
Sparse Multi-Task Reinforcement Learning

Daniele Calandriello ∗ Alessandro Lazaric∗
Team SequeL

INRIA Lille – Nord Europe, France

Marcello Restelli†
DEIB

Politecnico di Milano, Italy

Abstract

In multi-task reinforcement learning (MTRL), the objective is to simultaneously
learn multiple tasks and exploit their similarity to improve the performance w.r.t.
single-task learning. In this paper we investigate the case when all the tasks can
be accurately represented in a linear approximation space using the same small
subset of the original (large) set of features. This is equivalent to assuming that
the weight vectors of the task value functions are jointly sparse, i.e., the set of
their non-zero components is small and it is shared across tasks. Building on ex-
isting results in multi-task regression, we develop two multi-task extensions of the
fitted Q-iteration algorithm. While the first algorithm assumes that the tasks are
jointly sparse in the given representation, the second one learns a transformation
of the features in the attempt of finding a more sparse representation. For both
algorithms we provide a sample complexity analysis and numerical simulations.

1 Introduction
Reinforcement learning (RL) and approximate dynamic programming (ADP) [24, 2] are effective
approaches to solve the problem of decision-making under uncertainty. Nonetheless, they may fail
in domains where a relatively small amount of samples can be collected (e.g., in robotics where
samples are expensive or in applications where human interaction is required, such as in automated
rehabilitation). Fortunately, the lack of samples can be compensated by leveraging on the presence
of multiple related tasks (e.g., different users). In this scenario, usually referred to as multi-task rein-
forcement learning (MTRL), the objective is to simultaneously solve multiple tasks and exploit their
similarity to improve the performance w.r.t. single-task learning (we refer to [26] and [15] for a com-
prehensive review of the more general setting of transfer RL). In this setting, many approaches have
been proposed, which mostly differ for the notion of similarity leveraged in the multi-task learning
process. In [28] the transition and reward kernels of all the tasks are assumed to be generated from
a common distribution and samples from different tasks are used to estimate the generative distri-
bution and, thus, improving the inference on each task. A similar model, but for value functions, is
proposed in [16], where the parameters of all the different value functions are assumed to be drawn
from a common distribution. In [23] different shaping function approaches for Q-table initialization
are considered and empirically evaluated, while a model-based approach that estimates statistical in-
formation on the distribution of theQ-values is proposed in [25]. Similarity at the level of the MDPs
is also exploited in [17], where samples are transferred from source to target tasks. Multi-task rein-
forcement learning approaches have been also applied in partially observable environments [18].

In this paper we investigate the case when all the tasks can be accurately represented in a linear
approximation space using the same small subset of the original (large) set of features. This is
equivalent to assuming that the weight vectors of the task value functions are jointly sparse, i.e., the
set of their non-zero components is small and it is shared across tasks. Let us illustrate the concept
of shared sparsity using the blackjack card game. The player can rely on a very large number of
features such as: value and color of the cards in the player’s hand, value and color of the cards on
∗{daniele.calandriello,alessandro.lazaric}@inria.fr
†{marcello.restelli}@polimi.it

1

the table and/or already discarded, different scoring functions for the player’s hand (e.g., sum of the
values of the cards) and so on. The more the features, the more likely it is that the corresponding
feature space could accurately represent the optimal value function. Nonetheless, depending on the
rules of the game (i.e., the reward and dynamics), a very limited subset of features actually contribute
to the value of a state and we expect the optimal value function to display a high level of sparsity.
Furthermore, if we consider multiple tasks differing for the behavior of the dealer (e.g., the value at
which she stays) or slightly different rule sets, we may expect such sparsity to be shared across tasks.
For instance, if the game uses an infinite number of decks, features based on the history of the cards
played in previous hands have no impact on the optimal policy for any task and the corresponding
value functions are all jointly sparse in this representation. Building on this intuition, in this paper
we first introduce the notion of sparse MDPs in Section 3. Then we rely on existing results in
multi-task regression [19, 1] to develop two multi-task extensions of the fitted Q-iteration algorithm
(Sections 4 and Section 5) and we study their theoretical and empirical performance (Section 6). An
extended description of the results, as well as the full proofs of the statements, are reported in [5].

2 Preliminaries
Multi-Task Reinforcement Learning (MTRL). A Markov decision process (MDP) is a tupleM =
(X ,A, R, P, γ), where the state space X is a bounded subset of the Euclidean space, the action
space A is finite (i.e., |A| < ∞), R : X × A → [0, 1] is the reward of a state-action pair, P :
X ×A → P(X) is the transition distribution over the states achieved by taking an action in a given
state, and γ ∈ (0, 1) is a discount factor. A deterministic policy π : X → A is a mapping from
states to actions. We denote by B(X × A; b) the set of measurable bounded state-action functions
f : X ×A → [−b; b]. Solving an MDP corresponds to computing the optimal action–value function
Q∗ ∈ B(X ×A;Qmax = 1/(1−γ)), defined as the fixed point of the optimal Bellman operator T
defined as T Q(x, a) = R(x, a) + γ

