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Intro

Talk Overview

I Reinforcement Learning → Linear Fitted Q Iteration (LinFQI)
I Sparse Markov Decision Process → LASSO FQI
I Multi-Task (Group) Sparsity → Group-LASSO FQI
I Learning Sparse Representations → Feature Learning FQI
I Experiments
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Reinforcement Learning

Reinforcement Learning

Markov Decision Process (MDP): M = (X ,A,R,P, γ)

I X is a bounded closed subset of the Euclidean space
I A is finite (i.e., |A| <∞)
I R : X ×A → [0, 1]

I P : X ×A → P(X )

I γ: discount factor
Policy: π : X → A
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Reinforcement Learning

Reinforcement Learning

Optimal Action-Value Function:
Q∗(x , a) = maxπ Eπ[

∑∞
i=1 γ

i ri |ri ∼ R(xi , π(xi )), x0 = x , a0 = a]

π∗(x) = arg maxa∈AQ∗(x , a)

Optimal Bellmann Operator:
T Q(x , a) = R(x , a) + γ

∑
y P(y |x , a) maxa′ Q(y , a′)

T Q∗ = Q∗
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Linear FQI

Value Iteration

Exact Value Iteration:
Q0

T Q0 = Q1

T Q1 = Q2

· · ·
T QK = Q∗

Approximate Value Iteration:
Q̃0

T Q̃0  Q̂1  Q̃1

T Q̃1  Q̂2  Q̃2

· · ·
T Q̃K  Q̂∗  Q̃∗
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Linear FQI

Fitted Q Iteration
Approximation:

Approximate T : use samples
zk

i,a,t = r k
i,a,t + γmaxa′ Q̃k

t (yk
i,a,t , a′)

Dk
a,t = {(xi,t , a), zk

i,a,t}
nx
i=1

Approximate  : use regression
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Linear FQI

Linear Fitted Q Iteration

Linear Approximation:
I φ(·) = [ϕ1(·), ϕ2(·), . . . , ϕd (·)]T

I ϕi : X → R
I supx ||φ(x)||2 ≤ L
I F = {fw (x , a) = φ(x)Twa, x ∈ X , a ∈ A,wa ∈ Rd}

Matrix notation for samples:
I Φ = [φ(x1)T; · · · ;φ(xnx )T] ∈ Rnx×d

I Φ′ka = [φ(yk
i,a)T; · · · ;φ(yk

nx ,a)T] ∈ Rnx×d

I Rk
a = [r k

1,a, . . . , r k
nx ,a] ∈ Rnx

I Z k
a = [zk

1,a, . . . , zk
nx ,a] ∈ Rnx , with Z k

a = Rk
a + γmaxa′(Φ′ka′w

k−1
a′ )
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Linear FQI

Least Squares Regression

Linear Model Interpretation

zk
i,a = T Q̂k−1(xi , a) + ηk

i,a = φ(xi )
Twa + ηk

i,a

Unbiased estimator: squared loss

ŵk
a = arg min

w∈Rd

1
nx

nx∑
i=1

(
φ(xi )

Tw − zk
i,a

)2
=

1
nx

∥∥Φwk
a − Z k

a
∥∥2

2

Asymptotically:
∥∥wk

a − ŵk
a
∥∥

2 is small
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Linear FQI

Ordinary Least Square (OLS):

ŵk
a = (ΦTΦ)−1ΦTZ k

a

x1

x2

y

ŷ

zzzzz
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Sparse Markov Decision Process

Talk Overview

I Reinforcement Learning → Linear Fitted Q Iteration (LinFQI)
I Sparse Markov Decision Process → LASSO FQI
I Multi-Task (Group) Sparsity → Group-LASSO FQI
I Learning Sparse Representations → Feature Learning FQI
I Experiments
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Sparse Markov Decision Process

High Dimensional Assumption

? Problem: the regression problem must approximate T Q well

! Solution: use large number of features, rich feature space captures
everything

Assumption

The space F is such that for any function fw ∈ F , the image of the
Bellman operator T is always in F , i.e., T fw ∈ F .

