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Talk Overview

Reinforcement Learning — Linear Fitted Q Iteration (LinFQI)
Sparse Markov Decision Process — LASSO FQI

Multi-Task (Group) Sparsity — Group-LASSO FQI

Learning Sparse Representations — Feature Learning FQI
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Reinforcement Learning

Reinforcement Learning

Markov Decision Process (MDP): M = (X, A, R, P,~)
» X is a bounded closed subset of the Euclidean space
» Ais finite (i.e., |A| < 00)

» R: X x A—1]0,1]
» P: X x A— P(X)
» ~: discount factor

Policy: 7: X — A
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Reinforcement Learning

Reinforcement Learning

Optimal Action-Value Function:
Q*(x,a) = max, E-[> 2, ¥'rilri ~ R(xi, m(x:)), xo = x, a0 = aJ
T (x) = arg max,e 4 Q*(x, a)
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Reinforcement Learning

Reinforcement Learning

Optimal Action-Value Function:
Q*(x,a) = max, E-[> 2, ¥'rilri ~ R(xi, m(x:)), xo = x, a0 = aJ
T (x) = arg max,e 4 Q*(x, a)

Optimal Bellmann Operator:
TQ(x,a) = R(x,a) + 7., P(y|x,a) maxa Q(y, &)
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Linear FQI

Value lteration

Exact Value lteration:

QO

TQ =@
TQ =@
T =@
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Linear FQI

Value lteration

Exact Value lteration:

QO

TQ =@
TQ =@
T =@

Approximate Value Iteration:
60
TQ ~ Q' ~ Q!
7—61 ~ 62 —~ 62
TQK ~ Q* ~ Q

n lrezia—
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Linear FQI

Fitted Q Iteration

Approximation:
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Linear FQI

Fitted Q Iteration

Approximation:
Approximate 7 use samples
zilja,t = ri,,(a,t + v maxy Qf()’i,,(a,ta a')
Dz,t = {(Xi,h 3)7 zi,fa,t};il

o lrezia—
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Approximate 7 use samples
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Linear FQI

Fitted Q Iteration

Approximation:
Approximate 7 use samples
k' _ .k Ak, k /
Ziax = liat =+ vy maxy Qt (yi,a,ta a )

Dz,t = {(Xi,h 3)7 Zi,fa,t};il

Approximate ~: use regression

Q. « regression(D) —p Q*

l

D = {(z,a),r +ymaxQu (',a)}
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Linear FQI

Linear Fitted Q lteration

Linear Approximation:
> ¢() = [901()7 902(')7 ceey @d()]T
> ;. X —R
> sup, |[p(x)[]2 < L
» F={fu,(x,a) = o(x)"w,,x € X,a€ A w, € R}
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Linear FQI

Linear Fitted Q lteration

Linear Approximation:
> d)() = [901()7 902(')7 ceey @d()]T
> ;. X —R
> sup, [[¢(x)[[2 < L
» F={fu,(x,a) = o(x)"w,,x € X,a€ A w, € R}
Matrix notation for samples:
= [000)7:- - 60)T] € B
> ¢/k [¢(yl a)T o (ynx, )T] € RnXXd
> RE=1[rf,,....rk, ]G]R”X
> ZK=1zf,,...,z¢ ] € R™, with ZF = RE + v max, (®)w, k-t

? "x»

n lrezia—~
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Linear FQI

Least Squares Regression

Linear Model Interpretation

zk, = TR Y(x, a) + 11, = o) Tws + 1,

Sparse Multi-Task Reinforcement Learning
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Linear FQI

Least Squares Regression

Linear Model Interpretation

zk, = TR Y(x, a) + 11, = o) Tws + 1,

Unbiased estimator: squared loss

Nx

. 1 21 2
Wf:argmr/’rélﬂgdn—z(qs(xl.)TW—zi’fa) = ITHGDW;‘—Zfﬂz
x 1 X

Sparse Multi-Task Reinforcement Learning



Linear FQI

Least Squares Regression

Linear Model Interpretation

zk, = TR Y(x, a) + 11, = o) Tws + 1,

Unbiased estimator: squared loss
~k RIS T k)2 1 k k1|2
w, = arg min — Z ((b(x,-) w — z,-’a) = thwa -7, H2
X

weRd Ny <
i=1

Asymptotically: ||wf — wk||, is small

n lrezia—
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Linear FQI

Ordinary Least Square (OLS):

wh = (oTo) 1o Zk




Sparse Markov Decision Process

Talk Overview

Reinf | . L Fitted-Q ] ion-(LinFQN
Sparse Markov Decision Process — LASSO FQI

Multi-Task (Group) Sparsity — Group-LASSO FQI
Learning Sparse Representations — Feature Learning FQI
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Experiments
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Sparse Markov Decision Process

