

Sparse Multi-Task Reinforcement Learning

Daniele Calandriello, Alessandro Lazaric, Marcello Restelli SequeL - INRIA Lille, Politecnico di Milano

SequeL – INRIA Lille

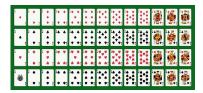
Seminars

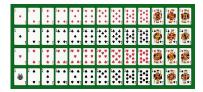
Lille, October 2014

Ínría

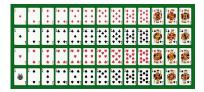


Ínría





Sparse Multi-Task Reinforcement Learning



Cancer May 22 - June 21 June 22 - July 22

Scorpio Oct 23 - Nov 21

Pices

21 March-20 April

Leo June 22 - July 22

Sagittarius Nov 22 - Dec 21 Virgo Oct 23 - Nov 21

Dec 22 - Jan 20

Sep 23 - Oct 22

Aquarius Jan 21 - Feb 19

Libra

Feb 20 - March 20

Talk Overview

- Reinforcement Learning \rightarrow Linear Fitted Q Iteration (LinFQI)
- Sparse Markov Decision Process \rightarrow LASSO FQI
- Multi-Task (Group) Sparsity \rightarrow Group-LASSO FQI
- Learning Sparse Representations \rightarrow Feature Learning FQI
- Experiments

nría

Reinforcement Learning

Markov Decision Process (MDP): $\mathcal{M} = (\mathcal{X}, \mathcal{A}, R, P, \gamma)$

- $\blacktriangleright~\mathcal{X}$ is a bounded closed subset of the Euclidean space
- \mathcal{A} is finite (i.e., $|\mathcal{A}| < \infty$)
- ▶ $R: \mathcal{X} \times \mathcal{A} \rightarrow [0, 1]$
- $\blacktriangleright P: \mathcal{X} \times \mathcal{A} \to \mathcal{P}(\mathcal{X})$
- γ: discount factor

Policy: $\pi : \mathcal{X} \to \mathcal{A}$

Reinforcement Learning

Optimal Action-Value Function:

$$\begin{aligned} Q^*(x,a) &= \max_{\pi} \mathbb{E}_{\pi} [\sum_{i=1}^{\infty} \gamma^i r_i | r_i \sim R(x_i, \pi(x_i)), x_0 = x, a_0 = a] \\ \pi^*(x) &= \arg \max_{a \in \mathcal{A}} Q^*(x, a) \end{aligned}$$

Reinforcement Learning

Optimal Action-Value Function:

$$\begin{aligned} Q^*(x, a) &= \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{i=1}^{\infty} \gamma^i r_i | r_i \sim R(x_i, \pi(x_i)), x_0 = x, a_0 = a \right] \\ \pi^*(x) &= \arg \max_{a \in \mathcal{A}} Q^*(x, a) \end{aligned}$$

Optimal Bellmann Operator:

$$\begin{aligned} \mathcal{T}Q(x,a) &= R(x,a) + \gamma \sum_{y} P(y|x,a) \max_{a'} Q(y,a') \\ \mathcal{T}Q^* &= Q^* \end{aligned}$$

Value Iteration

Exact Value Iteration:

$$egin{aligned} Q^0 \ \mathcal{T} Q^0 &= Q^1 \ \mathcal{T} Q^1 &= Q^2 \ & \dots \ \mathcal{T} Q^K &= Q^* \end{aligned}$$

Value Iteration

Exact Value Iteration:

$$egin{aligned} Q^0 \ \mathcal{T} Q^0 &= Q^1 \ \mathcal{T} Q^1 &= Q^2 \ & \dots \ \mathcal{T} Q^{\mathcal{K}} &= Q^* \end{aligned}$$

Approximate Value Iteration:

$$\begin{split} & \widetilde{Q}^0 \\ & \mathcal{T} \widetilde{Q}^0 \rightsquigarrow \widehat{Q}^1 \rightsquigarrow \widetilde{Q}^1 \\ & \mathcal{T} \widetilde{Q}^1 \rightsquigarrow \widehat{Q}^2 \rightsquigarrow \widetilde{Q}^2 \\ & \cdots \\ & \mathcal{T} \widetilde{Q}^K \rightsquigarrow \widehat{Q}^* \rightsquigarrow \widetilde{Q}^* \end{split}$$

Approximation:

Approximation:

$$\begin{array}{l} \text{Approximate } \mathcal{T} \text{: use samples} \\ z_{i,a,t}^k = r_{i,a,t}^k + \gamma \max_{a'} \widetilde{Q}_t^k(y_{i,a,t}^k,a') \\ \mathcal{D}_{a,t}^k = \{(x_{i,t},a), z_{i,a,t}^k\}_{i=1}^{n_x} \end{array}$$

Approximation:

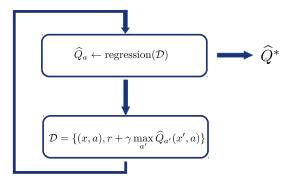
 $\begin{array}{l} \text{Approximate } \mathcal{T} \text{: use samples} \\ z_{i,a,t}^k = r_{i,a,t}^k + \gamma \max_{a'} \widetilde{Q}_t^k(y_{i,a,t}^k,a') \\ \mathcal{D}_{a,t}^k = \{(x_{i,t},a), z_{i,a,t}^k\}_{i=1}^{n_x} \end{array}$

Approximate \rightsquigarrow : use regression

Approximation:

