
Krylov subspace methods from the analytic,
application and computational perspective
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Krylov subspace methods

A x = b , x0 ,Sn , Cn

An xn = bn

xn approximates the solution x in x0 + Sn

with b− Axn orthogonal to Cn

Sn , Cn related to Kn(A, r0) ≡ span {r0, Ar0, · · · , A
n−1r0}

−→ moments r∗0Ajr0 , j = 0, 1, 2, · · ·
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Historical development and context

Mechanical quadrature

Newton, Cotes 1720s

Gauss quadrature

Gauss 1814

Gauss quadrature and

orthogonal polynomials

Jacobi 1826

Generalisations of the

Gauss quadrature, 

minimal partial realisation

Christoffel 1858/77

Three-term recurrences

and continued fractions

Brouncker, Wallis 1650s

Infinite series expansions

and continued fractions

Euler 1744/48

Continued fractions and

three-term recurrence for

orthogonal polynomials

Chebyshev 1855/59

Continued fractions and 

Chebyshev inequalities

Chebyshev 1855,  

Markov, Stieltjes 1884 

Real symmetric matrices

have real eigenvalues, 

interlacing property

Cauchy 1824

Reduction of bilinear

form to tridiagonal form

Jacobi 1848

Diagonalisation of

quadratic forms

Jacobi 1857

Jordan canonical form

Weierstrass 1868,

Jordan 1870

Minimal polynomial

Frobenius 1878

Analytic theory of continued fractions,

Riemann-Stieltjes integral,

solution of the moment problem

Stieltjes 1894 

Jacobi form (or matrix)

Hellinger & Toeplitz 1914

Foundations of functional analysis, including continuous spectrum, resolution

of unity, self-adjoined operators, Hilbert space

Hilbert 1906-1912 

Orthogonalisation via

the Gramian

Gram 1883

Orthogonalisation algorithms

for functions and vectors

Schmidt 1905/07, Szász 1910

Mathematical foundations of 

quantum mechanics

Hilbert 1926/27,

von Neumann 1927/32,

Wintner 1929

Representation theorem

Riesz 1909

Modern numerical analysis

von Neumann & Goldstine 1947

Turing 1948

Krylov subspace methods

Lanczos 1950/52, Hestenes & Stiefel 1952

Transformation of the

characteristic equation

Krylov 1931

Orthogonalisation idea

Laplace 1820

1950

1650

Secular equation of the

moon

Lagrange 1774

Characteristic equation

Cauchy 1840

Krylov sequences

Gantmacher 1934
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Lanczos, Hestenes and Stiefel

Numerical analysis

Rounding error analysis

Least squares solutions

Gaussian elimination

Matrix theory

Optimisation

Structure and sparsity

Convex geometry

Convergence analysis

Cornelius Lanczos

An iteration method for the solution

of the eigenvalue problem of linear 

diff ti l d i t l t  1950

Polynomial preconditioningIterative methods Stopping criteria

Vandermonde determinant

Floating point computationsCost of computations

Data uncertainty

y

Projections

Orthogonalisation
Orthogonal polynomials

Linear algebra
Approximation theory

Chebyshev, Jacobi and

Legendre polynomials

Minimising functionals

g y
differential and integral operators, 1950

Solution of systems of linear equations

by minimized iterations, 1952

Chebyshev polynomials in the solution

of large-scale linear systems, 1952

Cauchy-Schwarz inequality

General inner products

Gauss-Christoffel quadrature Riemann-Stieltjes integral

Sturm sequences

Rayleigh quotients Differential and integral operators

Fredholm problem

Functional analysis

g p y

Continued fractions

Liouville-Neumann expansion

Magnus R. Hestenes & Eduard Stiefel

Methods of conjugate gradients for

solving linear systems, 1952

Green s function

Fourier series

Dirichlet and Fejér kernel

Trigonometric interpolation

Gibbs oscillation

Gauss Christoffel quadrature Riemann Stieltjes integral

Real analysis

Dirichlet and Fejér kernel
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Operator preconditioning

Klawonn (1995, 1996); Arnold, Falk, and Winther (1997, 1997); Steinbach
and Wendland (1998); Mc Lean and Tran (1997); Christiansen and
Nédélec (2000, 2000); Powell and Silvester (2003); Elman, Silvester, and
Wathen (2005); Hiptmair (2006); Axelsson and Karátson (2009); Mardal
and Winther (2011); Kirby (2011); Zulehner (2011); Preconditioning
Conference 2013, Oxford; ...

