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CONTRIBUTION HIGH-DIMENSIONAL SPARSE MDPS

Objective: Exploit similarity across multiple tasks to reduce number Problem: the regression approximation must be accurate. Solution: use large number of features, rich feature space captures everything.

of samples needed to learn a near-optimal policy. Assumption 1 (high-dimensional space) For any function f, € F, the Bellman operator T can be
expressed as

EXPERIMENTS: BLACKJACK

Rules:

& Player can ask another card “HIT” or “STAY”

@ If the player goes over 21, he loses, end of game
& Dealer has to “HIT” until a threshold, then “STAY”
& If the dealer goes over 21, player wins.

Features

Results:
e We define similarity across MDPs in terms of their level of sparsity. Tfw(z,a) = R(z,a)+~ B [ful@,m(@)] = ¢z, a) w + ¢ (z,a) Plow to the

x'~P(-|z,a) dynamics

e We introduce three algorithms obtained by integrating sparse multi-

task regression with fitted Q-iteration, including a method the auto- and thus there exists f,, € F such that f,» = T f., withw" = w" + Pj"w. { If the player has a strictly higher score than the dealer, player wins

matically learn the most sparse representation. = Linear Model: at each iteration k, the samples are generated according to a true vector w® and | iraevant Multiple Tasks:
e Provable sample complexity reduction. erturbed by a zero-mean bounded noise: to the

Significant empirical improvement over single-task baselines i y k= TQk ! y Tw® 4+ nf s v Dealer threshold {15, 16, 17, 18)
Py - . . — . . — . .

: P P : o (0, 0) + Mo = O71) Wa + Tha & Number of decks {2, 4,6, 8}
Problem: high-dimensional regression requires too many samples. Solution: use regularization to induce sparsity. & |f the dealer "HIT” when has a soft ace (A=11)
EXAMPLE Assumption 2 (Sparse MDPs) For each taskt € T, there exists a set .J; (the set of useful features), such that for any « ¢ J, and any policy w the Full Variant Game
Multiple Tasks to Solve rows [P]|* are equal to 0, and there exists a function f,,= = R such that J(w Ry C J.

e Actions: Player can “DOUBLE” his bet after the first two cards

e Features: Indicator functions for player’s and dealer’s hand, and large
number of indicator functions for the game history

e Sparsity: Most of the history features could be irrelevant.

= MDP Sparsity: for any function f,, € F, the Bellman image f.,, = 7T; f., is such that J;(w") C J; for any task ¢ € [T.

SPARSE MULTI-TASK FITTED (Q-ITERATION ALGORITHMS
Sparsity Patterns
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All solutions use the same (small) set of features! 5= 5/T s=UJ(si) s" = Rank(W) Reduced Variant Game
Multi-Task Regression Problems e Actions: Player cannot “DOUBLE” his bet after the first two cards.
MULTI-TASK REINFORCEMENT LEARNING LASSO-FQI [2] GL-FQI [3] FL-FQI [4] o Features: Indicator functions for player’s and dealer’s hand.
. . B ) . e Sparsity: Dense (=non-sparse) representation that can produce cor-
Mark.ov decision processes (MDPs) M; = (X, A, R;, P;), t € - related tasks (low rank problem).
e X is the state space, ) . - Z 125, — U, Al
e A is the action space, I . 2 o Ua €O, ACRIXT 2 | .
e R,: X x A—|[0,1] is the task reward, e T Z (Cb(f'?i) W= Zi,a) + Alwl]x mmz H at tth L 0
e P : X x A— P(X)is the task dynamics, L =1 ) = mmz 123, — @ [W]e|)” + AW 2
Policy 7 : X — A maps states to actions. . J e
Optimal Bellman operator 7; : B(X x A; Quax) — B(X X A; Qmax) Performance Guarantees 5 H 2 ] GL-FQl O
— Q*_ g@( [.]) ] w012}
TQ(z,a) = Ry(z,a) +7)_ Pilyle,a) maxQ(y, a) T z (1= FL-FQI o
Yy ] 014 f
Objective compute the optimal action-value function Q7 = 7;Q; and LASSO-FQI GL-FQI FL-FQI LASSO-FQI
the optimal policy =} (x) = max, Q7 (z, a) for each task . ) . ) .
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LINEAR FITTED (Q-ITERATION setc.c., (1) kmin(5) 1 max Kk*(28) n VT e K2 n T o
Linear function space F={f,(z,a) = ¢(z)"w,, w, €R¥}, d = | A|-d,
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