? Problem: when d > nx , the OLS projection (ΦTΦ)−1 is not defined
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Sparse Markov Decision Process

Regularization and Sparsity
Sparse representation:

|J(w)| = ‖w‖0 = s << d

min
w∈Rdx

1
nx

nx∑
i=1

(
φ(xi )

Tw − zk
i,a

)2
s.t. ||w ||0 < λ

m

min
w∈Rdx

1
nx

nx∑
i=1

(
φ(xi )

Tw − zk
i,a

)2
+ λ′||w ||0
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Sparse Markov Decision Process

`1 regularization and LASSO

ŵk
a = arg min

w∈Rdx

1
nx

nx∑
i=1

(
φ(xi )

Tw − zk
i,a

)2
+ λ||w ||1.
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Sparse Markov Decision Process

Sparse Value Iteration

Exact Value Iteration:
Q0: w0, |J(w0)| = s0

T Q0 = Q1: w1, |J(w1)| = s1, depends on s0

T Q1 = Q2: w2, |J(w2)| = s2, depends on s1

· · ·
T QK = Q∗: w∗, |J(w∗)| = s∗, depends on sK
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Sparse Markov Decision Process

Sparse MDPs

Assumption (Sparse MDPs)

Given the sets of states S = {xi}nx
i=1 used in FQI, there exists a set J

(the set of useful features) for MDP M, with |J | = s � d, such that for
any i /∈ J, any j ∈ [dx ] and any policy π∑

x∈S
ϕi (x)

∫
x ′∈X

P(dx ′|x , π(x))ϕj(x ′)dx = 0, (1)

and there exists a function fwR = R such that J(wR) ⊆ J.
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Sparse Markov Decision Process

Sparse MDPs

Lemma
Under High Dimensional Assumption and Sparse MDPs Assumption, the
application of the Bellman operator T to any function fw ∈ F , produces
a function fw ′ = T fw ∈ F such that J(w ′) ⊆ J.
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Sparse Markov Decision Process

LASSO-FQI, Theoretical Guarantees

Theorem (LASSO-FQI)

If LASSO-FQI is run for K iterations with a regularizer

λ = δQmax

√
log d

n ,

for any numerical constant δ > 8, then with probability at least
(1− 2d1−δ/8)K , the performance loss is bounded as∥∥∥Q∗ − QπK

∥∥∥2

2,µ
≤ O

(
1

(1− γ)4

[
Q2

maxL2

κ4
min(s)

s log d
n + γK Q2

max

])
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Multi-Task (Group) Sparsity

Talk Overview

I Reinforcement Learning → Linear Fitted Q Iteration (LinFQI)
I Sparse Markov Decision Process → LASSO FQI
I Multi-Task (Group) Sparsity → Group-LASSO FQI
I Learning Sparse Representations → Feature Learning FQI
I Experiments
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Multi-Task (Group) Sparsity

Multi-Task

Multi-Task MDP Mt = (X ,A,Pt ,Rt , γt), t ∈ [T ] = {1, . . . ,T}

Performance measure:

1
T

T∑
t=1

∥∥∥Q∗t − QπK
t

t

∥∥∥2

2,µ
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Multi-Task (Group) Sparsity

Group Sparsity and Group Lasso

`2,1-norm ‖W ‖2,1 =
∑d

i=1 ‖[W ]i‖2

5

10

15

20

2 4 6 8 10

5

10

15

20

2 4 6 8 10

high ← ‖W ‖2,1 → low

Ŵ k
a = arg min

Wa

T∑
t=1

∥∥Z k
a,t − Φtwa,t

∥∥2
2 + λ ‖Wa‖2,1 .
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Ŵ k
a = arg min

Wa

T∑
t=1

∥∥Z k
a,t − Φtwa,t

∥∥2
2 + λ ‖Wa‖2,1 .