∑
y P (y|x, a) maxa′ Q(y, a′). The optimal policy is obtained

as the greedy policy w.r.t. the optimal value function as π∗(x) = arg maxa∈AQ
∗(x, a). In this

paper we study the multi-task reinforcement learning (MTRL) setting where the objective is to solve
T tasks, defined asMt = (X ,A, Pt, Rt, γ) with t ∈ [T] = {1, . . . , T}, with the same state-action
space, but different dynamics and rewards. The objective of MTRL is to exploit similarities between
tasks to improve the performance w.r.t. single-task learning. In particular, we choose linear fitted
Q-iteration as the single-task baseline and we propose multi-task extensions tailored to exploit the
sparsity in the structure of the tasks.

input: Input sets
{
St = {xi}nxi=1

}T
t=1

, tol, K
Initialize W 0 ← 0 , k = 0
do
k ← k + 1
for a← 1, . . . , |A| do
for t← 1, . . . , T , i← 1, . . . , nx do
Sample rki,a,t = Rt(xi,t, a) and yki,a,t ∼ Pt(·|xi,t, a)
Compute zki,a,t = rki,a,t + γmaxa′ Q̃

k
t (y

k
i,a,t, a

′)
end for
Build datasets Dk

a,t = {(xi,t, a), zki,a,t}nxi=1

Compute Ŵ k
a on {Dk

a,t}Tt=1 (see Eqs. 2,5, or 8)
end for

while
(
max

a

∥∥W k
a −W k−1

a

∥∥
2
≥ tol

)
and k < K

Figure 1: Linear FQI with fixed design and fresh samples at
each iteration in a multi-task setting.

Linear Fitted Q-iteration. Whenever
X and A are large or continuous, we
need to resort to approximation schemes
to learn a near-optimal policy. One of
the most popular ADP methods is the
fitted-Q iteration (FQI) algorithm [7],
which extends value iteration to approx-
imate action-value functions. While ex-
act value iteration proceeds by iterative
applications of the Bellman operator (i.e.,
Qk = T Qk−1), at each iteration FQI ap-
proximates T Qk−1 by solving a regres-
sion problem. Among possible instances,
here we focus on a specific implementa-
tion of FQI in the fixed design setting with
linear approximation and we assume access to a generative model of the MDP. Since the action
space A is finite, we represent action-value functions as a collection of |A| independent state-value
functions. We introduce a dx-dimensional state-feature vector φ(·) = [ϕ1(·), . . . , ϕdx(·)]T with
φi : X → R such that supx ||φ(x)||2 ≤ L. From φ we obtain a linear approximation space for
action-value functions as F = {fw(x, a) = φ(x)Twa, x ∈ X , a ∈ A, wa ∈ Rdx}. FQI receives
as input a fixed set of states S = {xi}nxi=1 (fixed design setting) and the space F . Starting from
w0 = 0, at each iteration k, FQI first draws a (fresh) set of samples (rki,a, y

k
i,a)nxi=1 from the gen-

erative model of the MDP for each action a on each of the states {xi}nxi=1 (i.e., rki,a = R(xi, a)

and yki,a ∼ P (·|xi, a)) and builds |A| independent training sets Dka = {(xi, a), zki,a}
nx
i=1, where

zki,a = rki,a + γmaxa′ Q̂
k−1(yki,a, a

′) is an unbiased sample of T Q̂k−1 and Q̂k−1(yki,a, a
′) is com-

2

puted using the weight vector learned at the previous iteration as ψ(yki,a, a
′)Twk−1. Then FQI

solves |A| linear regression problems, each fitting the training set Dka and it returns vectors ŵka ,
which lead to the new action value function fŵk with ŵk = [ŵk1 , . . . , ŵ

k
|A|]. At each iteration the

total number of samples is n = |A| × nx. The process is repeated up to K iterations or until no
significant change in the weight vector is observed. Since in principle Q̂k−1 could be unbounded
(due to numerical issues in the regression step), in computing the samples zki,a we use a function
Q̃k−1 obtained by truncating Q̂k−1 in [−Qmax;Qmax]. The convergence and the performance of
FQI are studied in detail in [20] in the case of bounded approximation space, while linear FQI is
studied in [17, Thm. 5] and [22, Lemma 5]. When moving to the multi-task setting, we consider
different state sets {St}Tt=1 and we denote by Ŵ k

a ∈ Rdx×T the matrix with vector ŵka,t ∈ Rdx as
the t–th column. The general structure of FQI in a multi-task setting is reported in Fig. 1. Finally,
we introduce the following matrix notation. For any matrix W ∈ Rd×T , [W]t ∈ Rd is the t–th
column and [W]i ∈ RT the i–th row of the matrix, Vec(W) is the RdT vector obtained by stacking
the columns of the matrix, Col(W) is its column-space and Row(W) is its row-space. Beside the `2,
`1-norm for vectors, we use the trace (or nuclear) norm ‖W‖∗ = trace((WWT)1/2), the Frobenius
norm ‖W‖F = (

∑
i,j [W]2i,j)

1/2 and the `2,1-norm ‖W‖2,1 =
∑d
i=1 ‖[W]i‖2. We denote by Od

the set of orthonormal matrices and for any pair of matrices V and W , V⊥Row(W) denotes the
orthogonality between the spaces spanned by the two matrices.