High Dimensional Assumption

7 Problem: the regression problem must approximate 7 Q well
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High Dimensional Assumption

7 Problem: the regression problem must approximate 7 Q well

I Solution: use large number of features, rich feature space captures
everything

The space F is such that for any function f,, € F, the image of the
Bellman operator T is always in F, i.e., Tf, € F.
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I Solution: use large number of features, rich feature space captures
everything
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Sparse Markov Decision Process

High Dimensional Assumption

7 Problem: the regression problem must approximate 7 Q well

I Solution: use large number of features, rich feature space captures
everything

The space F is such that for any function f,, € F, the image of the
Bellman operator T is always in F, i.e., Tf, € F.

? Problem: when d > n,, the OLS projection (®T®)~! is not defined

I Selution:—Get-more-samples
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Sparse Markov Decision Process

High Dimensional Assumption

7 Problem: the regression problem must approximate 7 Q well

I Solution: use large number of features, rich feature space captures
everything

The space F is such that for any function f,, € F, the image of the
Bellman operator T is always in F, i.e., Tf, € F.

? Problem: when d > n,, the OLS projection (®T®)~! is not defined
I Selution:—Get-more-samples

I Solution: Use less features

n lrezia—
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Sparse Markov Decision Process

High Dimensional Assumption

7 Problem: the regression problem must approximate 7 Q well
I Solution: use large number of features, rich feature space captures

everything

The space F is such that for any function f,, € F, the image of the
Bellman operator T is always in F, i.e., Tf, € F.

? Problem: when d > n,, the OLS projection (®T®)~! is not defined

I Selution:—Get-more-samples
I Selutien+—setessfeatures
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Sparse Markov Decision Process

High Dimensional Assumption

7 Problem: the regression problem must approximate 7 Q well
I Solution: use large number of features, rich feature space captures
everything

The space F is such that for any function f,, € F, the image of the
Bellman operator T is always in F, i.e., Tf, € F.

? Problem: when d > n,, the OLS projection (®T®)~! is not defined
I Selution:—Get-more-samples
I Selutien:—Usetessfeatures

I Solution: Let the regression select useful features

-
lrzia— . . n
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Sparse Markov Decision Process

Regularization and Sparsity

Sparse representation:

(W) = [lwlly =s << d
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Regularization and Sparsity

Sparse representation:

(W) = [lwlly =s << d

d

A
~ ™~
‘1‘0,64,0.49.0.3610,25‘0,0,010,0‘0‘0.0,0,0,,. S << d
| ——

S
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Sparse Markov Decision Process

Regularization and Sparsity

Sparse representation:

(W) = [lwlly =s << d

d

A
~ ™~
‘1‘0,64,0.49.0.3610,25‘0,0,010,0‘0‘0‘0,0,0,,. S << d
—_
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Sparse Markov Decision Process

/1 regularization and LASSO

_ R 2
W = arg min —Z (gb(x;)TW*Z,!fa) + Aljwll1.
i=1

weRMN Ny




Sparse Markov Decision Process

Sparse Value lteration

Exact Value Iteration:
Q% w?, [J(wP)| =s°

n Crrzia~
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Sparse Markov Decision Process

Sparse Value lteration

Exact Value lteration:
Q% w?, [J(wP)| =s°
TR = Q' wh, [J(wh)| = s, depends on s°
TQ' = @* w?, |J(w?)| = 52, depends on s'

TQRK = Q*: w*, |J(w*)| = s*, depends on s¥
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Sparse Markov Decision Process

Sparse MDPs

Assumption (Sparse MDPs)

Nx

Given the sets of states S = {x;}1*, used in FQI, there exists a set J
(the set of useful features) for MDP M, with |J| = s < d, such that for
any i ¢ J, any j € [dy] and any policy

> i) |

P(dx'|x, m(x))p;(x")dx = 0, (1)
xES x'ex

and there exists a function f,= = R such that J(wR) C J.