Sparse Multi-Task Reinforcement Learning SequeL - 23/55



Multi-Task (Group) Sparsity

Group Sparsity and Group Lasso
`2,1-norm ‖W ‖2,1 =

∑d
i=1 ‖[W ]i‖2

5

10

15

20

2 4 6 8 10

5

10

15

20

2 4 6 8 10

high ← ‖W ‖2,1 → low
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Multi-Task (Group) Sparsity

Group Sparsity

Assumption

We assume that the joint useful features across all the tasks are such
that |J | = s̃ � d.
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Multi-Task (Group) Sparsity

GL-FQI, Theoretical Guarantees

Theorem (GL–FQI)

If GL–FQI is run jointly on all T tasks for K iterations for any
numerical constant δ > 0, then with probability at least (1− log(d)−δ)K ,
the performance loss is bounded as

1
T

T∑
t=1

∥∥∥Q∗t − QπK
t

t

∥∥∥2

2,µ

≤ O
(

1
(1− γ)4

[
L2Q2

max
κ4(2s̃)

s̃
n

(
1 +

(log d)3/2+δ
√

T

)
+ γK Q2

max

])
.
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Multi-Task (Group) Sparsity

Multi-Task vs Single Task: pros and cons

GL–FQI : Õ
( s̃

n
(
1 +

log d√
T
))
, LASSO-FQI : Õ

( s̄ log d
n

)
, s̄ =

∑
t st

T

same s̄, different s̃
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( s̄ log d
n

)
, s̄ =

∑
t st

T

same s̄, different s̃

Sparse Multi-Task Reinforcement Learning SequeL - 26/55



Learning Sparse Representations

Talk Overview

I Reinforcement Learning → Linear Fitted Q Iteration (LinFQI)
I Sparse Markov Decision Process → LASSO FQI
I Multi-Task (Group) Sparsity → Group-LASSO FQI
I Learning Sparse Representations → Feature Learning FQI
I Experiments
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Learning Sparse Representations

Sparsity and Representation

Properties and change of feature representation:

√
Bounded

√
Smooth

√
Measurable

X Sparse

Idea: learn a series of transformations to recover sparsity.
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Learning Sparse Representations

Deep Sparse Fitted Value Iteration

Deep Learning is recurrent in Machine Learning.
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Learning Sparse Representations

Multi-Task Feature Learning

Deep Learning: extremely powerful

So powerful one layer is enough
even a linear layer
Single Level Deep Linear Feature Learning: can a linear
transformation do something useful?

(Ûk
a , Âk

a ) = arg min
Ua∈Od

min
Aa∈Rd×T

T∑
t=1
||Z k

a,t − ΦtUa[Aa]t ||2 + λ ‖A‖2,1 .
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a ) = arg min
Ua∈Od

min
Aa∈Rd×T

T∑
t=1
||Z k

a,t − ΦtUa[Aa]t ||2 + λ ‖A‖2,1 .

Sparse Multi-Task Reinforcement Learning SequeL - 30/55



Learning Sparse Representations

Multi-Task Feature Learning

Deep Learning: extremely powerful
So powerful one layer is enough
even a linear layer
Single Level Deep Linear Feature Learning: can a linear
transformation do something useful?

(Ûk
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Learning Sparse Representations

Multi-Task Feature Learning: an interpretation

Proposition

Given A,W ∈ Rd×T , U ∈ Od , the following equality holds

min
A,U

T∑
t=1
||Z k

a,t − ΦtUa[Aa]t ||2 + λ ‖A‖2,1

= min
W

T∑
t=1
||Z k

a,t − Φt [Wa]t ||2 + λ‖W ‖1.