3 Fitted Q–Iteration in Sparse MDPs
Depending on the regression algorithm employed at each iteration, FQI can be designed to take ad-
vantage of different characteristics of the functions at hand, such as smoothness (`2–regularization)
and sparsity (`1–regularization). In this section we consider the high–dimensional regression
scenario and we study the performance of FQI under sparsity assumptions. Let πw(x) =
arg maxa fw(x, a) be the greedy policy w.r.t. fw. We start with the following assumption.1

Assumption 1. For any function fw ∈ F , the Bellman operator T can be expressed as

T fw(x, a) = R(x, a) + γ E
x′∼P (·|x,a)

[fw(x′, πw(x′))] = ψ(x, a)TwR + γψ(x, a)TPπwψ w (1)

This assumption implies thatF is closed w.r.t. the Bellman operator, since for any fw, its image T fw
can be computed as the product between features ψ(·, ·) and a vector of weightswR and Pπwψ w. As a
result, the optimal value functionQ∗ itself belongs toF and it can be computed as ψ(x, a)Tw∗. This
assumption encodes the intuition that in the high–dimensional feature space F induced by ψ, the
transition kernel P , and therefore the system dynamics, can be expressed as a linear combination of
the features using the matrixPπwψ , which depends on both function fw and featuresψ. This condition
is usually satisfied whenever the space F is spanned by a very large set of features that allows it to
approximate a wide range of different functions, including the reward and transition kernel. Under
this assumption, at each iteration k of FQI, there exists a weight vector wk such that T Q̂k−1 = fwk
and an approximation of the target function fwk can be obtained by solving an ordinary least-squares
problem on the samples in Dka . Unfortunately, it is well known that OLS fails whenever the number
of samples is not sufficient w.r.t. the number of features (i.e., d > n). For this reason, Asm. 1
is often joined together with a sparsity assumption. Let J(w) = {i = 1, . . . , d : wi 6= 0} be
the set of s non-zero components of vector w (i.e., s = |J(w)|) and J c(w) be the complementary
set. In supervised learning, the LASSO [11, 4] is effective in exploiting the sparsity assumption
that s � d and dramatically reduces the sample complexity. In RL the idea of sparsity has been
successfully integrated into policy evaluation [14, 21, 8, 12] but rarely in the full policy iteration. In
value iteration, it can be easily integrated in FQI by approximating the target weight vector wka as

ŵka = arg min
w∈Rdx

1

nx

nx∑
i=1

(
φ(xi)

Tw − zki,a
)2

+ λ||w||1. (2)

While this integration is technically simple, the conditions on the MDP structure that imply sparsity
in the value functions are not fully understood. In fact, one may simply assume that Q∗ is sparse in
F , with s non-zero weights, thus implying that d− s features captures aspects of states and actions
that do not have any impact on the actual optimal value function. Nonetheless, this would provide

1A similar assumption has been previously used in [9] where the transition P is embedded in a RKHS.

3

no guarantee about the actual level of sparsity encountered by FQI through iterations, where the
target functions fwk may not be sparse at all. For this reason we need stronger conditions on the
structure of the MDP. We state the following assumption (see [10, 6] for similar conditions).
Assumption 2 (Sparse MDPs). There exists a set J (the set of useful features) for MDPM, with
|J | = s � d, such that for any i /∈ J , and any policy π the rows [Pπψ]i are equal to 0, and there
exists a function fwR = R such that J(wR) ⊆ J .

This assumption implies that not only the reward function is sparse, but also that the features that
are useless for the reward have no impact on the dynamics of the system. Since Pπψ can be seen as
a linear representation of the transition kernel embedded in the high-dimensional space F , this as-
sumption corresponds to imposing that the matrix Pπψ has all its rows corresponding to features out-
side of J set to 0. This in turn means that the future state-action vector E[ψ(x′, a′)T] = ψ(x, a)TPπψ
depends only on the features in J . In the blackjack scenario illustrated in the introduction, this
assumption is verified by features related to the history of the cards played so far. In fact, if we
consider an infinite number of decks, the feature indicating whether an ace has already been played
is not used in the definition of the reward function and it is completely unrelated to the other fea-
tures and, thus it does not contribute to the optimal value function. An important consideration on
this assumption can be derived by a closer look to the sparsity pattern of the matrix Pπψ . Since the
sparsity is required at the level of the rows, this does not mean that the features that do not belong to
J have to be equal to 0 after each transition. Instead, their value will be governed simply by the in-
teraction with the features in J . This means that the features outside of J can vary from completely
unnecessary features with no dynamics, to features that are redundant to those in J in describing the
evolution of the system. Additional discussion on this assumption is available in [5]. Assumption 2,
together with Asm. 1, leads to the following lemma.
Lemma 1. Under Assumptions 1 and 2, the application of the Bellman operator T to any function
fw ∈ F , produces a function fw′ = T fw ∈ F such that J(w′) ⊆ J .