Sparse Multi-Task Reinforcement Learning Sequel. - 18/55



Sparse Markov Decision Process

Sparse MDPs

Lemma

Under High Dimensional Assumption and Sparse MDPs Assumption, the
application of the Bellman operator T to any function f,, € F, produces
a function f,,, = Tf, € F such that J(w') C J.

Sparse Multi-Task Reinforcement Learning



Sparse Markov Decision Process

LASSO-FQI, Theoretical Guarantees

Theorem (LASSO-F QI)

If LASSO-F Q1 is run for K iterations with a regularizer

A= 5Qmaxv $,

for any numerical constant § > 8, then with probability at least
(1 —2d'~9/8)K the performance loss is bounded as

2 1 Q2. L% slogd K ~2
< max
‘2# = ((1 =) [H“min(S) n 7 Qmax])

oo

n lrezia—
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Multi-Task (Group) Sparsity

Talk Overview

> Reinf | . L Fitted-Q1 ion-{LinFQP
> S M Decision_P LASSO-FQ

» Multi-Task (Group) Sparsity — Group-LASSO FQI

» Learning Sparse Representations — Feature Learning FQI

» Experiments

Sparse Multi-Task Reinforcement Learning
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Multi-Task (Group) Sparsity

Multi-Task

Performance measure:

1 < «
72 |e-ar
t=1

2
2,p

Sparse Multi-Task Reinforcement Learning



Multi-Task (Group) Sparsity

Group Sparsity and Group Lasso
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Multi-Task (Group) Sparsity

Group Sparsity and Group Lasso
Lo penorm [|Wlzx = S [[WYl2
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Multi-Task (Group) Sparsity

Group Sparsity and Group Lasso
Lo penorm [|Wlzx = S [[WYl2

high < W], — low
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Multi-Task (Group) Sparsity

Group Sparsity and Group Lasso
Lo penorm [|Wlzx = S [[WYl2

high < W], — low

-
Wk = arg nJJn Z ||Z:7t - ¢tWa,t||§ + Al Wa||2,1 :
? =1
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Multi-Task (Group) Sparsity

Group Sparsity

We assume that the joint useful features across all the tasks are such
that |J| =5 < d.

Sparse Multi-Task Reinforcem



Multi-Task (Group) Sparsity

GL-FQI, Theoretical Guarantees

Theorem (GL-FQI)

If GL-F QI is run jointly on all T tasks for K iterations for any

numerical constant § > 0, then with probability at least (1 — log(d) %)X,
the performance loss is bounded as

.
Z:HQL“ 2.1

o(Tap [i((?ia)x HE %) )

~|I

IA

n lrezia—
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Multi-Task (Group) Sparsity

Multi-Task vs Single Task: pros and cons

GL-FQI : 6(%(1+ ':’/g?d)), LASSO-FQ!I : (5(5"?‘1),;: St
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Multi-Task (Group) Sparsity

Multi-Task vs Single Task: pros and cons

GL-FQI : 6(%(1+ '°gd)), LASSO-FQI : 6(§'°gd),§: LSt

VT n T
Saema e B R R
= B - — R :I_.-I:- :-::

- e =
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Multi-Task (Group) Sparsity

Multi-Task vs Single Task: pros and cons

GL-FQI : 6(%(1+ 'i’/g?d)), LASSO-FQI : (5(“"“’),;: fo

Sa-Ties MR EDC

——
omm e -

same s, different 5
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Learning Sparse Representations

Talk Overview

Reint Learni LinearFitted-Q-tteration-{LinFQH
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Multi-Task {Grotip) Sparsi - ASSO-FQI

Learning Sparse Representations — Feature Learning FQI
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Learning Sparse Representations

Sparsity and Representation

Properties and change of feature representation:
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Sparsity and Representation

Properties and change of feature representation:
/ Bounded
v/ Smooth
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Sparsity and Representation

Properties and change of feature representation:
/ Bounded
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Learning Sparse Representations

Sparsity and Representation

Properties and change of feature representation:
/ Bounded
v/ Smooth
v/ Measurable
X Sparse
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Learning Sparse Representations

Sparsity and Representation

Properties and change of feature representation:
/ Bounded
v/ Smooth
v/ Measurable
X Sparse

Idea: learn a series of transformations to recover sparsity.