Related ideas on spectral equivalence of operators can be found, e.g., in
Faber, Manteuffel and Parter (1990) with references to D’Yakonov (1961)
and Gunn(1964, 1965). .... Very nice recent work Smears (2016).
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Mesh independent condition number

R. Hiptmair, CMA (2006):

“There is a continuous operator equation posed in infinite-dimensional
spaces that underlines the linear system of equations [ ... ] awareness of
this connection is key to devising efficient solution strategies for the linear
systems.

Operator preconditioning is a very general recipe [ ... ]. It is simple to
apply, but may not be particularly efficient, because in case of the
[ condition number ] bound of Theorem 2.1 is too large, the operator
preconditioning offers no hint how to improve the preconditioner. Hence,
operator preconditioner may often achieve [ ... ] the much-vaunted mesh
independence of the preconditioner, but it may not perform satisfactorily
on a given mesh.”
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Linear asymptotic behavior?

V. Faber, T. Manteuffel and S. V. Parter, Adv. in Appl. Math. (1990):

“For a fixed h, using a preconditioning strategy based on an equivalent
operator may not be superior to classical methods [ ... ] Equivalence
alone is not sufficient for a good preconditioning strategy. One must also
choose an equivalent operator for which the bound is small.

There is no flaw in the analysis, only a flaw in the conclusions drawn from
the analysis [ ... ] asymptotic estimates ignore the constant multiplier.
Methods with similar asymptotic work estimates may behave quite
differently in practice.”
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Outline

1. Numerical solution of BVPs

2. Operator preconditioning

3. Algebraic preconditioning, discretization, and problem formulation

4. Various comments

5. Conclusions
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1 Notation

Let V be an infinite dimensional Hilbert space with the inner product

(·, ·)V : V × V → R, the associated norm ‖ · ‖V ,

V # be the dual space of bounded (continuous) linear functionals on V

with the duality pairing
〈·, ·〉 : V # × V → R .

For each f ∈ V # there exists a unique τf ∈ V such that

〈f, v〉 = (τf, v)V for all v ∈ V .

In this way the inner product (·, ·)V determines the Riesz map

τ : V # → V .
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1 Weak formulation of the BVP, assumptions

Let a(·, ·) = V × V → R be a bounded and coercive bilinear form. For
u ∈ V we can write the bounded linear functional a(u, ·) on V as

Au ≡ a(u, ·) ∈ V # , i.e. ,

〈Au, v〉 = a(u, v) for all v ∈ V .

This defines the bounded and coercive operator

A : V → V #, inf
u∈V, ‖u‖V =1

〈Au, u〉 = α > 0, ‖A‖ = C .

The Lax-Milgram theorem ensures that for any b ∈ V # there exists a
unique solution x ∈ V of the problem

a(x, v) = 〈b, v〉 for all v ∈ V .
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1 Operator problem formulation

Equivalently,
〈Ax− b, v〉 = 0 for all v ∈ V ,

which can be written as the equation in V # ,

Ax = b , A : V → V #, x ∈ V, b ∈ V # .

We will consider A self-adjoint with respect to the duality pairing 〈·, ·〉 .