This lemma guarantees that at any iteration k of FQI, the target function fwk = T Q̂k−1 has a level
of sparsity J(wk) ≤ s. We are now ready to study the performance of LASSO-FQI over iterations.
In order to simplify the comparison to the multi-task results in sections 4 and 5, we analyze the
average performance over multiple tasks. We consider that the previous assumptions extend to all
the MDPs {Mt}Tt=1, each with a set of useful features Jt and sparsity st. The action–value function
learned after K iterations is evaluated by comparing the performance of the corresponding greedy
policy πKt (x) = arg maxaQ

K
t (x, a) to the optimal policy. The performance loss is measured w.r.t.

a target distribution µ ∈ P(X×A). We introduce the following standard assumption for LASSO [3].
Assumption 3 (Restricted Eigenvalues (RE)). Define n as the number of samples, and Jc as the
complement of the set of indices J . For any s ∈ [d], there exists κ(s) ∈ R+ such that:

min

{
‖Φ∆‖2√
n ‖∆J‖2

: |J | ≤ s,∆ ∈ Rd\{0}, ‖∆Jc‖1 ≤ 3 ‖∆J‖1

}
≥ κ(s), (3)

Theorem 1 (LASSO-FQI). Let the tasks {Mt}Tt=1 and the function space F satisfy assump-
tions 1, 2 and 3 with average sparsity s̄ =

∑
t st/T , κmin(s) = mint κ(st) and features bounded

supx ||φ(x)||2 ≤ L. If LASSO-FQI (Alg. 1 with Eq. 2) is run independently on all T tasks for K
iterations with a regularizer λ = δQmax

√
log(d)/n, for any numerical constant δ > 8, then with

probability at least (1− 2d1−δ/8)KT , the performance loss is bounded as

1

T

T∑
t=1

∥∥∥Q∗t −QπKtt ∥∥∥2
2,µ
≤ O

(
1

(1− γ)4

[
Q2

maxL
2

κ4min(s)

s log d

n
+ γKQ2

max

])
. (4)

Remark 1 (assumptions). Asm. 3 is a relatively weak constraint on the representation capability of
the data. The RE assumption is common in regression, and it is extensively analyzed in [27]. Asm. 1
and 2 are specific to our setting and may pose significant constraints on the set of MDPs of interest.
Asm. 1 is introduced to give a more explicit interpretation for the notion of sparse MDPs. Without
Asm. 1, the bound in Eq. 4 would have an additional approximation error term similar to standard
approximate value iteration results (see e.g., [20]). Asm. 2 is a potentially very loose sufficient
condition to guarantee that the target functions encountered over the iterations of LASSO–FQI have

4

a minimum level of sparsity. Thm. 1 requires that for any k ≤ K, the target function fwk+1
t

= T fwkt
has weightswk+1

t that are sparse, i.e., maxt,k s
k
t ≤ swith skt = |J(wk+1

t)|. In other words, all target
functions encountered must be sparse, or LASSO–FQI could suffer a huge loss at an intermediate
step. Such condition could be obtained under much less restrictive assumptions than Asm. 2, that
leaves up to the MDPs dynamics to resparsify the target function at each step, at the expenses of
interpretability. It could be sufficient to prove that the MDP dynamics do not enforce sparsity, but
simply do not reduce it across iterations, and use guarantees for LASSO reconstruction to maintain
sparsity across iterations. Finally, we point out that even if “useless” features do not satisfy Asm. 2
and are weakly correlated with the dynamics and the reward function, their weights are discounted
by γ at each step. As a result, the target functions could become “approximately” as sparse as Q∗
over iterations, and provide enough guarantees to be used for a variation of Thm. 1. We leave for
future work a more thorough investigation of these possible relaxations.

4 Group-LASSO Fitted Q–Iteration
After introducing the concept of sparse MDP in Sect. 3, we move to the multi-task scenario and we
study the setting where there exists a suitable representation (i.e., set of features) under which all the
tasks can be solved using roughly the same set of features, the so-called shared sparsity assumption.
Given the set of useful features Jt for task t, we denote by J = ∪Tt=1Jt the union of all the non-zero
coefficients across all the tasks. Similar to Asm. 2 and Lemma 1, we first assume that the set of
features “useful” for at least one of the tasks is relatively small compared to d and then show how
this propagates through iterations.
Assumption 4. We assume that the joint useful features over all the tasks are such that |J | = s̃� d.
Lemma 2. Under Asm. 2 and 4, at any iteration k, the target weight matrix W k has J(W k) ≤ s̃.

