

Multi-task Linear Bandits

Marta Soare Alessandro Lazaric Ouais Alsharif Joelle Pineau INRIA Lille - Nord Europe INRIA Lille - Nord Europe McGill University & Google McGill University

NIPS2014 Workshop on Transfer and Multi-task Learning : Theory meets Practice

Montreal, December 2014

Motivating example: Movie recommendation system

- ▶ Features: age, profession, ...
- Ratings
- Learn his preference as fast as possible!

Motivating example: Movie recommendation system

- ▶ Features: age, profession, ...
- Ratings
- Learn his preference as fast as possible!

- Features: age, profession, ...
- Learn his preference faster (with fewer ratings)!

Sequential multi-task linear bandit

Linear bandit task:

- ▶ Set of arms $\mathcal{X} \subseteq \mathbb{R}^d$, $|\mathcal{X}| = K$ and $||x||_2 \leq L$, $\forall x \in \mathcal{X}$.
- Reward model for task j

$$r_j(x) = x^\top \theta_j + \eta$$

where $\theta_j \in \mathbb{R}^d$ is **unknown** and η is an R sub-Gaussian noise.

• Cumulative regret w.r.t. the optimal arm $x_j^* = \arg \max_{x \in \mathcal{X}} x^\top \theta_j$

$$R_{n_j} = \sum_{s=1}^{n_j} (x_j^* - x_s)^\top \theta_j$$

Sequential multi-task linear bandit

Linear bandit task:

- ▶ Set of arms $\mathcal{X} \subseteq \mathbb{R}^d$, $|\mathcal{X}| = K$ and $||x||_2 \leq L$, $\forall x \in \mathcal{X}$.
- Reward model for task j

$$r_j(x) = x^\top \theta_j + \eta$$

where $\theta_j \in \mathbb{R}^d$ is **unknown** and η is an R sub-Gaussian noise.

• Cumulative regret w.r.t. the optimal arm $x_j^* = \arg \max_{x \in \mathcal{X}} x^\top \theta_j$

$$R_{n_j} = \sum_{s=1}^{n_j} (x_j^* - x_s)^\top \theta_j$$

Task Similarity: there exists $\varepsilon > 0$ such that for any pair of tasks (θ, θ') we have $||\theta - \theta'||_2 \le \varepsilon$.

Sequential multi-task linear bandit

Linear bandit task:

- ▶ Set of arms $\mathcal{X} \subseteq \mathbb{R}^d$, $|\mathcal{X}| = K$ and $||x||_2 \leq L$, $\forall x \in \mathcal{X}$.
- Reward model for task j

$$r_j(x) = x^\top \theta_j + \eta$$

where $\theta_j \in \mathbb{R}^d$ is **unknown** and η is an R sub-Gaussian noise.

• Cumulative regret w.r.t. the optimal arm $x_j^* = \arg \max_{x \in \mathcal{X}} x^\top \theta_j$

$$R_{n_j} = \sum_{s=1}^{n_j} (x_j^* - x_s)^\top \theta_j$$

Task Similarity: there exists $\varepsilon > 0$ such that for any pair of tasks (θ, θ') we have $||\theta - \theta'||_2 \le \varepsilon$.

Improve performance on a particular task by leveraging information from previous tasks!

Single task estimates:

OLS estimate: For any task *j*, the estimate of θ_j after *n* rewards is

$$\hat{\theta}_{j,n} = \mathcal{A}_{j,n}^{-1} b_{j,n}$$
$$\mathcal{A}_{j,n} = \sum_{t=1}^{n} x_t x_t^{\top} \qquad b_{j,n} = \sum_{t=1}^{n} x_t r_t$$

Prediction error: Thm.2 in [Abbasi Yadkori et al., NIPS 2012] (w.p. $1 - \delta$)

$$\left|x^{\top}\theta_{j} - x^{\top}\hat{\theta}_{j,n}^{\lambda}\right| \leq \underbrace{||x||_{(\mathcal{A}_{j,n}^{\lambda})^{-1}}\left(R\sqrt{d\log\left(\frac{1+nL^{2}/\lambda}{\delta}\right)} + \lambda^{1/2}||\theta_{j}||\right)}_{B_{j,n}(x)}$$

Multi-task estimates :

$$\widetilde{\theta}_{m+1,t} = \widetilde{A}_{m+1,t}^{-1} \widetilde{b}_{m+1,t} \qquad \mathbb{E}\left[\widetilde{\theta}_{m+1,t}\right] = \widetilde{\theta}_{m+1,t}^*$$
$$\widetilde{A}_{m+1,t} = \sum_{j=1}^m A_j + A_{m+1,t} \qquad \widetilde{b}_{m+1,t} = \sum_{j=1}^m b_j + b_{m+1,t}$$

Theorem

Let $\tilde{\theta}_{m+1,t}^{\lambda}$ be the multi-task regularized least-squares estimate. Then, for any $\delta \geq 0$, for any $t \geq 1$, with probability greater than $1 - \delta$ it holds that:

$$|x^{\top}(\widetilde{\theta}_{m+1,t}^{\lambda} - \theta_{m+1})| \leq \underbrace{||x||_{(\widetilde{A}_{m+1,t}^{\lambda})^{-1}}\left(R\sqrt{d\log\left(\frac{\det(\widetilde{A}_{m+1,t}^{\lambda})^{1/2}\det(\lambda I)^{-1/2}}{\delta}\right) + \lambda^{1/2}S\right) + \varepsilon ||x||}_{\widetilde{B}_{m+1,t}(x)}.$$

