

An Original Correction Method for Indoor Ultra Wide Band Ranging-based Localisation System

Nezo Ibrahim Fofana, Adrien van den Bossche, Réjane Dalcé, Thierry Val

IRIT, Université de Toulouse, Toulouse, France

Ad Hoc Now 2016

- I. Related work
- **II.** Testbed description
- III. Implementation results and comparison of TWR and SDS-TWR
- IV. Artificial delays and TWR performance
- V. Proposed error mitigation method
- VI. Conclusion and future works

- I. Related work
- **II.** Testbed description
- III. Implementation results and comparison of TWR and SDS-TWR
- IV. Artificial delays and TWR performance
- V. Proposed error mitigation method
- VI. Conclusion and future works

Related work

1. Std IEEE 802.15.4-2011: Ultra Wide Band (UWB) PHY layer

Use of UWB radio links to achieve an efficient ranging, based on ToF measurement

Related work

2. Ranging protocols

Related work

2. Ranging protocols

First step:

Implementation of TWR and SDS-TWR

Proposal for improvement

Incorporate ranging traffic in the usual network traffic

- I. Related work
- II. Testbed description
- III. Implementation results and comparison of TWR and SDS-TWR
- IV. Artificial delays and TWR performance
- V. Proposed error mitigation method
- VI. Conclusion and future works

Tesbed description

OpenWino Open source environnement for WSN Used for prototyping of WiNo (Wireless Node) Nodes

The WiNos nodes

DecaWiNo

- •WiNo built on UWB transceivers developed by DecaWave, compliant with the IEEE 805.15.4 2011
- Library DecaDuino available online [3]

[3] https://www.irit.fr/~Adrien.Van-Den-Bossche/DecaWiNo

Tesbed description

Context of distance measurements

- I. Related work
- II. Testbed description
- III. Implementation results and comparison of TWR and SDS-TWR
- IV. Artificial delays and TWR performance
- V. Proposed error mitigation method
- **VI.** Conclusion and future works

Implementation results and comparison of TWR and SDS-TWR

Actual distance	Dist. TWR	ave rage error	max error	min error	s tan da rd de via tion
0,5	0,339	-0,160	-0,11	-0,24	0,029745754
1	0,881	-0,118	-0,05	-0,17	0,02427616
1,5	1,417	-0,082	-0,03	-0,14	0,023683855
2	1,993	-0,006	0,05	-0,06	0,024150096
2,5	2,480	-0,019	0,03	-0,07	0,017567371
3,5	3,481	-0,018	0,03	-0,07	0,022417601
5	5,046	0,046	0,08	0	0,016043844

Error Summary in TWR (in meters)

Error Summary in SDS-TWR (in meters)

Actual distance	Dist. SDS_TWR	ave rage error	max error	min error	s tan da rd de via tion
0,5	0,4	-0,099	-0,05	-0,15	0,02623868
1	0,942	-0,057	-0,02	-0,09	0,01638611
1,5	1,482	-0,017	0,03	-0,07	0,02390231
2	2,061	0,061	0,11	0,01	0,02122458
2,5	2,546	0,046	0,08	0,01	0,01724975
3	3,067	0,067	0,11	0,03	0,02023639
5	5,107	0,107	0,15	0,07	0,01559689

Implementation results and comparison of TWR and SDS-TWR

Ranging using TWR and SDS-TWR

Error on both SDS-TWR and TWR < 16 cm

Low standard deviation (~ 0.02)

- I. Related work
- II. Testbed description
- III. Implementation results and comparison of TWR and SDS-TWR
- IV. Artificial delays and TWR performance
- V. Proposed error mitigation method
- **VI.** Conclusion and future works

Artificial delays and TWR performance

Context of measurements

TWR with a delay between exchanges

Artificial delays and TWR performance

Results with 2 and 3 m

Representation of the error in function of delay (TWR)

- I. Related work
- II. Testbed description
- III. Implementation results and comparison of TWR and SDS-TWR
- IV. Artificial delays and TWR performance
- V. Proposed error mitigation method
- VI. Conclusion and future works

Proposed error mitigation method

Principle of the correction

Proposed error mitigation method

Analysis and interpretation of results

Distance Delay	0,5 m	1,5 m	2,5 m	3,5 m	4,5 m	5,5 m
1 ms	-0,26	0,06	0,15	0,06	0,24	0,23
2 ms	-0,32	-0,04	-0,01	0,04	0,21	0,31
3 ms	-0,29	-0,07	0,05	0,00	0,24	0,27
4 ms	-0,37	-0,02	0,17	0,02	0,22	0,38
5 ms	-0,17	-0,09	0,05	-0,10	0,36	0,17
6 ms	-0,30	-0,12	0,11	0,11	0,34	0,23
7 ms	-0,27	-0,04	0,03	0,05	0,04	0,24
8 ms	-0,23	-0,12	0,19	0,05	0,16	-0,01
13 ms	-0,16	0,06	0,24	0,12	0,32	0,06
16 ms	-0,11	0,04	0,27	0,18	0,38	-0,02
21 ms	-0,17	0,20	0,19	0,22	0,35	0,28

Summary table of corrected distances

Representation of the error and correction in function of delay

- I. Related work
- **II.** Testbed description
- III. Implementation results and comparison of TWR and SDS-TWR
- IV. Artificial delays and TWR performance
- V. Proposed error mitigation method
- VI. Conclusion and future works

Conclusion and future works

Conclusion

Proposition and implementation of an original correction on our testbed

With this correction, we obtained identical performances of TWR without delay

Another contribution

Improvement of the classic TWR protocol [4]

2M-TWR (2 Messages – TWR)

[4] A. van den Bossche, R. Dalcé, N.I. Fofana, T. Val, "DecaDuino: An Open Framework for Wireless Time-of-Flight Ranging Systems" In : Wireless Days, Toulouse (2016)

Conclusion and future works

Future works

Implementation of ranging protocol for localisation

Thank you for your attention