The Algorithm. In order to exploit the similarity across tasks stated in Asm. 4, we resort to the
Group LASSO (GL) algorithm [11, 19], which defines a joint optimization problem over all the
tasks. GL is based on the intuition that given the weight matrix W ∈ Rd×T , the norm ‖W‖2,1
measures the level of shared-sparsity across tasks. In fact, in ‖W‖2,1 the `2-norm measures the “rel-
evance” of feature i across tasks, while the `1-norm “counts” the total number of relevant features,
which we expect to be small in agreement with Asm. 4. Building on this intuition, we define the
GL–FQI algorithm in which at each iteration for each action a ∈ A we compute (details about the
implementation of GL–FQI are reported in [5, Appendix A])

Ŵ k
a = arg min

Wa

T∑
t=1

∥∥Zka,t − Φtwa,t
∥∥2
2

+ λ ‖Wa‖2,1 . (5)

Theoretical Analysis. The regularization of GL–FQI is designed to take advantage of the shared-
sparsity assumption at each iteration and in this section we show that this may lead to reduce the
sample complexity w.r.t. using LASSO in FQI for each task separately. Before reporting the anal-
ysis of GL–FQI, we need to introduce a technical assumption defined in [19] for GL.
Assumption 5 (Multi-Task Restricted Eigenvalues). Define Φ as the block diagonal matrix com-
posed by the T sample matrices Φt. For any s ∈ [d], there exists κ(s) ∈ R+ s.t.

min

{
‖Φ Vec(∆)‖2√
nT ‖Vec(∆J)‖2

: |J | ≤ s,∆ ∈ Rd×T \{0}, ‖∆Jc‖2,1 ≤ 3 ‖∆J‖2,1

}
≥ κ(s), (6)

Similar to Theorem 1 we evaluate the performance of GL–FQI as the performance loss of the
returned policy w.r.t. the optimal policy and we obtain the following performance guarantee.
Theorem 2 (GL–FQI). Let the tasks {Mt}Tt=1 and the function space F satisfy assump-
tions 1, 2, 4, and 5 with joint sparsity s̃ and features bounded supx ||φ(x)||2 ≤ L. If
GL–FQI (Alg. 1 with Eq. 5) is run jointly on all T tasks for K iterations with a regularizer

λ = LQmax√
nT

(
1 + (log d)

3
2
+δ

√
T

) 1
2 , for any numerical constant δ > 0, then with probability at least

(1− log(d)−δ)K , the performance loss is bounded as

1

T

T∑
t=1

∥∥∥Q∗t −QπKtt ∥∥∥2
2,µ
≤ O

(
1

(1− γ)4

[
L2Q2

max

κ4(2s̃)

s̃

n

(
1 +

(log d)3/2+δ√
T

)
+ γKQ2

max

])
. (7)

5

Remark 2 (comparison with LASSO-FQI). Ignoring all the terms in common with the two meth-
ods, constants, and logarithmic factors, we can summarize their bounds of LASSO-FQI and GL–
FQI as Õ(s̄ log(d)/n) and Õ

(
s̃/n(1 + log(d)/

√
T)
)
. The first interesting aspect of the bound of

GL–FQI is the role played by the number of tasks T . In LASSO–FQI the “cost” of discovering
the st useful features is a factor log d, while GL–FQI has a factor 1 + log(d)/

√
T , which decreases

with the number of tasks. This illustrates the advantage of the multi–task learning dimension of
GL–FQI, where all the samples of all tasks actually contribute to discovering useful features, so
that the more the number of features, the smaller the cost. In the limit, we notice that when T →∞,
the bound for GL–FQI does not depend on the dimensionality of the problem anymore. The other
critical aspect of the bounds is the difference between s̄ and s̃. In fact, maxt st ≤ s̃ ≤ d and if
the shared-sparsity assumption does not hold, we can construct cases where the number of non-zero
features st is very small for each task, but the union J = ∪tJt is still a full set, so that s̃ ≈ d. In this
case, GL–FQI cannot leverage on the shared sparsity across tasks and it may perform significantly
worse than LASSO–FQI. This is the well–known negative transfer effect that happens whenever
the wrong assumption over tasks is enforced thus worsening the single-task learning performance.

5 Feature Learning Fitted Q–Iteration
Unlike other properties such as smoothness, the sparsity of a function is intrinsically related to the
specific representation used to approximate it (i.e., the function space F). While Asm. 2 guarantees
that F induces sparsity for each task separately, Asm. 4 requires that all the tasks share the same
useful features in the given representation. As discussed in Rem. 2, whenever this is not the case,
GL–FQI may perform worse than LASSO–FQI. In this section we investigate an alternative notion
of sparsity in MDPs and we introduce the Feature Learning fitted Q-iteration (FL–FQI) algorithm.

Low Rank approximation. Since the poor performance of GL–FQI is due to the chosen represen-
tation (i.e., features), it is natural to ask the question whether there exists an alternative representation
(i.e., different features) inducing a higher level of shared sparsity. Let us assume that there exists a
space F∗ defined by features φ∗ such that the weight matrix of the optimal Q-functions A∗ ∈ Rd×T
is such that J(A∗) = s∗ � d. As shown in Lemma 2, together with Asm. 2 and 4, this guarantees
that at any iteration J(Ak) ≤ s∗. Given the set of states {St}Tt=1, let Φ and Φ∗ the feature matrices
obtained by evaluating φ and φ∗ on the states. We assume that there exists a linear transformation
of the features of F∗ to the features of F such that Φ = Φ∗U with U ∈ Rdx×dx . In this setting
the samples used to define the regression problem can be formulated as noisy observations of Φ∗Aka
for any action a. Together with the transformation U , this implies that there exists a weight matrix
W k
a such that Φ∗Aka = Φ∗UU−1Aka = ΦW k

a with W k
a = U−1Aka. Although Aka is indeed sparse,

any attempt to learn W k
a using GL would fail, since W k

a may have a very low level of sparsity. On
the other hand, an algorithm able to learn a suitable transformation U , it may be able to recover the
representation Φ∗ (and the corresponding space F∗) and exploit the high level of sparsity of Aka.
While this additional step of representation or feature learning introduces additional complexity, it
allows to relax the strict assumption on the joint sparsity s̃ and may improve the performance of
GL–FQI. Our assumption is formulated as follows.

