt — 1tg:

Theorem

Mirror descent is the mean of exponential weights with prior Py if
{B: F(B) < oo} is an open set and

F(B) = |n/eﬁ’9dP1(e).

Interpretation: F is the cumulant generating function of a regular
exponential family with carrier P;. 1/17



Mirror Descent
B=VF(0)

Examples:
» Gradient descent:

F(B) = 3183 Pr =N (0,1)

» Unnormalized relative entropy:
F(B) = 27:1 e,
P = H7:1 Py, (0;) is product of
Poisson distributions

Theorem

Mirror descent is the mean of exponential weights with prior Py if
{B: F(B) < oo} is an open set and

F(B)=In / ePT0dp(0).

Interpretation: F is the cumulant generating function of a regular
exponential family with carrier Py.
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Quadratic Lower-bounded Losses

f(0)

fe (at) QtT(a 0t)
+3(0—0:)TM (60— 6,)7

(M, = 0)
f(0:)

The quadratic loss 7(68) = g7 6 + (60 — 0:)TM (6 — 6,)T satisfies

f(8:) — £.(0%) < £:(8:) — £(67)
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EW for Quadratic Lower-bounded Losses

Theorem

Exponential weights with Gaussian prior Py = N'(0, I) and constant
1y = n produces Gaussian distributions Py 1 = N (0:11,%+41) and

guarantees
1 n L
Regret(6*) < %||e*||2 +5 > 9T,
t=1

where Te1 = (I +nY i, M)~ and 0,41 = 0; — 1119
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EW for Quadratic Lower-bounded Losses

Theorem

Exponential weights with Gaussian prior Py = N'(0, I) and constant
1y = n produces Gaussian distributions Py 1 = N (0:11,%+41) and
guarantees

.
* 1 *
Regretr(6%) < 5.6 12 + g S 9l%1ge
t=1

where Te1 = (I +nY i, M)~ and 0,41 = 0; — 1119

Example 1: Online Regression
> £(0) = (Ve — X[0)?, n=1
> gt — 2(X;|'0 — Yt)Xta Mt = 2XtX;r

Regret(0*) = O(]|0*|]> + d log(T))
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EW for Quadratic Lower-bounded Losses

Theorem

Exponential weights with Gaussian prior Py = N'(0, I) and constant
n: = n produces Gaussian distributions Py 1 = N (041, %+41) and
guarantees

.
1
Regret(8*) < %||e*||2 + g S gl%enge,
t=1

where Zt-i—l = (I + 772§=1 Ms)71 and 0t+1 = Gt — nzt+1gt.
Example 1: Online Regression

> () = (Y:— X[0)?, n=1
> gl’ - 2(.X;r0 - Yl’)XI’7 Mt - 2XtX;r

[Recovers online ridge regression! |

Regret(0%) = O(]|0*|]*> + d log(T))
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EW for Quadratic Lower-bounded Losses

Theorem

Exponential weights with Gaussian prior P, = N'(0, I) and constant
ne = n produces Gaussian distributions Pyy1 = N (0411, %+41) and
guarantees

;
oo Lo n
Regret(6*) < %ne I+ 5D gl Teige,
t=1

where Toy1 = (I +nYt_, My)™! and 0411 = 0; — NX 1119

Example 2: Online Logistic Regression
> £(6) = log (1 + e_YthTa) for Y; € {—1,+1}

. )
> M; = 1+Z g:9¢ if [ Xell2 < 1,102 <1

1

14e—

Regret(0*) = O(d log T)
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EW for Quadratic Lower-bounded Losses

Theorem

Exponential weights with Gaussian prior Py = N'(0, I) and constant
ne = n produces Gaussian distributions Py, 1 = N (0¢11,%X¢11) and
guarantees

-
* 1 *
Regret(0*) < EHG 12 + g thTZngt,
t=1

where i1 = (I +n3L_, My)™! and 0411 = 0; — NX 119
Example 2: Online Logistic Regression
> £(6) = log (1 + efYtXIG) for Yy € {—1,+1}

-1 .
> M, = i —gig] if [ Xiella <1,[0]2 <1

_ lte! .
> n= | Recovers online Newton step!

Regret(0*) = O(dlog T)
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Adaptive Methods for Prediction with Expert Advice

Regret(e;) = O(v/ T)  for d experts

> Q. What if two experts always make the same predictions?

» A. They should count as one expert!
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Adaptive Methods for Prediction with Expert Advice

Regret(e;) = O(v/ T)  for d experts

> Q. What if two experts always make the same predictions?
» A. They should count as one expert!

Improvement 1:
T T
>80 - B [Yae)] = o(v 7)
for all distributions @ on experts

» If @ =4; and P; is uniform, then KL(Q||P1) = log(d).
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Adaptive Methods for Prediction with Expert Advice

Regrety(e;) = O(+/log(d) 7) for d experts

» Q. What if in some round all experts make the same prediction?

» A. Then we should not incur regret on that round!
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Adaptive Methods for Prediction with Expert Advice

Regrety(e;) = O(+/log(d) 7) for d experts

» Q. What if in some round all experts make the same prediction?

» A. Then we should not incur regret on that round!

Improvement 2:

>0 - (3 fen)] = o(VKL(@IP) V()

for all distributions @ on experts,

where Vr(Q) = Eqqy [ 1 (£(8:) — file))?] < T.
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Adaptivity via a Reduction

General Reduction:

» Play distribution P:(n, i) for a surrogate loss £;(, )
Ep,[nei]

Ep,[1]

> 9, =
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Adaptivity via a Reduction

General Reduction:
» Play distribution P¢(n, i) for a surrogate loss £;(n, i)
EP: [7761]

> 9, —
" Epnl

Surrogate loss:
> li(n, i) = —In(1 4+ nre(i)) iProd [Koolen, Van Erven, 2015]
> li(n, i) = —77I’t( ) +n2r(i)? Squint [Koolen, Van Erven, 2015]
> L, i) = =250 In(1 4 ) — =50 In(1 - )
Coin Betting [Orabona, P4l, 2016]
where r(i) := £(0;) — f(e;)
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Adaptivity via a Reduction

General Reduction:

» Play distribution P¢(n, i) for a surrogate loss £;(n, i)
Ep,[nei]

Ep,[1]

> 0, =

Surrogate loss:
> li(n, i) = —In(1 4+ nre(i)) iProd [Koolen, Van Erven, 2015]
> gt(na i) = _77I’t(') + n2rt(i)2 Squint [Koolen, Van Erven, 2015]

> (i) = =H50 In(1 4 5) = =52 In(1 — )
Coin Betting [Orabona, P4l, 2016]

where r:(7) := £(0;) — f(e;)

Using Exponential Weights for P;:
» Coin Betting: improvement 1 O<\/7T)

» iProd, Squint: improvements 1 and 2 é(\/KL(QHPl) )
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Summary

: Online Convex Optimization for sequential data

» Football prediction and other online regression tasks
» Prediction with expert advice

» Online logistic regression

> .

The versatile algorithm
By changing the prior:
» Optimal for L; and L,-bounded domains
» Recovers mirror descent, online ridge regression, online Newton step

» Recovers Squint and Coin Betting for adaptive prediction with
expert advice

> ..
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