Z. Strakoš 13

1 Discretization using Vh ⊂ V

Let Φh = (φ
(h)
1 , . . . , φ

(h)
N ) be a basis of the subspace Vh ⊂ V ,

let Φ#
h = (φ

(h)#
1 , . . . , φ

(h)#
N ) be the canonical basis of its dual V

#
h .

The Galerkin discretization then gives

Ahxh = bh , xh ∈ Vh , bh ∈ V
#
h , Ah : Vh → V

#
h .

Using the coordinates xh = Φhx , bh = Φ#
h b , the discretization results in

the linear algebraic system

Ax = b .
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1 Computation

Preconditioning needed for accelerating the iterations is then often build
up algebraically for the given matrix problem, giving (here illustrated as
the left preconditioning)

M−1Ax = M−1b .

Then the CG method is applied to the (symmetrized) preconditioned
system, i.e., (PCG) (M-preconditioned CG) is applied to the
unpreconditioned system. The schema of the solution process:

A, 〈b, ·〉 → A,b→ preconditioning → PCG applied to Ax = b .
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1 This talk presents a bit different view

⇒

Formulation of the model, discretization and algebraic computation,
including the evaluation of the error, stopping criteria for the algebraic
solver, adaptivity etc. are very closely related to each other.
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Outline

1. Numerical solution of BVPs

2. Operator preconditioning

3. Algebraic preconditioning, discretization, and problem formulation

4. Various comments

5. Conclusions
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2 Operator formulation of the problem

Recall that the inner product (·, ·)V defines the Riesz map τ .

It can be used to transform the equation in V #

Ax = b , A : V → V #, x ∈ V, b ∈ V # .

into the equation in V

τAx = τb, τA : V → V, x ∈ V, τb ∈ V ,

This transformation is called operator preconditioning; see Klawonn
(1995, ... ), Arnold, Winther et al (1997, ... ), ...
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2 The mathematically best preconditioning?

With the choice of the inner product (·, ·)V = a(·, ·) we get

a(u, v) = 〈Au, v〉 = a(τAu, v)

i.e.,

τ = A−1 ,

and the preconditioned system

x = A−1b .
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2 CG in infinite dimensional Hilbert spaces

r0 = b−Ax0 ∈ V #, p0 = τr0 ∈ V . For n = 1, 2, . . . , nmax

αn−1 =
〈rn−1, τrn−1〉

〈Apn−1, pn−1〉

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn, τrn〉

〈rn−1, τrn−1〉

pn = τrn + βnpn−1

Hayes (1954); Vorobyev (1958, 1965); Karush (1952); Stesin (1954)
Superlinear convergence for (identity + compact) operators. Here the
Riesz map τ indeed serves as the preconditioner.
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2 Discretization of the infinite dimensional CG

Using the coordinates in the bases Φh and Φ#
h of Vh and V

#
h

respectively, ( V
#
h = AVh ) ,

〈f, v〉 → v∗f ,

(u, v)V → v∗Mu, (Mij) = ((φj , φi)V )
i,j=1,...,N

,

Au→ Au , Au = AΦhu = Φ#
h Au ; (Aij) = (a(φj , φi))i,j=1,...,N

,

τf → M−1f , τf = τΦ#
h f = ΦhM

−1f ;

we get with b = Φ#
h b , xn = Φh xn , pn = Φh pn , rn = Φ#

h rn

the algebraic CG formulation
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2 Galerkin discretization gives matrix CG in Vh

r0 = b−Ax0, solve Mz0 = r0, p0 = z0 . For n = 1, . . . , nmax

αn−1 =
z∗n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

Mzn = rn , solve for zn

βn =
z∗nrn

z∗n−1rn−1

pn = zn + βnpn−1

Günnel, Herzog, Sachs (2014); Málek, S (2015)
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2 Philosophy of the a-priori robust bounds

The bound

κ(M−1A) ≤
supu,v∈V, ‖u‖V =1,‖v‖V =1 |〈Au, v〉|

infu∈V, ‖u‖V =1〈Au, u〉

is valid independently of the discretization, see, e.g., Hiptmair (2006). If
the bound is small enough, then the matter about the rate of convergence
is resolved.
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2 Observations

● Unpreconditioned CG, i.e. M = I , corresponds to the discretization
basis Φ orthonormal wrt (·, ·)V .