Assumption 6. There exists an orthogonal matrix U ∈ Od (block diagonal matrix having matrices
{Ua ∈ Odx} on the diagonal) such that the weight matrix A∗ obtained as A∗ = U−1W ∗ is jointly
sparse, i.e., has a set of “useful” features J(A∗) = ∪Tt=1J([A∗]t) with |J(A∗)| = s∗ � d.

Coherently with this assumption, we adapt the multi-task feature learning (MTFL) algorithm defined
in [1] and at each iteration k for any action a we solve the optimization problem

(Ûka , Â
k
a) = arg min

Ua∈Od
min

Aa∈Rd×T

T∑
t=1

||Zka,t − ΦtUa[Aa]t||2 + λ ‖A‖2,1 . (8)

In order to better characterize the solution to this optimization problem, we study more in detail
the relationship between A∗ and W ∗ and analyze the two directions of the equality A∗ = U−1W ∗.
When A∗ has s∗ non-zero rows, then any orthonormal transformation W ∗ will have at most rank
r∗ = s∗. This suggests that instead of solving the joint optimization problem in Eq. 8 and explicitly
recover the transformation U , we may directly try to solve for low-rank weight matrices W . Then
we need to show that a low-rankW ∗ does indeed imply the existence of a transformation to a jointly-
sparse matrix A∗. Assume W ∗ has low rank r∗. It is then possible to perform a standard singular

6

value decomposition W ∗ = UΣV = UA∗. Because Σ is diagonal with r∗ non-zero entries, A∗ will
have r∗ non-zero rows, thus being jointly sparse. It is possible to derive the following equivalence.

Proposition 1 ([5, Appendix A]). Given A,W ∈ Rd×T , U ∈ Od, the following equality holds,
with the relationship between the optimal solutions being W ∗ = UA∗,

min
A,U

T∑
t=1

||Zka,t − ΦtUa[Aa]t||2 + λ ‖A‖2,1 = min
W

T∑
t=1

||Zka,t − Φt[Wa]t||2 + λ‖W‖1. (9)

The previous proposition states the equivalence between solving a feature learning version of GL
and solving a nuclear norm (or trace norm) regularized problem. This penalty is equivalent to an
`1-norm penalty on the singular values of the W matrix, thus forcing W to have low rank. Notice
that assuming that W ∗ has low rank can be also interpreted as the fact that either the task weights
[W ∗]t or the features weights [W ∗]i are linearly correlated. In the first case, it means that there is
a dictionary of core tasks that is able to reproduce all the other tasks as a linear combination. As a
result, Assumption 6 can be reformulated as Rank(W ∗) = s∗. Building on this intuition we define
the FL–FQI algorithm where the regression is carried out according to Eq. 9.

Theoretical Analysis. Our aim is to obtain a bound similar to Theorem 2 for the new FL-FQI Algo-
rithm. We begin by introducing a slightly different assumption on the data available for regression.
Assumption 7 (Restricted Strong Convexity). Under Assumption 6, letW ∗ = UDV T be a singular
value decomposition of the optimal matrix W ∗ of rank r, and Ur, V r the submatrices associated
with the top r singular values. Define B = {∆ ∈ Rd×T : Row(∆)⊥Ur and Col(∆)⊥V r}, and the
projection operator onto this set ΠB. There exists a positive constant κ such that

min

{
‖Φ Vec(∆)‖22

2nT‖Vec(∆)‖22
: ∆ ∈ Rd×T , ‖ΠB(∆)‖1 ≤ 3‖∆−ΠB(∆)‖1

}
≥ κ (10)

Theorem 3 (FL–FQI). Let the tasks {Mt}Tt=1 and the function spaceF satisfy assumptions 1, 2, 6,
and 7 with rank s∗, features bounded supx ||φ(x)||2 ≤ L and T > Ω(log n). If FL–FQI (Alg. 1 with
Eq. 8) is run jointly on all T tasks for K iterations with a regularizer λ ≥ 2LQmax

√
(d+ T)/n,

then with probability at least Ω((1− exp{−(d+ T)})K), the performance loss is bounded as

1

T

T∑
t=1

∥∥∥Q∗t −QπKtt ∥∥∥2
2,ρ
≤ O

(
1

(1− γ)4

[
Q2

maxL
4

κ2
s∗

n

(
1 +

d

T

)
+ γKQ2

max

])
.

