

Linking the Environment, the Battery, and the Application in Energy Harvesting Wireless Sensor Networks

Jad Oueis, Razvan Stanica, Fabrice Valois

15th International Conference on Ad-Hoc Networks and Wireless ADHOC-NOW Lille, France

05/07/2016

Introduction

• Energy Harvesting

- Collecting energy from the environment or other ambient energy sources and converting it into Electrical Energy
- In Wireless Sensor Networks (WSN)
 - Nodes extract ambient energy and use it as a power source
 - Nodes recharge autonomously
 - Enhance performance
 - Go Green!

Harvestable Energy Sources

4

Energy Harvesting Model

Energy Harvesting Model

The Environment

The Application

- Light intensity
- Energy collection

- Requirements
- Energy consumption
- Power storage
- Energy management

Energy Harvesting Model

The Environment

$$E_h(\tau) = I_{gh}(\tau) \cdot S_{PV} \cdot \eta_{PV} \cdot T$$

The Environment

(2) A. Andreas, S. Wilcox, "SOLARMAP", Rotating Shadowband Radiometer, NREL Report No. DA-5500-56502, Los Angeles, CA, USA, 2012. (3) M. Gorlatova, M. Zapas, E. Xu, M. Bahlke, I. Kymissis, G. Zussman, "CRAWDAD Dataset Columbia/Enhants, 2011.

The Application

- Energy consumption **Ec**
- Duty Cycle **DC**

$$E_c(\tau) = P_{avg} \cdot DC(\tau) \cdot T$$

10

(4) A. Prayati, C. Antonopoulos, T. Stoyanova, C. Koulamas, G. Papadopoulos, "A Modeling Approach on the Telos BWSN Platform Power Consumption", Journal of Systems and Software, 1355-1363, 2010.

- Continuous operation required
- Outage situation:
 - \rightarrow Operation stops

- Non-operational time tolerated
- Outage situation:
 - \rightarrow Operation stops
 - \rightarrow Battery recharges
 - \rightarrow Operation resumes

The Application

(5) V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, M. Srivastava, "Design Considerations for Solar Energy Harvesting Wireless Embedded Systems", Proc. ACM/IEEE IPSN 2005, Los Angeles, CA, USA, 2005.

CPU

Model	Туре	Volume	Emax (J)	Capacity (mAh)	ηουt
AA	NiMH	7.7	10800	2500	0.66
AAA	NiMH	3.8	5625	1250	0.66
AA	Li	7.7	9857	740	0.99
Ultrathin_200	Li	2.7	2664	200	0.99
Ultrathin_100	Li	1.3	1332	100	0.99
Ultrathin_43	Li	0.6	573	43	0.99
Ultrathin_10	Li	0.6	133	10	0.99

(6) S. Sudevalayam, P. Kulkarni, "Energy Harvesting Sensor Nodes: Survey and Implications", IEEE Communications Surveys & Tutorials, 13(3), 443-461, 2011.
(7) Ultrathin Rechargeable Lithium Polymer Batteries from Powerstream, <u>http://www.powerstream.com/thin-lithium-ion.htm</u>, Accessed: Apr. 2016.

Linking the Environment, the Battery, and the Application

Outage Intolerant Applications

Outage Intolerant Applications

- Determine the continuous operation lifetime rco
 = time duration before the first power outage
- Function of:
 - Environment
 - Duty Cycle
 - Battery

Outage Intolerant Applications - OUTDOOR

(b) DC=33%

(c) DC=50%

23

Outage Intolerant Applications - INDOOR

Outage Tolerant Applications

Duty Cycle Dimensioning

- Maximum achievable Duty Cycle value **DC**
- Function of:
 - Environment
 - Battery
 - Total non-operational time rno
 - Maximum number of consecutive non-operational timeslots **n**cmax

Duty Cycle Dimensioning - OUTDOOR

27

Duty Cycle Dimensioning - INDOOR

Conclusion

Conclusion

- Study batteries suitability given required duty cycle (and vice versa)
- Study feasibility of an application in a specific environment
- Tolerating short power outage periods allows:
 - Extending node lifetime
 - High duty cycle values

Perspectives

- Extend study to complete WSN context
- Outage tolerant applications:
 - Study appearance and disappearance of nodes in the network
- Dynamic Duty Cycles⁽⁸⁾

Thank You

Q&A

jad.oueis@insa-lyon.fr

