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CONTRIBUTION
Objective: Exploit similarity across multiple tasks to reduce number
of samples needed to learn a near-optimal policy.

Results:
• We define similarity across MDPs in terms of their level of sparsity .

• We introduce three algorithms obtained by integrating sparse multi-
task regression with fitted Q-iteration, including a method the auto-
matically learn the most sparse representation.

• Provable sample complexity reduction.

• Significant empirical improvement over single-task baselines.

EXAMPLE
Multiple Tasks to Solve

One Policy Per Task

Task Representation (features)
Cards Chips History Horoscope...

Useful Useless

All solutions use the same (small) set of features!

MULTI-TASK REINFORCEMENT LEARNING
Markov decision processes (MDPs)Mt = (X ,A, Rt, Pt), t ∈ [T ]

• X is the state space,
• A is the action space,
• Rt : X ×A → [0, 1] is the task reward,
• Pt : X ×A → P(X ) is the task dynamics,

Policy π : X → A maps states to actions.
Optimal Bellman operator Tt : B(X ×A;Qmax)→ B(X ×A;Qmax)

T Q(x, a) = Rt(x, a) + γ
∑
y

Pt(y|x, a) max
a′

Q(y, a′)

Objective compute the optimal action-value function Q∗t = TtQ∗t and
the optimal policy π∗t (x) = maxaQ

∗
t (x, a) for each task t.

LINEAR FITTED Q-ITERATION (SEE E.G., [1])

Linear function space F={fw(x, a) = φ(x)Twa, wa∈Rdx}, d = |A|·dx
Set of task samples

{
St = {xi}n

i=1

}T
t=1

Initialize W 0 ← 0 , k = 0
for k = 1, . . . ,K do

for a← 1, . . . , |A| do
for t← 1, . . . , T , i← 1, . . . , nx do

Sample rki,a,t = Rt(xi,t, a) and yki,a,t ∼ Pt(·|xi,t, a)

Compute zki,a,t = rki,a,t + γmaxa′ Q̃
k
t (yki,a,t, a

′)
end for
Build datasets Dka,t = {(xi,t, a), zki,a,t}ni=1

Compute Ŵ k
a on {Dk

a,t}Tt=1 with MTL regression
end for

end for

HIGH-DIMENSIONAL SPARSE MDPS
Problem: the regression approximation must be accurate. Solution: use large number of features, rich feature space captures everything.
Assumption 1 (high-dimensional space) For any function fw ∈ F , the Bellman operator T can be
expressed as

T fw(x, a) = R(x, a) + γ E
x′∼P (·|x,a)

[fw(x′, πw(x′))] = ψ(x, a)TwR + γψ(x, a)TPπw

ψ w

and thus there exists fw′ ∈ F such that fw′ = T fw with w′ = wR + Pπw

ψ w.

⇒ Linear Model: at each iteration k, the samples are generated according to a true vector wka and
perturbed by a zero-mean bounded noise:

zki,a = T Q̂k−1(xi, a) + ηki,a = φ(xi)
Twka + ηki,a

Problem: high-dimensional regression requires too many samples. Solution: use regularization to induce sparsity .
Assumption 2 (Sparse MDPs) For each task t ∈ [T ], there exists a set Jt (the set of useful features), such that for any i /∈ J , and any policy π the
rows [Pπψ ]i are equal to 0, and there exists a function fwR = R such that J(wR) ⊆ J .

⇒ MDP Sparsity: for any function fw ∈ F , the Bellman image fw′ = Ttfw is such that Jt(w′) ⊆ Jt for any task t ∈ [T ].

SPARSE MULTI-TASK FITTED Q-ITERATION ALGORITHMS

Sparsity Patterns

Single-Task Sparsity Shared Sparsity “Hidden” Shared Sparsity
U S VT

SVD decom-

position

W = USVT

U A = SVT

s̄ =
∑
st/T s̃ =

⋃
J(si) s∗ = Rank(W )

Multi-Task Regression Problems

LASSO–FQI [2] GL–FQI [3] FL–FQI [4]

min
w∈Rdx

1

nx

nx∑
i=1

(
φ(xi)

Tw − zki,a
)2

+ λ||w||1 min
W

T∑
t=1

∥∥Zka,t − Φtwt
∥∥2
2

+ λ ‖W‖2,1

min
Ua∈Od,A∈Rd×T

T∑
t=1

||Zka,t − ΦtUa[A]t||2 + λ ‖A‖2,1

= min
W

T∑
t=1

||Zka,t − Φt[W ]t||2 + λ‖W‖1

Performance Guarantees 1

T

T∑
t=1

∥∥∥Q∗t −QπK
t
t

∥∥∥2
2,µ
≤ O

(
1

(1− γ)4

[
•
])

LASSO–FQI GL–FQI FL–FQI

[
Q2

maxL
2

κ4min(s)

s log d

n
+ γKQ2

max

] [
L2Q2

max

κ4(2s̃)

s̃

n

(
1 +

(log d)3/2+δ√
T

)
+ γKQ2

max

] [
Q2

maxL
4

κ2
s∗

n

(
1 +

d

T

)
+ γKQ2

max

]

+ Only logarithmic dependency on d

+ Scale with the number of useful features s

– No advantage from multiple tasks

+ When T is large, no dependency on d

– s̃ may be larger than s and as large as d

+ Learn the most sparse representation
+ Linear dependency on d may be reduced by

number of tasks T

– Limited to linear transformations

Assumptions
min

{
‖Φ∆‖22

nT ‖∆J‖22
: |J | ≤ s, a ‖∆Jc‖p ≤ b ‖∆J‖p

}
≥ κ(s)

LASSO–FQI: Restricted Eigenvalues GL–FQI: Multi-Task Restricted Eigenvalue FL–FQI: Restricted Strong Convexity

P. Bickel, Y. Ritov, and A. B Tsybakov. Simultaneous
analysis of lasso and dantzig selector. 2009.

K. Lounici, M. Pontil, S. Van De Geer, A. B Tsybakov.
Oracle inequalities and optimal inference under group

sparsity. 2011.

S. Negahban, M. Wainwright, et al. Estimation of
(near) low-rank matrices with noise and

high-dimensional scaling. 2011.

EXPERIMENTS: BLACKJACK
Rules:

♦ Player can ask another card “HIT” or “STAY”
♥ If the player goes over 21, he loses, end of game
♠ Dealer has to “HIT” until a threshold, then “STAY”
♣ If the dealer goes over 21, player wins.
♦ If the player has a strictly higher score than the dealer, player wins

Multiple Tasks:

♥ Dealer threshold {15, 16, 17, 18}
♠ Number of decks {2, 4, 6, 8}
♣ If the dealer “HIT” when has a soft ace (A=11)

Full Variant Game

• Actions: Player can “DOUBLE” his bet after the first two cards
• Features: Indicator functions for player’s and dealer’s hand, and large

number of indicator functions for the game history
• Sparsity: Most of the history features could be irrelevant.
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Reduced Variant Game

• Actions: Player cannot “DOUBLE” his bet after the first two cards.
• Features: Indicator functions for player’s and dealer’s hand.
• Sparsity: Dense (=non-sparse) representation that can produce cor-

related tasks (low rank problem).
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