 $\begin{array}{l} \text{Approximate } \mathcal{T} \text{: use samples} \\ z_{i,a,t}^k = r_{i,a,t}^k + \gamma \max_{a'} \widetilde{Q}_t^k(y_{i,a,t}^k,a') \\ \mathcal{D}_{a,t}^k = \{(x_{i,t},a), z_{i,a,t}^k\}_{i=1}^{n_x} \end{array}$

Approximate \rightsquigarrow : use regression



Linear Fitted Q Iteration

Linear Approximation:

- $\phi(\cdot) = [\varphi_1(\cdot), \varphi_2(\cdot), \dots, \varphi_d(\cdot)]^\mathsf{T}$
- $\blacktriangleright \varphi_i: \mathcal{X} \to \mathbb{R}$
- ▶ $\sup_{x} ||\phi(x)||_2 \leq L$

►
$$\mathcal{F} = \{ f_w(x, a) = \phi(x)^{\mathsf{T}} w_a, x \in \mathcal{X}, a \in \mathcal{A}, w_a \in \mathbb{R}^d \}$$

Linear Fitted Q Iteration

Linear Approximation:

- $\phi(\cdot) = [\varphi_1(\cdot), \varphi_2(\cdot), \dots, \varphi_d(\cdot)]^\mathsf{T}$
- $\blacktriangleright \varphi_i: \mathcal{X} \to \mathbb{R}$
- ▶ $\sup_{x} ||\phi(x)||_2 \leq L$
- ► $\mathcal{F} = \{f_w(x, a) = \phi(x)^\mathsf{T} w_a, x \in \mathcal{X}, a \in \mathcal{A}, w_a \in \mathbb{R}^d\}$

Matrix notation for samples:

►
$$\Phi = [\phi(x_1)^\mathsf{T}; \cdots; \phi(x_{n_x})^\mathsf{T}] \in \mathbb{R}^{n_x \times d}$$
►
$$\Phi_a^{\prime k} = [\phi(y_{i,a}^k)^\mathsf{T}; \cdots; \phi(y_{n_x,a}^k)^\mathsf{T}] \in \mathbb{R}^{n_x \times d}$$
►
$$R_a^k = [r_{1,a}^k, \dots, r_{n_x,a}^k] \in \mathbb{R}^{n_x}$$
►
$$Z_a^k = [z_{1,a}^k, \dots, z_{n_x,a}^k] \in \mathbb{R}^{n_x}, \text{ with } Z_a^k = R_a^k + \gamma \max_{a'} (\Phi_{a'}^{\prime k} w_{a'}^{k-1})$$

Least Squares Regression

Linear Model Interpretation

$$z_{i,a}^k = \mathcal{T}\widehat{Q}^{k-1}(x_i, a) + \eta_{i,a}^k = \phi(x_i)^{\mathsf{T}} w_a + \eta_{i,a}^k$$

Least Squares Regression

Linear Model Interpretation

$$z_{i,a}^{k} = \mathcal{T}\widehat{Q}^{k-1}(x_{i},a) + \eta_{i,a}^{k} = \phi(x_{i})^{\mathsf{T}}w_{a} + \eta_{i,a}^{k}$$

Unbiased estimator: squared loss

$$\widehat{w}_{a}^{k} = \arg\min_{w \in \mathbb{R}^{d}} \frac{1}{n_{x}} \sum_{i=1}^{n_{x}} \left(\phi(x_{i})^{\mathsf{T}} w - z_{i,a}^{k} \right)^{2} = \frac{1}{n_{x}} \left\| \Phi w_{a}^{k} - Z_{a}^{k} \right\|_{2}^{2}$$

Least Squares Regression

Linear Model Interpretation

$$z_{i,a}^{k} = \mathcal{T}\widehat{Q}^{k-1}(x_{i},a) + \eta_{i,a}^{k} = \phi(x_{i})^{\mathsf{T}}w_{a} + \eta_{i,a}^{k}$$

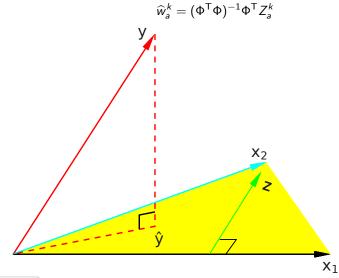
Unbiased estimator: squared loss

$$\widehat{w}_{a}^{k} = \arg\min_{w \in \mathbb{R}^{d}} \frac{1}{n_{x}} \sum_{i=1}^{n_{x}} \left(\phi(x_{i})^{\mathsf{T}} w - z_{i,a}^{k} \right)^{2} = \frac{1}{n_{x}} \left\| \Phi w_{a}^{k} - Z_{a}^{k} \right\|_{2}^{2}$$

Asymptotically: $\left\| w_a^k - \widehat{w}_a^k \right\|_2$ is small

Linear FQI

Ordinary Least Square (OLS):



Ínría

Talk Overview

- ▶ Reinforcement Learning → Linear Fitted Q Iteration (LinFQI)
- Sparse Markov Decision Process \rightarrow LASSO FQI
- Multi-Task (Group) Sparsity \rightarrow Group-LASSO FQI
- Learning Sparse Representations \rightarrow Feature Learning FQI
- Experiments

nría

Sparse Markov Decision Process

High Dimensional Assumption

? Problem: the regression problem must approximate $\mathcal{T}Q$ well

- ? **Problem:** the regression problem must approximate $\mathcal{T}Q$ well
- ! **Solution:** use large number of features, rich feature space captures everything

- ? Problem: the regression problem must approximate $\mathcal{T}Q$ well
- ! **Solution:** use large number of features, rich feature space captures everything

Assumption

- ? Problem: the regression problem must approximate $\mathcal{T}Q$ well
- ! **Solution:** use large number of features, rich feature space captures everything

Assumption

The space \mathcal{F} is such that for any function $f_w \in \mathcal{F}$, the image of the Bellman operator \mathcal{T} is always in \mathcal{F} , i.e., $\mathcal{T}f_w \in \mathcal{F}$.

