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Problem Setting
Sequential multi-task linear bandit: The learner faces a sequence of (un-
known) linear bandit tasks (θ1, θ2, . . . , θj , . . .).

Linear bandit task:
• Set of arms X ⊆ Rd, |X | = K and ||x||2 ≤ L, ∀x ∈ X .
• Reward model for task j:

rj(x) = x>θj + η

where θj ∈ Rd is unknown and η is an R sub-Gaussian noise.
• Cumulative regret wrt the optimal arm x∗j = argmaxx∈X x

>θj

Rnj =

nj∑
s=1

(x∗j − xs)>θj

Task Similarity: there exists ε > 0 such that for any pair of tasks (θ, θ′) we
have ||θ − θ′||2 ≤ ε.
Better performance on a particular task can be achieved by leveraging

information from different but similar tasks.

Motivation
• Recommendation System:

users with similar features have
similar preferences over different
items.

• Personalized Healthcare:
patients with similar symptoms
and medical history have the simi-
lar reactions to treatments.

• Games:
an agent might reduce the ex-
ploratory steps needed to dis-
cover an environment, by using
the knowledge acquired on previ-
ous similar environments.

Tools
Single-task ordinary least-squares (OLS) estimate: for any task j, the estimate of θj after n rewards is

Aj,n =
n∑
t=1

xtx
>
t , bj,n =

n∑
t=1

xtrt, θ̂j,n = A−1j,nbj,n

Single-task regularized least-squares estimate: for any task j, the estimate of θj after nj rewards is

Aλj,n =
( n∑
t=1

xtx
>
t + λI

)
, bj,n =

n∑
t=1

xtrt, θ̂λj,t = (Aλj,n)
−1bj,n

Single-task prediction error Thm.2 in [1] with probability 1− δ∣∣x>θj − x>θ̂λj,n∣∣ ≤ ||x||(Aλj,n)−1

(
R

√
d log

(1 + nL2/λ

δ

)
+ λ1/2||θj ||

)
= Bj,n(x).

Multi-Task Estimates
Multi-task estimates: use all the past samples to con-
struct an estimate for the current task

Ãm+1,t =
m∑
j=1

Aj+Am+1,t; b̃m+1,t =
m∑
j=1

bj+bm+1,t

θ̃m+1,t = Ã−1m+1,tb̃m+1,t

Average target task:

E
[
θ̃m+1,t

]
= θ̃∗m+1,t

Multi-task Regularized estimates:

Ãλm+1,t = Ãm+1,t + λI, θ̃λm+1,t = (Ãλm+1,t)
−1 · b̃m+1,t

Use at the same time single-task and multi-task
estimates to construct upper confidence bounds

B(x), B̃(x).

Main result
Theorem 1 Let θ̃λm+1,t be the multi-task regularized least-squares estimate. Then, for any δ ≥ 0, for any t ≥ 1, with
probability greater than 1− δ it holds that:

∣∣x>(θ̃λm+1,t − θm+1)
∣∣ ≤ ∣∣∣∣x∣∣∣∣(

Ãλm+1,t

)−1

R
√√√√
d log

(
det
(
Ãλm+1,t

)1/2
det(λI)−1/2

δ

)
+ λ1/2S

+ x>ε = B̃m+1,t(x).

Estimation error
The estimation error of the MT least-squares estimate is upper-bounded by∣∣x>(θ̃λm+1,t − θ̃∗m+1,t)

∣∣ ≤∣∣∣∣x∣∣∣∣(
Ãλm+1

)−1

(
R

√
2 log

(
det(Ãλm+1)

1/2det(λI)−1/2

δ

)
+ λ1/2S

)
Multi-Task Bias
Under the task similarity assump-
tion the approximation error of the
multi-task estimates is∣∣∣∣θ̃∗m+1,t − θm+1

∣∣∣∣ ≤ ε, w.p. 1− δ.

MultiTask-LinUCB
Input: budgets {nj}j , arms X ⊂ Rd, regularizer λ
j = 1
A = λId, b̃ = b = 0d, Ãj = λId, θ̂j = A−1b
for t = 1, . . . , nj do

Choose: xt = argmaxx∈X (x
>
t θ̂j +Bj,t(x))

Observe reward: rt = x>t θj + ηt
Update A, b and the estimate θ̂j = A−1b

end for
for j = 2, . . . ,m+ 1 do
Ãj = Ãj +A− λId, b̃ = b̃+ b, θ̃j = Ã−1j b̃

A = λId, b = 0d, θ̂j = A−1b
for t = 1, . . . , nj do
xt=argmax

x∈X
min

[
x>θ̂j+Bj,t(x); x

>θ̃j + B̃j,t(x)
]

Observe reward: rt = x>t θj + ηt
Update: A, b, θ̂j , Bj,t, Ãj , b̃, θ̃j , B̃j,t

end for
end for

Experiments
Synthetic experiments Boston Housing dataset
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Setting
• 200 tasks with θ1, . . . , θ200 ∈ R2, randomly generated

• maxθ ||θ||2 = 1.1 ·
√
2, ||ε||2 ranges in {0.8, 0.6, 0.4, 0.2} ·

√
2

• 100 samples for each task

Results
• MT-LinUCB is never worse than LinUCB.

• As the difference between tasks reduces, the advantage of MT-
LinUCB becomes more evident.

• For ε = 0.2
√
2, the regret of MT-LinUCB decreases with every addi-

tional task, while the regret for LinUCB remains constant over time.

• Data points are scaled to have
a norm of 1.

• Twenty different clusters,
each cluster center is θ∗m for
task m.

• For each task, we drew 10 sets
of 3 arms each.
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