Sparse Multi-Task Reinforcem



Learning Sparse Representations

Deep Sparse Fitted Value lteration

Deep Learning is recurrent in Machine Learning.




Learning Sparse Representations

Multi-Task Feature Learning

Deep Learning: extremely powerful

n Crrzia~
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Multi-Task Feature Learning

Deep Learning: extremely powerful
So powerful one layer is enough
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Learning Sparse Representations

Multi-Task Feature Learning

Deep Learning: extremely powerful

So powerful one layer is enough

even a linear layer

Single Level Deep Linear Feature Learning: can a linear
transformation do something useful?

-
ik Fky _ . . ko 2
(Uy, AY) = arg UrarggdAaQij”;IIZa,t S U [Ale|* + A AL, -

Sparse Multi-Task Reinforceme



Learning Sparse Representations

Multi-Task Feature Learning: an interpretation

Given A, W € R¥*T U € 0% the following equality holds

-
iD Z HZak,t - (DtUa[Aa]tHz +A ||AH2,1

t=1

>3

3

-
mMi/n ; ||Z:t — OWL]e|]> + A W]s.

The relationship between the optimal solutions is W* = UA*.

n lrezia—
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Learning Sparse Representations

Low Rank and Trace Norm
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Learning Sparse Representations

Low Rank and Trace Norm

n lrezia—
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Learning Sparse Representations

Low Rank and Trace Norm
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Learning Sparse Representations

Low Rank and Task correlation
Dictionary of base tasks

1

0.6 [ 7

0.4 [ 7

02 7
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Learning Sparse Representations

Low Rank and Task correlation
Dictionary of base tasks

1
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0 02 0.4 06 08 1
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Learning Sparse Representations

Low Rank and Task correlation
Dictionary of base tasks

1

0.6 [

0.4 [

02

arse Multi-Task Reinforcem
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Learning Sparse Representations

Low Rank Assumption

Assumption

There exists an orthogonal matrix U € O% such that the weight matrix
A* obtained as a transformation of W* (i.e., A* = U~YW*) is jointly
sparse, i.e., has a set of “useful” features J(A*) = U, J([A*];) with
[J(A*)| = s* <« d.

Sparse Multi-Task Reinforcement Learning



Learning Sparse Representations

FL-FQI, Theoretical Guarantee

Theorem (FL-F QI)

Let T > O(logn). If FL-F QI (Algorithm ?? with Eq. ??) is run jointly
on all T tasks for K iterations with a regularizer

A 2Lomax\/¥,

then there exist constants c¢; and ¢, such that with probability at least
(1 — crexp{—ca(d + T)})X, the performance loss is bounded as

.
2

1 a
T t o
ot »

1 QaaxL* s* d K A2
ot % (1+9) ).

. lreia—
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Learning Sparse Representations

Different sparsities, a comparison

LASSO-F QI é(glog(d))
d

GL-FQI: é(g (1 , log(d)
n

FL-FQI: ()(5; (1 n i))

Sparse Multi-Task Reinforcement Learning
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Experiments
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Experiments

Experiments: Chain Walk
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Experiments

Experiments: Chain Walk

s =17 o
z[1,17) = RBF
x[18,d] = U(-0.25,0.25)
log(d) = {2,4,6,8,10,11}

Sparse Multi-Task Reinforcement Learning



Experiments

Experiments: Chain Walk

0
80 9.0 100 110 0.0 20 80 9.0 10.0 11.0

6.0
log2(d)
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Experiments: Chain Walk

Experiments
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Experiments

Experiments: BlackJack

Rules:
& Aces = {1,11},2,...,9=[2,...,9], 10,J,Q K = 10.
¢ Player can ask another card "HIT" or “STAY"
O If the player goes over 21, he loses, end of game
& Dealer has to "HIT” until a threshold, then “STAY"
& If the dealer goes over 21, player wins.
{ If the player has a strictly higher score than the dealer, player wins
How to make multiple tasks:
O Dealer threshold {15,16,17,18}
& Number of decks {2,4,6,8}
& If the dealer “"HIT" when has a soft ace (A=11)

Two variants: Player can “DOUBLE" his bet after seeing the first two
card, he receives a card and “STAY”

n lrezia—
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Experiments

Experiments: BlackJack
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Experiments

Experiments: BlackJack

—— MTFL-GL
—— MTFL-LEARN ©
-0.08 ___Lasso B
[ €
8
04F i
o]
e}
w012 B
I
014 R
0.16¢y E

100.0 300.0 500.0 700.0 900.0 1100.0




Conclusion

Conclusion

Multi-Task and Sparsity formalized for MDPs

Theoretical guarantees for new algorithms

Experimental validation shows assumptions are reasonable

n lrezia—




Conclusion

Future Works

Weird regression techniques: have we tried everything?
» More sparse: Sparse Group LASSO, Graph LASSO
» More Learning: Inter-Task Feature Learning

Still, we need gurantees on the reconstruction.