? **Problem:** when $d > n_x$, the OLS projection $(\Phi^T \Phi)^{-1}$ is not defined

- ? Problem: the regression problem must approximate $\mathcal{T}Q$ well
- ! **Solution:** use large number of features, rich feature space captures everything

Assumption

- ? **Problem:** when $d > n_x$, the OLS projection $(\Phi^T \Phi)^{-1}$ is not defined
- **Solution:** Get more samples

- ? Problem: the regression problem must approximate $\mathcal{T}Q$ well
- ! **Solution:** use large number of features, rich feature space captures everything

Assumption

- ? **Problem:** when $d > n_x$, the OLS projection $(\Phi^T \Phi)^{-1}$ is not defined
- Solution: Get more samples

- ? Problem: the regression problem must approximate $\mathcal{T}Q$ well
- ! **Solution:** use large number of features, rich feature space captures everything

Assumption

- ? **Problem:** when $d > n_x$, the OLS projection $(\Phi^T \Phi)^{-1}$ is not defined
- ! Solution: Get more samples
- **! Solution:** Use less features

- ? Problem: the regression problem must approximate $\mathcal{T}Q$ well
- ! **Solution:** use large number of features, rich feature space captures everything

Assumption

- ? **Problem:** when $d > n_x$, the OLS projection $(\Phi^T \Phi)^{-1}$ is not defined
- Solution: Get more samples
- Solution: Use less features

- ? Problem: the regression problem must approximate $\mathcal{T} Q$ well
- ! **Solution:** use large number of features, rich feature space captures everything

Assumption

- ? **Problem:** when $d > n_x$, the OLS projection $(\Phi^T \Phi)^{-1}$ is not defined
- Solution: Get more samples
- **Solution:** Use less features
- ! Solution: Let the regression select useful features

Sparse Markov Decision Process

Regularization and Sparsity

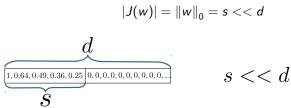
Sparse representation:

$$|J(w)| = ||w||_0 = s \ll d$$

Sparse Markov Decision Process

Regularization and Sparsity

Sparse representation:

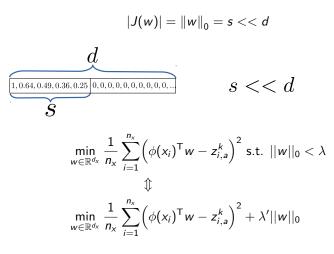


nría

Sparse Markov Decision Process

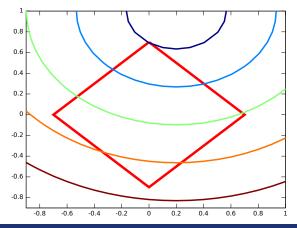
Regularization and Sparsity

Sparse representation:



ℓ_1 regularization and LASSO

$$\widehat{w}_a^k = \arg\min_{w \in \mathbb{R}^{d_x}} \frac{1}{n_x} \sum_{i=1}^{n_x} \left(\phi(x_i)^\mathsf{T} w - z_{i,a}^k \right)^2 + \lambda ||w||_1$$



Sparse Multi-Task Reinforcement Learning

Exact Value Iteration:

 Q^0 : w^0 , $|J(w^0)| = s^0$

$$Q^0$$
: w^0 , $|J(w^0)| = s^0$
 $\mathcal{T}Q^0 = Q^1$: w^1 , $|J(w^1)| = s^1$, depends on s^0

$$\begin{array}{l} Q^0: \ w^0, \ |J(w^0)| = s^0 \\ \mathcal{T} Q^0 = Q^1: \ w^1, \ |J(w^1)| = s^1, \ \text{depends on } s^0 \\ \mathcal{T} Q^1 = Q^2: \ w^2, \ |J(w^2)| = s^2, \ \text{depends on } s^1 \end{array}$$

$$\begin{array}{l} Q^{0}: \ w^{0}, \ |J(w^{0})| = s^{0} \\ \mathcal{T}Q^{0} = Q^{1}: \ w^{1}, \ |J(w^{1})| = s^{1}, \ \text{depends on } s^{0} \\ \mathcal{T}Q^{1} = Q^{2}: \ w^{2}, \ |J(w^{2})| = s^{2}, \ \text{depends on } s^{1} \\ \cdots \end{array}$$

$$\begin{array}{l} Q^{0}: \ w^{0}, \ |J(w^{0})| = s^{0} \\ \mathcal{T} Q^{0} = Q^{1}: \ w^{1}, \ |J(w^{1})| = s^{1}, \ \text{depends on } s^{0} \\ \mathcal{T} Q^{1} = Q^{2}: \ w^{2}, \ |J(w^{2})| = s^{2}, \ \text{depends on } s^{1} \\ \cdots \\ \mathcal{T} Q^{K} = Q^{*}: \ w^{*}, \ |J(w^{*})| = s^{*}, \ \text{depends on } s^{K} \end{array}$$