● Orthogonalization of the discretization basis with respect to the given
inner product in V will result in the unpreconditioned CG that is
applied to the transformed (preconditioned) algebraic system. The
resulting orthogonal discretization basis functions do not have local
support and the transformed matrix is not sparse.

● Orthogonalization is not unique. For the same inner product we can get
different bases and different discretized systems with exactly the same
convergence behaviour.
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Outline

1. Numerical solution of BVPs

2. Operator preconditioning

3. Algebraic preconditioning, discretization, and problem formulation

4. Various comments

5. Conclusions
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3 Algebraic preconditioning?

Consider an algebraic preconditioning with the (SPD) preconditioner

M̂ = L̂L̂∗ = L̂ (QQ∗) L̂∗

Where QQ∗ = Q∗Q = I .

Question: Can any algebraic preconditioning be expressed in the operator
preconditioning framework? How does it link with the discretization and
the choice of the inner product in V ?
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3 Change of the basis and of the inner product

Transform the discretization bases

Φ̂ = Φ ((L̂Q)∗)−1, Φ̂# = Φ# L̂Q .

with the change of the inner product in V (recall (u, v)V = v∗Mu )

(u, v)new,V = (Φ̂û, Φ̂v̂)new,V := v̂∗û = v∗L̂QQ∗L̂∗u = v∗L̂L̂∗u = v∗M̂u .

The discretized Hilbert space formulation of CG gives the algebraically
preconditioned matrix formulation of CG with the preconditioner M̂

(more specifically, it gives the unpreconditioned CG applied to the
algebraically preconditioned discretized system).
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3 Sparsity, locality, global transfer of information

Sparsity of matrices of the algebraic systems is always presented as an
advantage of the FEM discretizations.

Sparsity means locality of information in the individual matrix
rows/columns. Getting a sufficiently accurate approximation to the
solution may then require a substantial global transfer of information over
the domain, i.e., a large dimension of the Krylov space.

Preconditioning can be interpreted in part as addressing the unwanted
consequence of sparsity (locality of the supports of the basis functions).
Globally supported basis functions (hierarchical bases preconditioning,
DD with coarse space components, multilevel methods, hierarchical grids
etc.) can efficiently handle the transfer of global information.
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3 Example - Nonhomogeneous diffusion tensor

0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Squared energy norm of the algebraic error

 

 
P1 FEM ; cond =2.57e+03
P1 FEM ichol ; cond =2.67e+01
P1 FEM lapl ; cond =1.00e+02
P1 FEM ichol(1e−02) ; cond =1.72e+00

PCG convergence: unpreconditioned; ichol (no fill-in); Laplace operator
preconditioning; ichol (drop-off tolerance 1e-02). Uniform mesh, condition

numbers 2.5e03, 2.6e01, 1.0e02, 1.7e00.
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3 Transformed basis elements

−1

0

1

−1

0

1
0

0.25

0.5

0.75

1

Discretization basis function: P1 FEM; nnz = 1

−1

0

1

−1

0

1
0

0.02

0.04

0.06

Discretization basis function: P1 FEM ichol; nnz = 5

Original discretization basis element and its transformation corresponding
to the ichol preconditioning.
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3 Transformed basis elements

−1

0

1

−1

0

1
0

0.2

0.4

0.6

0.8

Discretization basis function: P1 FEM lapl; nnz = 225

−1

0

1

−1

0

1
0

0.02

0.04

0.06

0.08

Discretization basis function: P1 FEM ichol(1e−02); nnz = 214

Transformed discretization basis elements corresponding o the lapl (left)
and ichol(tol) preconditioning (right).
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Outline

1. Numerical solution of BVPs

2. Operator preconditioning

3. Algebraic preconditioning, discretization, and problem formulation

4. Various comments

5. Conclusions
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4 Model reduction using Krylov subspaces

Consider B = τA , z0 = τb− τAx0 , and the Krylov sequence
z0, z1 = Bz0, z2 = Bz1 = B2z0, . . . , zn = Bzn−1 = Bnz0, . . .

