A Service Based Architecture for Multidisciplinary IoT Experiments with Crowdsourced Resources

¹Computer Engineering and Informatics Department, University of Patras, Greece

²Computer Technology Institute and Press Diophantus, Patras, Greece

³University of Geneva, Switzerland

⁴DunavNET, Novi Sad, Serbia

⁵Alexandra Institute, Aarhus, Denmark

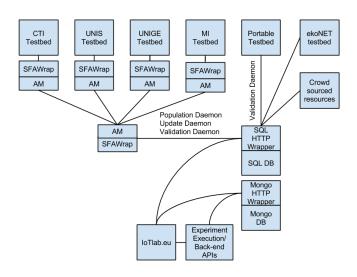
⁶University of Surrey, Guildford, UK

⁷Bournemouth University, UK

AdHocNow 2016, Lille, France

- Testbeds
- Testbed as a Service (TBaaS)
- Related work
 - GENI
 - OneLab
 - Fed4FIRE
 - GEANT
 - EpiCollect, PhoneLab

Our Contribution


- Federated a wide range of devices
 - Static
 - Virtual
 - Crowdsourced
- Novel, generic yet specified experimentation mechanism
- User incentivization

We adopted and adapted the RSpec schema for the resource description

```
<node component_manager_id="urn:publicid:IDN+iotlab:ctitestbed+authority+cm"</pre>
exclusive="false" component_name="node_8.cti" ip="2001:620:607:5f00::8"
protocol="coap" port="5683">
  <interface component_id="urn:publicid:IDN+iotlab:ctitestbed:ctitestbed+</pre>
  node+node 8.cti"></interface>
  <location longitude="21.7333" latitude="38.25"/>
  <resource name="Transformers" path="/gpio" type="actuator" unit="None">
   <gpio>
     <dout data_type="" interface_def="a" name="Transformers"</pre>
     path="/transformers" resource_type="ipso.gpio.dout" resource_id="593"/>
   </gpio>
  </resource>
  <resource name="Energy Meter" path="/gpio" type="sensor" unit="KWh">
   <gpio>
     <din data_type="KWh" interface_def="a" name="Energy Meter"</pre>
     path="/energy" resource_type="ipso.gpio.din" resource_id="594"/>
   </graph>
  </resource>
</node>
```

We have federated the following resources:

- Static IoT resources
- Mobile/portable IoT resources
- Virtual/modelled resources
- Web services
- Crowdsourced Resources Opportunistic/Participatory sensing

Efficient description of diverse experiments in a generic yet specific way through IFTTT scenaria and Questionnaires.

A diverse way of discovering, provisioning and reserving resources

- Survey Queries
- Survey Lists
- Geofencing
- Project Code

IFTTT scenario

- Get a value from specified resources
- Define an action
 - Set a condition
 - Set an outcome

Experiment Description

```
<?xml version='1.0' encoding='utf-8'?>
<experiment>
  <measurements><ip>129.194.70.52</ip><port>9000</port></measurements>
 <identifier>IemNuXCQTGasLMo5mMjkqxPYKewJYhkh</identifier>
  <reading>
   <frequency unit='minutes'>1</frequency>
   <start>2015-06-19 14:54
   <end>2015-06-19 14:54</end>
   <resources>
     <id component=urn:publicid:IDN+iotlab:mitestbed:mitestbed+node+</pre>
     node7.mitestbed' resource_id='undefined' port='61616'
     ip='2001:620:607:5800:0:0:0:1c' protocol='coap'
     type='sensor' path='/co2' unit='ppm'></id>
   </resources>
  </reading>
  <action>
   <conditions>
     <average logic='and'>
       <id component='urn:publicid:IDN+iotlab:unigetestbed:unigetestbed+node+</pre>
       C3S7A1-LightLevel' resource_id='undefined' port='8111' ip='129.194.70.52'
       protocol='http' type='sensor' path='/lum' unit='lx'></id>
       <threshold type='less' value='100'></threshold>
     </average>
   </conditions>
   <outcome logic='and'>
     <id component='urn:publicid:IDN+iotlab:ctitestbed:ctitestbed+node+
     node_light_control' port='568' unit='none' resource_id='undefined'
     ip='2001:620:607:5f00::15' protocol='coap' type='actuator' path='PUT-dev0-1'></id>
   </outcome>
 </action>
</experiment>
```

Naive approach through Threads. more robust solution Queues.

- Queues
 - Persistent
 - Monitoring
 - Control
 - Scalable

An Incentive mechanism Necessary for effective user engagement in the experiments Persuade users to complete task segments

- Incentives framework
 - Sponsor
 - Charity
- Reputation mechanisms
 - Platform
 - Researcher
 - User

Network Scalability

- Scenaria
 - High-end
 - Average
 - Low-end
- Packages
 - Sensing package 400 bytes
 - Sourcing package 100 Kbs

Table 1. Mobile Side - Bandwidth requirements, number of connections with server.

Mobile Side	BW (3G/LTE Kbp	s) BW (Wi-Fi)	Capacity 100%	Capacity 50%
High-end scenario	0,271	5,417	369.231	184.615
Average scenario	0,017	0,347	5.760.000	2.880.000
Low-end scenario	0,002	0,045	44.883.117	22.441.558

Table 2. Testbed Side - Bandwidth requirements, number of connections with server

Testbed Side	Bandwidth (Kbps)	Capacity at 100%	Capacity at 50%
High-end scenario	0,013	8.000.000	4.000.000
Average scenario	0,002	48.000.000	24.000.000
Low-end scenario	0,0004	240.000.000	120.000.000

- Architecture Scalability
 - Cache
 - Load balancer
 - Queues

Upatras use-case

- Crowd
 - Passive light readings
 - Participatory localization through QR code scanning
 - · Questionnaires to adjust parameters
- Static
 - Automation
 - Meters

Ekonet use-case

- Mobile sensors
- Crowd
 - Questionnaire

- Experiments
 - Dynamic Experiments
 - Change Experiments Parameters
- Deployment in Industrial Setting
- Explore more options for crowd interaction
- Data visualization

Thank you for your attention, any questions?