The relationship between the optimal solutions is W ∗ = UA∗.
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Learning Sparse Representations

Low Rank and Trace Norm

‖W ‖1 =
∑

σ(W )
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Learning Sparse Representations

Low Rank and Task correlation
Dictionary of base tasks

0 0.2 0.4 0.6 0.8 1
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Learning Sparse Representations

Low Rank Assumption

Assumption

There exists an orthogonal matrix U ∈ Od such that the weight matrix
A∗ obtained as a transformation of W ∗ (i.e., A∗ = U−1W ∗) is jointly
sparse, i.e., has a set of “useful” features J(A∗) = ∪T

t=1J([A∗]t) with
|J(A∗)| = s∗ � d.
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Learning Sparse Representations

FL-FQI, Theoretical Guarantee

Theorem (FL–FQI)

Let T > O(log n). If FL–FQI (Algorithm ?? with Eq. ??) is run jointly
on all T tasks for K iterations with a regularizer

λ ≥ 2LQmax

√
d + T

n ,

then there exist constants c1 and c2 such that with probability at least
(1− c1 exp{−c2(d + T )})K , the performance loss is bounded as

1
T

T∑
t=1

∥∥∥Q∗t − QπK
t

t

∥∥∥2

2,ρ

≤ O
(

1
(1− γ)4

[
Q2

maxL4

κ2
s∗
n

(
1 +

d
T

)
+ γK Q2

max

])
.
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Learning Sparse Representations

Different sparsities, a comparison

LASSO-FQI: Õ
(

s̄ log(d)

n

)
;

GL–FQI: Õ
(

s̃
n

(
1 +

log(d)√
T

))
;

FL-FQI: Õ
(

s∗
n

(
1 +

d
T

))
,
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Experiments

Talk Overview

I Reinforcement Learning → Linear Fitted Q Iteration (LinFQI)
I Sparse Markov Decision Process → LASSO FQI
I Multi-Task (Group) Sparsity → Group-LASSO FQI
I Learning Sparse Representations → Feature Learning FQI
I Experiments
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Experiments

Experiments: Chain Walk
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Experiments

Experiments: Chain Walk
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Experiments

Experiments: BlackJack

Rules:
♣ Aces = {1, 11}, 2, . . . , 9 = [2, . . . , 9], 10,J,Q,K = 10.
♦ Player can ask another card “HIT” or “STAY”
♥ If the player goes over 21, he loses, end of game
♠ Dealer has to “HIT” until a threshold, then “STAY”
♣ If the dealer goes over 21, player wins.
♦ If the player has a strictly higher score than the dealer, player wins

How to make multiple tasks:
♥ Dealer threshold {15, 16, 17, 18}
♠ Number of decks {2, 4, 6, 8}
♣ If the dealer “HIT” when has a soft ace (A=11)

Two variants: Player can “DOUBLE” his bet after seeing the first two
card, he receives a card and “STAY”
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Experiments

Experiments: BlackJack
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Experiments

Experiments: BlackJack
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Conclusion

Conclusion

Multi-Task and Sparsity formalized for MDPs

Theoretical guarantees for new algorithms

Experimental validation shows assumptions are reasonable
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Conclusion

Future Works

Weird regression techniques: have we tried everything?
I More sparse: Sparse Group LASSO, Graph LASSO
I More Learning: Inter-Task Feature Learning

Still, we need gurantees on the reconstruction.

Negative transfer: can we find a method that improves every single
task?
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Conclusion

Thanks for the attention

Questions?
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Conclusion
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Conclusion

Restricted Eigenvalues Assumption

Assumption (Restricted Eigenvalues)

For any s ∈ [d ], there exists κ(s) ∈ R+ such that:

min
{
‖Φ∆‖2√
n ‖∆J‖2

: |J | ≤ s,∆ ∈ Rd\{0}, ‖∆Jc‖1 ≤ 3 ‖∆J‖1

}
≥ κ(s),

(2)

where n is the number of samples, and Jc denotes the complement of the
set of indices J.
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Conclusion

Multi-Task Restricted Eigenvalues

Assumption (Multi-Task Restricted Eigenvalues)

For any s ∈ [d ], there exists κ(s) ∈ R+ such that:

min
{
‖Φ Vec(∆)‖2√
n ‖Vec(∆J )‖2

: |J | ≤ s,∆ ∈ Rd×T\{0}, ‖∆Jc‖2,1 ≤ 3 ‖∆J‖2,1

}
≥ κ(s),

(3)

where n is the number of samples, Jc denotes the complement of the set
of indices J, and Φ indicates the block diagonal matrix composed by the
union of the T sample matrices Φt .
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Conclusion