Determine a sequence of operators Bn defined on the sequence of the
nested subspaces Vn = span {z0, . . . , zn−1} , with the projector En

onto Vn ,

Bn = En BEn .

Convergence
Bn → B ?
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4 Vorobyev moment problem

The finite dimensional operators Bn can be used to obtain approximate
solutions to various linear problems. The choice of z0, z1, . . . as above
gives a sequence of Krylov subspaces that are determined by the
operator B and the initial element z0 . In this way the Vorobyev
method of moments gives the Krylov subspace methods.

Vorobyev (1958, 1965) covers bounded linear operators, bounded
self-adjoint operators and some unbounded extensions. He made
links to CG, Lanczos, Stieltjes moment problem, work of Markov,
Gauss-Christoffel quadrature . . .
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4 Conjugate gradient method - first n steps

The first n steps of the (infinite or finite dimensional) CG method are
given by

Tnyn = ‖z0‖V e1, xn = x0 + Qnyn , xn − x0 ∈ Vn .

Assume an approximation to the the n-th Krylov subspace Kn is taken
as the finite dimensional discretization subspace Vh ⊂ V in

{A, b, x0, τ} → {τAn : Kn → Kn} → PCG with {Ah,Mh} ?

Then we get a close to optimal discretization (CG minimizes the energy
norm over the discretization subspaces).
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4 Gauss-Christoffel quadrature

B x = f ←→ ω(λ),

∫
F (λ) dω(λ)

↑ ↑

Tn yn = ‖z0‖V e1 ←→ ω(n)(λ),
n∑

i=1

ω
(n)
i F

(
θ
(n)
i

)

Using F (λ) = λ−1 gives (assuming coercivity)

∫ λU

λL

λ−1 dω(λ) =
n∑

i=1

ω
(n)
i

(
θ
(n)
i

)−1

+
‖x− xn‖

2
a

‖f‖2V

Stieltjes (1894) and Vorobyev (1958) moment problems for self-adjoint
bounded operators reduce to the Gauss-Christoffel quadrature (1814).
No one would consider describing it by contraction.



Z. Strakoš 36

4 Convergence via distribution functions

Consider the (blue) distribution function determined by the operator τA
and the normalized τr0 . For a given n , find the (red) distribution
function with n mass points that matches the maximal number (2n) of the
first moments ((τA)ℓτr0, τr0)V , ℓ = 0, 1, 2, · · ·

0

t
M1

λ1

②
M2

λ2

r ✇ . . . ✈ r ⑤ ✈
MN

λN

0

s
m1

µ1

③
m2

µ2

. . . ✇
mn

µn
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4 Clusters of eigenvalues mean fast convergence?

④
Mj

−→ ttttt
Mj

single eigenvalue

λj

−→
many close eigenvalues

λ̂j1 , λ̂j2 , . . . , λ̂jℓ

Replacing a single eigenvalue by a tight cluster can make a substantial
difference; Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994).

If it does not, then it means that CG can not adapt to the problem, and it
converges almost linearly. In such cases - is it worth using?
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4 Rounding errors can be an important issue

● If preconditioning ensures getting an acceptable solution in a very few
iterations, then rounding errors are not of concern.

● However, hard problems do exist. Then rounding errors can not be
ignored.

● Descriptions of Krylov subspace methods that are based on
contractions (condition numbers) are, in general, not descriptive.

● Analogy with a-priori and a-posteriori analysis in numerical PDEs.

The power of Krylov subspace methods is in their
self-adaptation to the problem!
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4 Bounded invertible operators

Consider a bounded linear operator B on a Hilbert space V that has a
bounded inversion, and the problem

B u = f .

● Since the identity operator on an infinite dimensional Hilbert space is
not compact and BB−1 = I , it follows that B can not be compact.

● A uniform limit (in norm) of finite dimensional (approximation) operators
Bn is a compact operator.

● Results on strong convergence (pointwise limit); for the method of
moments see Vorobyev (1958, 1965)

‖Bn w − Bw‖ → 0 ∀w ∈ V .
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4 Invalid argument

Let Zh be a numerical approximation of the bounded operator Z such
that, with an appropriate extension, ‖Z − Zh‖ = O(h) .