Remark 3 (comparison with GL-FQI). Unlike GL–FQI, the performance FL–FQI does not de-
pend on the shared sparsity s̃ of W ∗ but on its rank, that is the value s∗ of the most jointly-sparse
representation that can be obtained through an orthogonal transformation U of the features. When-
ever tasks are somehow linearly dependent, even if the weight matrix W ∗ is dense and s̃ ≈ d,
the rank s∗ can be small, thus guaranteeing a dramatic improvement over GL–FQI. On the other
hand, learning a new representation comes at the cost of a worse dependency on d. In fact, the term
log(d)/

√
T in GL–FQI, becomes d/T , implying that many more tasks are needed for FL–FQI to

construct a suitable representation. This is not surprising since we introduced a d × d matrix U
in the optimization problem and a larger number of parameters needs to be learned. As a result,
although significantly reduced by the use of trace-norm instead of `2,1-regularization, the negative
transfer is not completely removed. In particular, the introduction of new tasks, that are not linear
combinations of the previous tasks, may again increase the rank s∗, corresponding to the fact that
no jointly-sparse representation can be constructed.

6 Experiments
We investigate the empirical performance of GL–FQI, and FL–FQI and compare their results to
single-task LASSO–FQI in two variants of the blackjack game. In the first variant (reduced variant)
the player can choose to hit to obtain a new card or stay to end the episode, while in the second one
(reduced variant) she can also choose to double the bet on the first turn. Different tasks can be
defined depending on several parameters of the game, such as the number of decks, the threshold at
which the dealer stays and whether she hits when the threshold is research exactly with a soft hand.

Full variant experiment. The tasks are generated by selecting 2, 4, 6, 8 decks, by setting the stay
threshold at {16, 17} and whether the dealer hits on soft, for a total of 16 tasks. We define a very

7

1000.0 2000.0 3000.0 4000.0 5000.0

-0.1

-0.08

-0.06

-0.04

n

H
E

GL-FQI
FL-FQI
Lasso-FQI

100.0 300.0 500.0 700.0 900.0 1100.0

-0.16

-0.14

-0.12

-0.1

-0.08

n

H
E

GL-FQI
FL-FQI
Lasso-FQI

Figure 2: Comparison of FL–FQI, GL–FQI and LASSO–FQI on full (left) and reduced (right) variants. The
y axis is the average house edge (HE) computed across tasks.

rich description of the state space with the objective of satisfying Asm. 1. At the same time this is
likely to come with a large number of useless features, which makes it suitable for sparsification.
In particular, we include the player hand value, indicator functions for each possible player hand
value and dealer hand value, and a large description of the cards not dealt yet (corresponding to
the history of the game), under the form of indicator functions for various ranges. In total, the
representation contains d = 212 features. We notice that although none of the features is completely
useless (according to the definition in Asm. 2), the features related with the history of the game
are unlikely to be very useful for most of the tasks defined in this experiment. We collect samples
from up to 5000 episodes, although they may not be representative enough given the large state
space of all possible histories that the player can encounter and the high stochasticity of the game.
The evaluation is performed by simulating the learned policy for 2,000,000 episodes and computing
the average House Edge (HE) across tasks. For each algorithm we report the performance for the
best regularization parameter λ in the range {2, 5, 10, 20, 50}. Results are reported in Fig. 2-(left).
Although the set of features is quite large, we notice that all the algorithms succeed in learning a good
policy even with relatively few samples, showing that all of them can take advantage of the sparsity
of the representation. In particular, GL–FQI exploits the fact that all 16 tasks share the same useless
features (although the set of useful feature may not overlap entirely) and its performance is the best.
FL–FQI suffers from the increased complexity of representation learning, which in this case does
not lead to any benefit since the initial representation is sparse, but it performs as LASSO–FQI.
Reduced variant experiment. We consider a representation for which we expect the weight matrix
to be dense. In particular, we only consider the value of the player’s hand and of the dealer’s hand and
we generate features as the Cartesian product of these two discrete variables plus a feature indicating
whether the hand is soft, for a total of 280 features. Similar to the previous setting, the tasks are
generated with 2, 4, 6, 8 decks, whether the dealer hits on soft, and a larger number of stay thresholds
in {15, 16, 17, 18}, for a total of 32 tasks. We used regularizers in the range {0.1, 1, 2, 5, 10}. Since
the history is not included, the different number of decks influences only the probability distribution
of the totals. Moreover, limiting the actions to either hit or stay further increases the similarity
among tasks. Therefore, we expect to be able to find a dense, low-rank solution. Results in Fig. 2-
(right) confirms this guess, with FL–FQI performing significantly better than the other methods. In
addition, GL–FQI and LASSO–FQI perform similarly, since the dense representation penalizes
both single-task and shared sparsity; in fact, both methods favor low values of λ, meaning that the
sparse-inducing penalties are not effective.