Negative transfer: can we find a method that improves every single
task?

Sparse Multi-Task Reinforcem



Conclusion

Thanks for the attention

Questions?
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Conclusion

Restricted Eigenvalues Assumption

Assumption (Restricted Eigenvalues)

For any s € [d], there exists k(s) € R such that:

1A, d
mind 22 < s A e ROV{0Y, A, < 3]|A]l, b > #(s),
{x/FIIAJllz ' ' -
2

where n is the number of samples, and J° denotes the complement of the
set of indices J.
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Conclusion

Multi-Task Restricted Eigenvalues

Assumption (Multi-Task Restricted Eigenvalues)

For any s € [d], there exists r(s) € R such that:

, { |® Vec(A)],

min{ o2 g < s A e RT\(0}, || A, < 3[1A] } > k(s).
Vn|[Vec(A))l, 2! 2!

(3)

where n is the number of samples, J¢ denotes the complement of the set
of indices J, and ® indicates the block diagonal matrix composed by the
union of the T sample matrices ®;.

n lrezia—
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Conclusion

Restricted Strong Convexity

Assumption (Restricted Strong Convexity)

Under Assumption 4, let W* = UDV'T be a singular value decomposition
of the optimal matrix W* of rank r, and U", V" the submatrices
associated with the top r singular values. Define

B={A € R¥T :Row(A)LU" and Col(A)LV"}, and the projection
operator onto this set M. There exists a positive constant r such that

[l Vec(A)13 dxT
———— A ER MNp(A)]l1 < 3||A - Np(A >
(4)

. lreia—
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Regression with unbiased samples

2l = rfy +ymax QN vl &) = 1 +ymaxo(y) Twy o (5)

— Ték_l(xiaa) +77;'k,aa (6)

nf, is random due to the choice of samples, but is 0 mean and bounded

by [ Qmaxa Qmax] (truncatlon)
Resampling y,7a, ,,a keeps the iterations i.i.d.
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Conclusion

WK c RdXT
O =1[p0x)"; ;d(xn)] € R™,
O = [p(yf.) i i o(yk )T € R™X9,
R: = [I’fm ey r,lfx’a] S R"x,

and the vector Z¥ = [zf ,,...,zk )] € R™ obtained as

ZK = RE + ymax(dkwi ).
a/
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Conclusion

LASSO-FQI, Under the hood

K-1

2~(1 — K+1
M) |3 et + anAul @ — Q0

K
QF — Q| <~
(1-1) —

ek (y, b)| = |fi(y, b) — fau(y, b)| = |o(y) " Wi, — B(y) Wy |

< ||¢(Y)||2||Wll7(,t - Wb,t”Q < L||Wlf,t - Wb,tHQv

k2 _ 2566%Q2,, sklogd
HWa,t - Wa,tHz = ,14(55qa n (7)
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GL-FQI, Under the hood

Proposition ([?])

For any action a € A and any iteration k < K, let WX be sparse such
that | J(WK)| < 3% and satisfy Assumption 6 with k¥ = k(2sK). Then if
Eq. ?? is run with a regularizer

L Qmax (log d)3+? :
A= 1
Vi ( USvE

for any numerical constant 6 > 0, then with probability at least

1 — log(d)~°, the function fax . computed in Eq. 77 has an error bounded
as

1 « 12
=5 iwde - W
=1l

1 12
== kaWkH <
T” 2

160L° @3, 3 < ) (log d)3/2+¢
2

K5(28) n VT
(8)

. Greia—
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Previous approaches

Lasso-TD (Single-Task)

2
Ve = v, < =
10t g 70+ S 1]
Kernel-FQI (Non-Parametric, Non-sparse)
VT —ow|, <
T inf [I VT — dul|, + 127‘/"17“/5 ( 2 Iog(fd/(s) + 21!?)1

n lrezia—
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