Sparse MDPs

Assumption (Sparse MDPs)

Given the sets of states $S = \{x_i\}_{i=1}^{n_x}$ used in FQI, there exists a set J (the set of useful features) for MDP \mathcal{M} , with $|J| = s \ll d$, such that for any $i \notin J$, any $j \in [d_x]$ and any policy π

$$\sum_{x \in \mathcal{S}} \varphi_i(x) \int_{x' \in \mathcal{X}} P(\mathrm{d}x' | x, \pi(x)) \varphi_j(x') \mathrm{d}x = 0, \tag{1}$$

and there exists a function $f_{w^R} = R$ such that $J(w^R) \subseteq J$.

Sparse MDPs

Lemma

Under High Dimensional Assumption and Sparse MDPs Assumption, the application of the Bellman operator \mathcal{T} to any function $f_w \in \mathcal{F}$, produces a function $f_{w'} = \mathcal{T}f_w \in \mathcal{F}$ such that $J(w') \subseteq J$.

LASSO-FQI, Theoretical Guarantees

Theorem (LASSO-FQI)

If LASSO-FQI is run for K iterations with a regularizer

$$\lambda = \delta Q_{\max} \sqrt{\frac{\log d}{n}},$$

for any numerical constant $\delta > 8$, then with probability at least $(1 - 2d^{1-\delta/8})^{K}$, the performance loss is bounded as

$$\left\| Q^* - Q^{\pi^{\mathcal{K}}} \right\|_{2,\mu}^2 \leq \mathcal{O}\left(\frac{1}{(1-\gamma)^4} \left[\frac{Q_{\max}^2 L^2}{\kappa_{\min}^4(s)} \frac{s \log d}{n} + \gamma^{\mathcal{K}} Q_{\max}^2 \right] \right)$$

Talk Overview

- ► Reinforcement Learning → Linear Fitted Q Iteration (LinFQI)
- ► Sparse Markov Decision Process → LASSO FQI
- Multi-Task (Group) Sparsity \rightarrow Group-LASSO FQI
- Learning Sparse Representations \rightarrow Feature Learning FQI
- Experiments

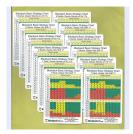
nría

Multi-Task

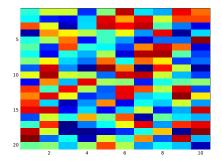
Multi-Task MDP $\mathcal{M}_t = (\mathcal{X}, \mathcal{A}, P_t, R_t, \gamma_t), t \in [T] = \{1, \dots, T\}$

Performance measure:

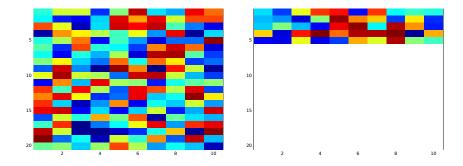
$$rac{1}{T}\sum_{t=1}^T \left\| \mathcal{Q}_t^* - \mathcal{Q}_t^{\pi_t^{\mathcal{K}}}
ight\|_{2,\mu}^2$$



Group Sparsity and Group Lasso

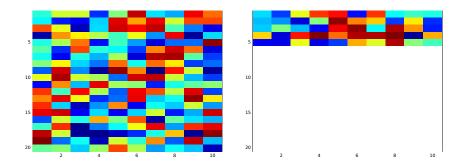


Group Sparsity and Group Lasso



Group Sparsity and Group Lasso

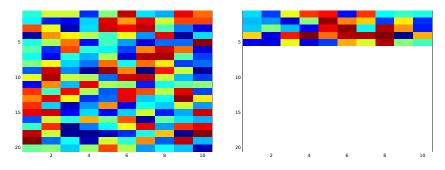
$$\ell_{2,1}$$
-norm $\|W\|_{2,1} = \sum_{i=1}^{d} \|[W]^i\|_2$



Ínría

Group Sparsity and Group Lasso

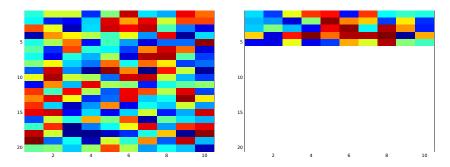
$$\ell_{2,1}$$
-norm $\|W\|_{2,1} = \sum_{i=1}^{d} \|[W]^i\|_2$



 $\mathsf{high} \gets \left\| W \right\|_{2,1} \to \mathsf{low}$

Group Sparsity and Group Lasso

$$\ell_{2,1}$$
-norm $\|W\|_{2,1} = \sum_{i=1}^{d} \|[W]^i\|_2$



 $\mathsf{high} \gets \left\| W \right\|_{2,1} \to \mathsf{low}$

$$\widehat{W}_{a}^{k} = \arg\min_{W_{a}} \sum_{t=1}^{T} \left\| Z_{a,t}^{k} - \Phi_{t} w_{a,t} \right\|_{2}^{2} + \lambda \left\| W_{a} \right\|_{2,1}.$$

Sparse Multi-Task Reinforcement Learning

Group Sparsity

Assumption

We assume that the joint useful features across all the tasks are such that $|J|=\tilde{s}\ll d.$

GL-FQI, Theoretical Guarantees

Theorem (GL-FQI)