Then we have [(λ− Z)−1 − (λ−Zh)−1] = O(h) uniformly for λ ∈ Γ ,
where Γ surrounds the spectrum of Z with a distance of order O(h) or
more. For any polynomial p

p(Z)− p(Zh) =
1

2πi

∫

Γ

p(λ)[(λ− Z)−1 − (λ−Zh)−1 ] dλ ,

and it seems that one can investigate p(Z) instead of p(Zh) .

But the assumption ‖Z − Zh‖ = O(h) , h→ 0 does not hold for any
bounded invertible infinite dimensional operator Z .
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4 Any GMRES convergence with any spectrum

1◦ The spectrum of A is given by {λ1, . . . , λN} and GMRES(A,b)
yields residuals with the prescribed nonincreasing sequence (x0 = 0)

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rN−1‖ > ‖rN‖ = 0 .

2◦ Let C be the spectral companion matrix, h = (h1, . . . , hN )T ,
h2

i = ‖ri−1‖
2 − ‖ri‖

2 , i = 1, . . . , N . Let R be a nonsingular upper
triangular matrix such that Rs = h with s being the first column of
C−1 , and let W be unitary matrix. Then

A = WRCR−1W∗ and b = Wh .

Greenbaum, Ptak, Arioli and S (1994 - 98); Liesen (1999); Eiermann and
Ernst (2001); Meurant (2012); Meurant and Tebbens (2012, 2014); .....
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4 Interpretation?

Given any spectrum and any sequence of the nonincreasing residual
norms, this gives a complete parametrization of the set of all GMRES
associated matrices and right hand sides. The set of problems for which
the distribution of eigenvalues alone does not conform to convergence
behaviour is not of measure zero and it is not pathological.

● Widespread eigenvalues alone can not be identified with poor
convergence.

● Clustered eigenvalues alone can not be identified with fast convergence.

Equivalent orthogonal matrices, Greenbaum, S (1994).
Pseudospectrum indication!
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4 Convection-diffusion model problem

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Quiz: In one case the convergence of GMRES is substantially faster than
in the other; for the solution see Liesen, S (2005).
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4 Delay of convergence due to inexactness

0 20 40 60 80 100

10
−15

10
−10

10
−5

10
0

?

0 100 200 300 400 500 600 700 800

10
−15

10
−10

10
−5

10
0

iteration number

residual
smooth ubound
backward error
loss of orthogonality
approximate solution
error

Here numerical inexactness due to roundoff. How much may we relax
accuracy of the most costly operations without causing an unwanted delay
and/or affecting the maximal attainable accuracy?
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4 Stopping criteria?

−1 −0.5 0 0.5 1 −1

0

1
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1

1.2

1.4

−1
0

1 −1

0

1−4

−2

0

2

4

x 10
−4

Exact solution x (left) and the discretisation error x− xh (right) in the
L-shape Poisson model problem, linear FEM, adaptive mesh refinement.

Quasi equilibrated discretization error over the domain.
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4 L-shape domain, Papež, Liesen, S (2014)
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x 10
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The algebraic error xh − x
(n)
h (left) can dominate the total error x− x

(n)
h

(right) even while

‖x− xn‖A ≪ ‖x− xh‖a = ‖∇(x− xh)‖ .
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Outline

1. Numerical solution of BVPs

2. Operator preconditioning

3. Algebraic preconditioning, discretization, and problem formulation

4. Various comments

5. Conclusions
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Conclusions

● Krylov subspace methods adapt to the problem. Exploiting this
adaptation is the key to their efficient use.

● Individual steps modeling-analysis-discretization-computation should
not be considered separately within isolated disciplines. They form
a single problem. Operator preconditioning follows this philosophy.

● Fast HPC computations require handling all involved issues. A
posteriori error analysis and stopping criteria are essential ...
We are grateful for collaboration with Martin on these topics.
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