Multi-task estimates :

$$\widetilde{\theta}_{m+1,t} = \widetilde{A}_{m+1,t}^{-1} \widetilde{b}_{m+1,t} \qquad \mathbb{E}\left[\widetilde{\theta}_{m+1,t}\right] = \widetilde{\theta}_{m+1,t}^*$$
$$\widetilde{A}_{m+1,t} = \sum_{j=1}^m A_j + A_{m+1,t} \qquad \widetilde{b}_{m+1,t} = \sum_{j=1}^m b_j + b_{m+1,t}$$

Theorem

Let $\tilde{\theta}_{m+1,t}^{\lambda}$ be the multi-task regularized least-squares estimate. Then, for any $\delta \geq 0$, for any $t \geq 1$, with probability greater than $1 - \delta$ it holds that:

$$|x^{\top}(\widetilde{\theta}_{m+1,t}^{\lambda} - \theta_{m+1})| \leq \underbrace{||x||_{(\widetilde{A}_{m+1,t}^{\lambda})^{-1}}\left(R\sqrt{d\log\left(\frac{\det(\widetilde{A}_{m+1,t}^{\lambda})^{1/2}\det(\lambda I)^{-1/2}}{\delta}\right) + \lambda^{1/2}S\right) + \varepsilon ||x||}_{\widetilde{B}_{m+1,t}(x)}.$$

Multi-task estimates :

$$\widetilde{\theta}_{m+1,t} = \widetilde{A}_{m+1,t}^{-1} \widetilde{b}_{m+1,t} \qquad \mathbb{E}\left[\widetilde{\theta}_{m+1,t}\right] = \widetilde{\theta}_{m+1,t}^*$$
$$\widetilde{A}_{m+1,t} = \sum_{j=1}^m A_j + A_{m+1,t} \qquad \widetilde{b}_{m+1,t} = \sum_{j=1}^m b_j + b_{m+1,t}$$

Theorem

Let $\tilde{\theta}_{m+1,t}^{\lambda}$ be the multi-task regularized least-squares estimate. Then, for any $\delta \geq 0$, for any $t \geq 1$, with probability greater than $1 - \delta$ it holds that:

$$|x^{\top}(\widetilde{\theta}_{m+1,t}^{\lambda} - \theta_{m+1})| \leq \underbrace{||x||_{(\widetilde{A}_{m+1,t}^{\lambda})^{-1}}\left(R\sqrt{d\log\left(\frac{\det(\widetilde{A}_{m+1,t}^{\lambda})^{1/2}\det(\lambda I)^{-1/2}}{\delta}\right) + \lambda^{1/2}S\right) + \varepsilon ||x||}_{\widetilde{B}_{m+1,t}(x)}.$$

MT-LINUCB

Input: budgets $\{n_i\}_i$, arms $\mathcal{X} \subset \mathbb{R}^d$, regularizer λ i = 1 $A = \lambda I_d, \tilde{b} = b = 0_d, \tilde{A}_i = \lambda I_d, \hat{\theta}_i = A^{-1}b$ for i = 1, ..., m + 1 do Compute the multi-task OLS solution: $\widetilde{A}_i = \widetilde{A}_i + A - \lambda I_d, \ \widetilde{b} = \widetilde{b} + b, \ \widetilde{\theta}_i = \widetilde{A}_i^{-1} \widetilde{b}$ Compute the task-specific OLS solution: $A = \lambda I_d, b = 0_d, \hat{\theta}_i = A^{-1}b$ for $t = 1, ..., n_i$ do Select arms according to the tightest bound: $x_t = \arg \max \min \left| x^\top \hat{\theta}_j + B_{j,t}(x); x^\top \widetilde{\theta}_j + \widetilde{B}_{j,t}(x) \right|$ $\bar{x} \in \mathcal{X}$ Observe reward: $r_t = x_t^{\top} \theta_i + \eta_t$ Update: $A, b, \hat{\theta}_i, B_{i,t}, \widetilde{A}_i, \widetilde{b}, \widetilde{\theta}_i, \widetilde{B}_{i,t}$ end for end for

Innia

Experiments

- ▶ 200 tasks with θ₁,..., θ₂₀₀ ∈ ℝ² randomly generated
- $\blacktriangleright \max_{\theta} ||\theta||_2 = 1.1 \cdot \sqrt{2}$
- ► 100 samples for each task
- $\varepsilon = 0.8 \cdot \sqrt{2}$
- MT-LINUCB is never worse than LINUCB.

Experiments

- As the difference between tasks reduces, the advantage of MT-LINUCB becomes more evident.
- For ε = 0.2√2, the regret of MT-LINUCB decreases with every additional task, while the regret for LINUCB remains constant over time.

Follow up work

- ▶ Regret bound for MT-LINUCB.
- Additional experiments on datasets (see Boston Housing example on the poster).
- Weighting scheme according to task relevance.

Thank you!

SequeL - INRIA Lille