If GL-FQI is run jointly on all T tasks for K iterations for any numerical constant $\delta > 0$, then with probability at least $(1 - \log(d)^{-\delta})^{K}$, the performance loss is bounded as

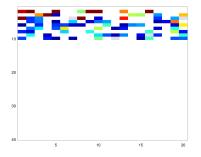
$$\begin{split} &\frac{1}{T}\sum_{t=1}^{I} \left\| Q_t^* - Q_t^{\pi_t^{\mathcal{K}}} \right\|_{2,\mu}^2 \\ &\leq \mathcal{O}\left(\frac{1}{(1-\gamma)^4} \left[\frac{L^2 Q_{\max}^2}{\kappa^4 (2\tilde{s})} \frac{\tilde{s}}{n} \left(1 + \frac{(\log d)^{3/2+\delta}}{\sqrt{T}} \right) + \gamma^{\mathcal{K}} Q_{\max}^2 \right] \right). \end{split}$$

Multi-Task vs Single Task: pros and cons

$$\mathsf{GL}-\mathsf{FQI}: \ \widetilde{\mathcal{O}}\Big(\frac{\widetilde{s}}{n}\Big(1+\frac{\log d}{\sqrt{T}}\Big)\Big), \quad \mathsf{LASSO-FQI}: \ \widetilde{\mathcal{O}}\Big(\frac{\overline{s}\log d}{n}\Big), \overline{s} = \frac{\sum_t s_t}{T}$$

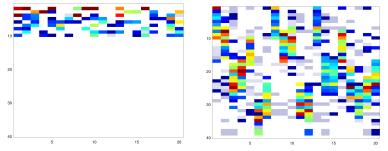
Multi-Task vs Single Task: pros and cons

$$\mathsf{GL}-\mathsf{FQI}: \ \widetilde{\mathcal{O}}\Big(\frac{\widetilde{s}}{n}\Big(1+\frac{\log d}{\sqrt{T}}\Big)\Big), \quad \mathsf{LASSO-FQI}: \ \widetilde{\mathcal{O}}\Big(\frac{\overline{s}\log d}{n}\Big), \overline{s} = \frac{\sum_t s_t}{T}$$

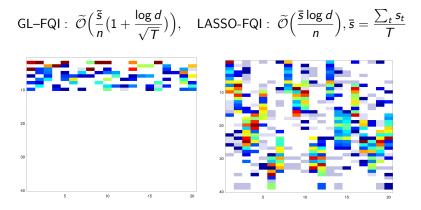


Multi-Task vs Single Task: pros and cons

$$\mathsf{GL}-\mathsf{FQI}: \ \widetilde{\mathcal{O}}\Big(\frac{\widetilde{s}}{n}\Big(1+\frac{\log d}{\sqrt{T}}\Big)\Big), \quad \mathsf{LASSO-FQI}: \ \widetilde{\mathcal{O}}\Big(\frac{\overline{s}\log d}{n}\Big), \overline{s} = \frac{\sum_{t} s_{t}}{T}$$



Multi-Task vs Single Task: pros and cons



same \overline{s} , different \tilde{s}

Talk Overview

- ▶ Reinforcement Learning → Linear Fitted Q Iteration (LinFQI)
- ► Sparse Markov Decision Process → LASSO FQI
- ► Multi-Task (Group) Sparsity → Group-LASSO FQI
- Learning Sparse Representations \rightarrow Feature Learning FQI
- Experiments

nría

Sparsity and Representation

Properties and change of feature representation:

Inría

Sparsity and Representation

Properties and change of feature representation:

✓ Bounded

Properties and change of feature representation:

 $\sqrt{}$ Bounded $\sqrt{}$ Smooth

Properties and change of feature representation:

- ✓ Bounded
- 🗸 Smooth
- ✓ Measurable

Inría

Properties and change of feature representation:

- ✓ Bounded
- 🗸 Smooth
- ✓ Measurable
- X Sparse

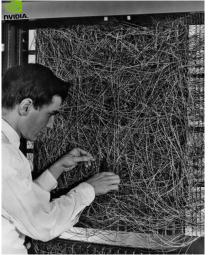
Properties and change of feature representation:

- ✓ Bounded
- 🗸 Smooth
- √ Measurable
- X Sparse

Idea: learn a series of transformations to recover sparsity.

Deep Sparse Fitted Value Iteration

Deep Learning is recurrent in Machine Learning.



Ínría

Multi-Task Feature Learning

Deep Learning: extremely powerful

Ínría_

Multi-Task Feature Learning

Deep Learning: extremely powerful So powerful one layer is enough

nría

Multi-Task Feature Learning

Deep Learning: extremely powerful So powerful one layer is enough even a linear layer

Multi-Task Feature Learning

Deep Learning: extremely powerfulSo powerful one layer is enougheven a linear layerSingle Level Deep Linear Feature Learning: can a lineartransformation do something useful?

$$(\widehat{U}_a^k, \widehat{A}_a^k) = \arg\min_{U_a \in \boldsymbol{O}^d} \min_{A_a \in \mathbb{R}^{d \times T}} \sum_{t=1}^T ||Z_{a,t}^k - \Phi_t U_a[A_a]_t||^2 + \lambda ||A||_{2,1}.$$

Multi-Task Feature Learning: an interpretation

Proposition

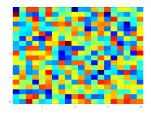
Given $A, W \in \mathbb{R}^{d \times T}$, $U \in \boldsymbol{O}^d$, the following equality holds

$$\begin{split} \min_{A,U} & \sum_{t=1}^{T} ||Z_{a,t}^{k} - \Phi_{t} U_{a}[A_{a}]_{t}||^{2} + \lambda ||A||_{2,1} \\ & = \min_{W} \sum_{t=1}^{T} ||Z_{a,t}^{k} - \Phi_{t}[W_{a}]_{t}||^{2} + \lambda ||W||_{1}. \end{split}$$

The relationship between the optimal solutions is $W^* = UA^*$.