7 Conclusions
We studied the multi-task reinforcement learning problem under shared sparsity assumptions across
the tasks. GL–FQI extends the FQI algorithm by introducing a Group-LASSO step at each it-
eration and it leverages over the fact that all the tasks are expected to share the same small set of
useful features to improve the performance of single-task learning. Whenever the assumption is not
valid, GL–FQI may perform worse than LASSO–FQI. With FL–FQI we take a step further and
we learn a transformation of the given representation that could guarantee a higher level of shared
sparsity. Future work will be focused on considering a relaxation of the theoretical assumptions and
on studying alternative multi-task regularization formulations such as in [29] and [13].

Acknowledgments This work was supported by the French Ministry of Higher Education and Research, the
European Community’s Seventh Framework Programme under grant agreement 270327 (project CompLACS),
and the French National Research Agency (ANR) under project ExTra-Learn n.ANR-14-CE24-0010-01.

8

References
[1] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature learning.

Machine Learning, 73(3):243–272, 2008.
[2] D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.
[3] Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and dantzig

selector. The Annals of Statistics, pages 1705–1732, 2009.
[4] Peter Bühlmann and Sara van de Geer. Statistics for High-Dimensional Data: Methods, Theory and

Applications. Springer, 1st edition, 2011.
[5] Daniele Calandriello, Alessandro Lazaric, and Marcello Restelli. Sparse Multi-task Reinforcement Learn-

ing. In https://hal.inria.fr/hal-01073513, 2014.
[6] A Castelletti, S Galelli, M Restelli, and R Soncini-Sessa. Tree-based feature selection for dimensionality

reduction of large-scale control systems. In IEEE ADPRL, 2011.
[7] Damien Ernst, Pierre Geurts, Louis Wehenkel, and Michael L Littman. Tree-based batch mode reinforce-

ment learning. Journal of Machine Learning Research, 6(4), 2005.
[8] Mohammad Ghavamzadeh, Alessandro Lazaric, Rémi Munos, Matt Hoffman, et al. Finite-sample analy-

sis of lasso-td. In ICML, 2011.
[9] Steffen Grunewalder, Guy Lever, Luca Baldassarre, Massimiliano Pontil, and Arthur Gretton. Modelling

transition dynamics in mdps with rkhs embeddings. In ICML, 2012.
[10] H. Hachiya and M. Sugiyama. Feature selection for reinforcement learning: Evaluating implicit state-

reward dependency via conditional mutual information. In ECML PKDD. 2010.
[11] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer, 2009.
[12] M. Hoffman, A. Lazaric, M. Ghavamzadeh, and R. Munos. Regularized least squares temporal difference

learning with nested `2 and `1 penalization. In EWRL, pages 102–114. 2012.
[13] Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. Group lasso with overlap and graph lasso.

In ICML, pages 433–440. ACM, 2009.
[14] J Zico Kolter and Andrew Y Ng. Regularization and feature selection in least-squares temporal difference

learning. In ICML, 2009.
[15] A. Lazaric. Transfer in reinforcement learning: a framework and a survey. In M. Wiering and M. van

Otterlo, editors, Reinforcement Learning: State of the Art. Springer, 2011.
[16] Alessandro Lazaric and Mohmammad Ghavamzadeh. Bayesian multi-task reinforcement learning. In

ICML, 2010.
[17] Alessandro Lazaric and Marcello Restelli. Transfer from multiple MDPs. In NIPS, 2011.
[18] Hui Li, Xuejun Liao, and Lawrence Carin. Multi-task reinforcement learning in partially observable

stochastic environments. Journal of Machine Learning Research, 10:1131–1186, 2009.
[19] Karim Lounici, Massimiliano Pontil, Sara Van De Geer, Alexandre B Tsybakov, et al. Oracle inequalities

and optimal inference under group sparsity. The Annals of Statistics, 39(4):2164–2204, 2011.
[20] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. The Journal of Machine

Learning Research, 9:815–857, 2008.
[21] C. Painter-Wakefield and R. Parr. Greedy algorithms for sparse reinforcement learning. In ICML, 2012.
[22] Bruno Scherrer, Victor Gabillon, Mohammad Ghavamzadeh, and Matthieu Geist. Approximate modified

policy iteration. In ICML, 2012.
[23] Matthijs Snel and Shimon Whiteson. Multi-task reinforcement learning: Shaping and feature selection.

In EWRL, September 2011.
[24] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning. MIT Press, 1998.
[25] F. Tanaka and M. Yamamura. Multitask reinforcement learning on the distribution of mdps. In CIRA

2003, pages 1108–1113, 2003.
[26] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.

Journal of Machine Learning Research, 10(1):1633–1685, 2009.
[27] Sara A Van De Geer, Peter Bühlmann, et al. On the conditions used to prove oracle results for the lasso.

Electronic Journal of Statistics, 3:1360–1392, 2009.
[28] A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task reinforcement learning: A hierarchical Bayesian

approach. In ICML, pages 1015–1022, 2007.
[29] Yi Zhang and Jeff G Schneider. Learning multiple tasks with a sparse matrix-normal penalty. In NIPS,

pages 2550–2558, 2010.

9

	Introduction
	Preliminaries
	Fitted Q–Iteration in Sparse MDPs
	Group-LASSO Fitted Q–Iteration
	Feature Learning Fitted Q–Iteration
	Experiments
	Conclusions