Low Rank and Trace Norm

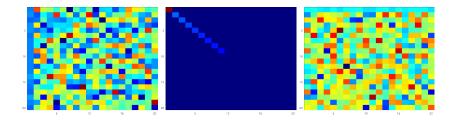
$$\|W\|_1 = \sum \sigma(W)$$



Ínría

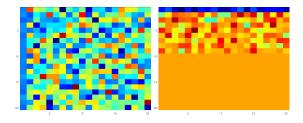
Low Rank and Trace Norm

$$\|W\|_1 = \sum \sigma(W)$$



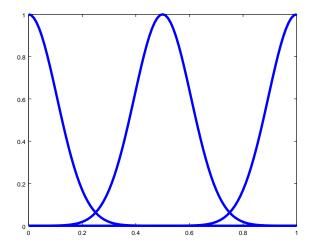
Low Rank and Trace Norm

$$\left\|\boldsymbol{W}\right\|_1 = \sum \sigma(\boldsymbol{W})$$



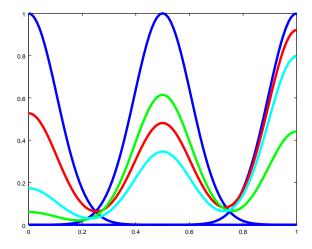
Low Rank and Task correlation

Dictionary of base tasks



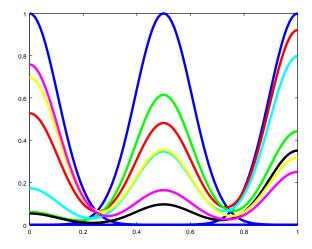
Low Rank and Task correlation

Dictionary of base tasks



Low Rank and Task correlation

Dictionary of base tasks



Low Rank Assumption

Assumption

There exists an orthogonal matrix $U \in \mathbf{O}^d$ such that the weight matrix A^* obtained as a transformation of W^* (i.e., $A^* = U^{-1}W^*$) is jointly sparse, i.e., has a set of "useful" features $J(A^*) = \bigcup_{t=1}^{T} J([A^*]_t)$ with $|J(A^*)| = s^* \ll d$.

FL-FQI, Theoretical Guarantee

Theorem (FL-FQI)

Let $T > O(\log n)$. If FL-FQI (Algorithm ?? with Eq. ??) is run jointly on all T tasks for K iterations with a regularizer

$$\lambda \geq 2LQ_{\max}\sqrt{rac{d+T}{n}},$$

then there exist constants c_1 and c_2 such that with probability at least $(1 - c_1 \exp\{-c_2(d + T)\})^K$, the performance loss is bounded as

$$\begin{split} &\frac{1}{T}\sum_{t=1}^{T}\left\|\boldsymbol{Q}_{t}^{*}-\boldsymbol{Q}_{t}^{\pi_{t}^{K}}\right\|_{2,\rho}^{2} \\ &\leq \mathcal{O}\left(\frac{1}{(1-\gamma)^{4}}\left[\frac{\boldsymbol{Q}_{\mathsf{max}}^{2}\boldsymbol{L}^{4}}{\kappa^{2}}\frac{\boldsymbol{s}^{*}}{n}\left(1+\frac{\boldsymbol{d}}{T}\right)+\gamma^{K}\boldsymbol{Q}_{\mathsf{max}}^{2}\right]\right) \end{split}$$

Different sparsities, a comparison

LASSO-FQI:
$$\tilde{O}\left(\frac{\bar{s}\log(d)}{n}\right);$$

GL-FQI: $\tilde{O}\left(\frac{\tilde{s}}{n}\left(1+\frac{\log(d)}{\sqrt{T}}\right)\right);$
FL-FQI: $\tilde{O}\left(\frac{s^*}{n}\left(1+\frac{d}{T}\right)\right),$

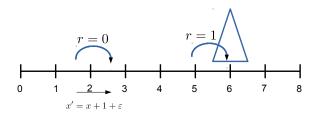
(nría-

Talk Overview

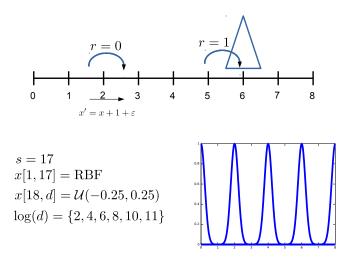
- ▶ Reinforcement Learning → Linear Fitted Q Iteration (LinFQI)
- ► Sparse Markov Decision Process → LASSO FQI
- ► Multi-Task (Group) Sparsity → Group-LASSO FQI
- ► Learning Sparse Representations → Feature Learning FQI
- Experiments

nría

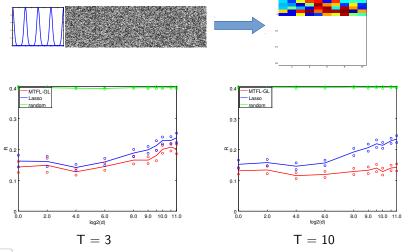
Experiments: Chain Walk



Experiments: Chain Walk

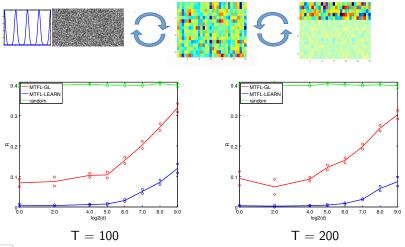


Experiments: Chain Walk



Sparse Multi-Task Reinforcement Learning

Experiments: Chain Walk



Experiments: BlackJack

Rules:

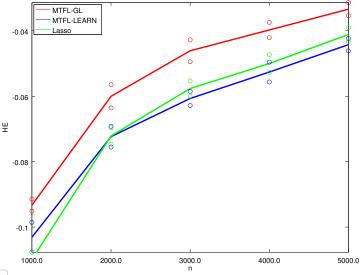
- Aces = {1, 11}, 2, ..., 9 = [2, ..., 9], 10, J, Q, K = 10.
- \diamondsuit Player can ask another card "HIT" or "STAY"
- $\heartsuit\,$ If the player goes over 21, he loses, end of game
- Dealer has to "HIT" until a threshold, then "STAY"
- If the dealer goes over 21, player wins.
- \diamond If the player has a strictly higher score than the dealer, player wins

How to make multiple tasks:

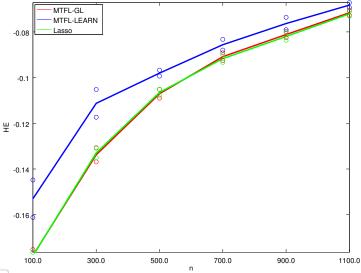
- \heartsuit Dealer threshold $\{15, 16, 17, 18\}$
- ♠ Number of decks {2, 4, 6, 8}
- \clubsuit If the dealer "HIT" when has a soft ace (A=11)

Two variants: Player can "DOUBLE" his bet after seeing the first two card, he receives a card and "STAY"

Experiments: BlackJack



Experiments: BlackJack



Sparse Multi-Task Reinforcement Learning

Conclusion

Multi-Task and Sparsity formalized for MDPs

Theoretical guarantees for new algorithms

Experimental validation shows assumptions are reasonable

nría

Future Works

Weird regression techniques: have we tried everything?

- More sparse: Sparse Group LASSO, Graph LASSO
- More Learning: Inter-Task Feature Learning

Still, we need gurantees on the reconstruction.

Negative transfer: can we find a method that improves every single task?

nía

Thanks for the attention

Questions?

Ínría_

Inría

Restricted Eigenvalues Assumption

Assumption (Restricted Eigenvalues)

For any $s \in [d]$, there exists $\kappa(s) \in \mathbb{R}^+$ such that:

$$\min\left\{\frac{\|\boldsymbol{\Phi}\boldsymbol{\Delta}\|_{2}}{\sqrt{n}\|\boldsymbol{\Delta}_{J}\|_{2}}:|J|\leq s,\boldsymbol{\Delta}\in\mathbb{R}^{d}\backslash\{\boldsymbol{0}\},\|\boldsymbol{\Delta}_{J^{c}}\|_{1}\leq 3\|\boldsymbol{\Delta}_{J}\|_{1}\right\}\geq\kappa(s),$$
(2)

where n is the number of samples, and J^c denotes the complement of the set of indices J.

nía

Multi-Task Restricted Eigenvalues

Assumption (Multi-Task Restricted Eigenvalues)

For any $s \in [d]$, there exists $\kappa(s) \in \mathbb{R}^+$ such that:

$$\min\left\{\frac{\|\Phi\operatorname{Vec}(\Delta)\|_{2}}{\sqrt{n}\left\|\operatorname{Vec}(\Delta_{J})\right\|_{2}}:|J|\leq s,\Delta\in\mathbb{R}^{d\times T}\setminus\{\mathbf{0}\},\left\|\Delta_{J^{c}}\right\|_{2,1}\leq 3\left\|\Delta_{J}\right\|_{2,1}\right\}\geq\kappa(s)$$
(3)

where n is the number of samples, J^c denotes the complement of the set of indices J, and Φ indicates the block diagonal matrix composed by the union of the T sample matrices Φ_t .

Restricted Strong Convexity

Assumption (Restricted Strong Convexity)

Under Assumption 4, let $W^* = UDV^T$ be a singular value decomposition of the optimal matrix W^* of rank r, and U^r , V^r the submatrices associated with the top r singular values. Define $\mathcal{B} = \{\Delta \in \mathbb{R}^{d \times T} : \operatorname{Row}(\Delta) \perp U^r \text{ and } \operatorname{Col}(\Delta) \perp V^r\}$, and the projection operator onto this set $\Pi_{\mathcal{B}}$. There exists a positive constant κ such that

$$\min\left\{\frac{\|\Phi\operatorname{Vec}(\Delta)\|_{2}^{2}}{2nT\|\operatorname{Vec}(\Delta)\|_{2}^{2}}:\Delta\in\mathbb{R}^{d\times T},\|\Pi_{\mathcal{B}}(\Delta)\|_{1}\leq 3\|\Delta-\Pi_{\mathcal{B}}(\Delta)\|_{1}\right\}\geq\kappa$$
(4)

Regression with unbiased samples

$$z_{i,a}^{k} = r_{i,a}^{k} + \gamma \max_{a'} \widehat{Q}^{k-1}(y_{i,a}^{k}, a') = r_{i,a}^{k} + \gamma \max_{a'} \phi(y_{i,a}^{k})^{\mathsf{T}} w_{a',t}^{k-1}$$
(5)

$$z_{i,a}^{k} = \mathcal{T}\widehat{Q}^{k-1}(x_{i},a) + \eta_{i,a}^{k},$$
(6)

 $\eta_{i,a}^k$ is random due to the choice of samples, but is 0 mean and bounded by $[-Q_{\max}, Q_{\max}]$ (truncation). Resampling $y_{i,a}^k$, $r_{i,a}^k$ keeps the iterations i.i.d.

$$W_a^K \in \mathbb{R}^{d \times T},$$

$$\Phi = [\phi(x_1)^\mathsf{T}; \cdots; \phi(x_{n_x})^\mathsf{T}] \in \mathbb{R}^{n_x \times d},$$

$$\Phi_a'^k = [\phi(y_{i,a}^k)^\mathsf{T}; \cdots; \phi(y_{n_x,a}^k)^\mathsf{T}] \in \mathbb{R}^{n_x \times d},$$

$$R_a^k = [r_{1,a}^k, \dots, r_{n_x,a}^k] \in \mathbb{R}^{n_x},$$
and the vector $Z_a^k = [z_{1,a}^k, \dots, z_{n_x,a}^k] \in \mathbb{R}^{n_x}$ obtained as
$$Z_a^k = R_a^k + \gamma \max_{a'} (\Phi_{a'}'^k w_{a'}^{k-1}).$$

LASSO-FQI, Under the hood

$$|Q_t^* - Q_t^{\pi_t^{\mathcal{K}}}| \leq \frac{2\gamma(1 - \gamma^{\mathcal{K}+1})}{(1 - \gamma)^2} \left[\sum_{k=0}^{\mathcal{K}-1} \alpha_k A_{tk} |\varepsilon_t^k| + \alpha_{\mathcal{K}} A_{t\mathcal{K}} |Q_t^* - Q_t^0| \right],$$

$$\begin{split} |\varepsilon_t^k(y,b)| &= |f_{w_t^k}(y,b) - f_{\widehat{w}_t^k}(y,b)| = |\phi(y)^\mathsf{T} w_{b,t}^k - \phi(y)^\mathsf{T} \widehat{w}_{b,t}^k| \\ &\leq ||\phi(y)||_2 ||w_{b,t}^k - \widehat{w}_{b,t}^k||_2 \leq L ||w_{b,t}^k - \widehat{w}_{b,t}^k||_2, \end{split}$$

$$\left\|w_{a,t}^{k} - \widehat{w}_{a,t}^{k}\right\|_{2}^{2} \leq \frac{256\delta^{2}Q_{\max}^{2}}{\kappa^{4}(s_{t}^{k})} \frac{s_{t}^{k}\log d}{n}.$$
 (7)

GL-FQI, Under the hood

Proposition ([?])

nín.

For any action $a \in A$ and any iteration k < K, let W_a^k be sparse such that $|J(W_a^k)| \leq \tilde{s}^k$ and satisfy Assumption 6 with $\kappa_t^k = \kappa(2s_t^k)$. Then if Eq. ?? is run with a regularizer

$$\lambda = rac{LQ_{\mathsf{max}}}{\sqrt{nT}} \left(1 + rac{(\log d)^{rac{3}{2}+\delta}}{\sqrt{T}}
ight)^{rac{1}{2}},$$

for any numerical constant $\delta > 0$, then with probability at least $1 - \log(d)^{-\delta}$, the function $f_{\widehat{w}_{a,t}^k}$ computed in Eq. ?? has an error bounded as

$$\frac{1}{T} \sum_{t=1}^{T} \left\| [W_{a}^{k}]_{t} - [\widehat{W}_{a}^{k}]_{t} \right\|_{2}^{2} = \frac{1}{T} \left\| W^{k} - \widehat{W}^{k} \right\|_{2}^{2} \le \frac{160L^{2}Q_{\max}^{2}}{\kappa_{Td}^{4}(2\tilde{s})} \frac{\tilde{s}}{n} \left(1 + \frac{(\log d)^{3/2 + \delta}}{\sqrt{T}} \right)^{3/2}$$
(8)

Previous approaches

Lasso-TD (Single-Task)

$$\|V^* - V^{\pi_{\kappa}}\|_{\rho} \leq \frac{2}{(1 - \gamma)^2} \left[\gamma^{\kappa/2} \|V^* - V_0\|_{\infty} + C \left[c_1 \lambda \max_{k=1,\dots,\kappa} \|T_k^* Q_0\|_{\mathcal{K}}^2 + \frac{c_2 V_{max}^4}{n\lambda^{d/l}} + \frac{c_3 \log(1/\delta)}{nV_{max}^4} \right]^2 \right]$$

Kernel-FQI (Non-Parametric, Non-sparse)

$$\begin{aligned} \|V^{\pi} - \Phi \widehat{w}\|_{n} &\leq \\ \frac{1}{1 - \gamma} \inf_{u} \left[\|V^{\pi} - \Phi u\|_{n} + \frac{12\gamma V_{\max} L \sqrt{s}}{\psi} \left(\sqrt{\frac{2\log(2d/\delta)}{n}} + \frac{1}{2n} \right) \right] \end{aligned}$$