Restricted Strong Convexity

Assumption (Restricted Strong Convexity)

Under Assumption 4, let W ∗ = UDV T be a singular value decomposition
of the optimal matrix W ∗ of rank r , and U r ,V r the submatrices
associated with the top r singular values. Define
B = {∆ ∈ Rd×T : Row(∆)⊥U r and Col(∆)⊥V r}, and the projection
operator onto this set ΠB. There exists a positive constant κ such that

min
{
‖Φ Vec(∆)‖2

2
2nT‖Vec(∆)‖2

2
: ∆ ∈ Rd×T , ‖ΠB(∆)‖1 ≤ 3‖∆− ΠB(∆)‖1

}
≥ κ

(4)
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Conclusion

Regression with unbiased samples

zk
i,a = r k

i,a + γmax
a′

Q̂k−1(yk
i,a, a′) = r k

i,a + γmax
a′

φ(yk
i,a)Twk−1

a′,t (5)

zk
i,a = T Q̂k−1(xi , a) + ηk

i,a, (6)

ηk
i,a is random due to the choice of samples, but is 0 mean and bounded

by [−Qmax,Qmax] (truncation).
Resampling yk

i,a, r k
i,a keeps the iterations i.i.d.
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Conclusion

W K
a ∈ Rd×T ,

Φ = [φ(x1)T; · · · ;φ(xnx )T] ∈ Rnx×d ,

Φ′ka = [φ(yk
i,a)T; · · · ;φ(yk

nx ,a)T] ∈ Rnx×d ,

Rk
a = [r k

1,a, . . . , r k
nx ,a] ∈ Rnx ,

and the vector Z k
a = [zk

1,a, . . . , zk
nx ,a] ∈ Rnx obtained as

Z k
a = Rk

a + γmax
a′

(Φ′ka′wk−1
a′ ).
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Conclusion

LASSO-FQI, Under the hood

|Q∗t − QπK
t

t | ≤
2γ(1− γK+1)

(1− γ)2

[K−1∑
k=0

αkAtk |εk
t |+ αK AtK |Q∗t − Q0

t |

]
,

|εk
t (y , b)| = |fwk

t
(y , b)− fŵk

t
(y , b)| = |φ(y)Twk

b,t − φ(y)Tŵk
b,t |

≤ ||φ(y)||2||wk
b,t − ŵk

b,t ||2 ≤ L||wk
b,t − ŵk

b,t ||2,

∥∥wk
a,t − ŵk

a,t
∥∥2

2 ≤
256δ2Q2

max
κ4(sk

t )

sk
t log d

n . (7)
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Conclusion

GL-FQI, Under the hood

Proposition ([?])

For any action a ∈ A and any iteration k < K, let W k
a be sparse such

that |J(W k
a )| ≤ s̃k and satisfy Assumption 6 with κk

t = κ(2sk
t ). Then if

Eq. ?? is run with a regularizer

λ =
LQmax√

nT

(
1 +

(log d)
3
2+δ

√
T

) 1
2

,

for any numerical constant δ > 0, then with probability at least
1− log(d)−δ, the function fŵk

a,t
computed in Eq. ?? has an error bounded

as

1
T

T∑
t=1

∥∥∥[W k
a ]t − [Ŵ k

a ]t

∥∥∥2

2
=

1
T

∥∥∥W k − Ŵ k
∥∥∥2

2
≤ 160L2Q2

max
κ4

Td (2s̃)

s̃
n

(
1 +

(log d)3/2+δ
√

T

)
.

(8)
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Conclusion

Previous approaches

Lasso-TD (Single-Task)

‖V ∗ − V πK ‖ρ ≤
2

(1− γ)2[
γK/2 ‖V ∗ − V0‖∞ + C

[
c1λ max

k=1,...,K
‖T ∗k Q0‖2

K +
c2V 4

max
nλd/l +

c3 log(1/δ)

nV 4
max

]2]
.

Kernel-FQI (Non-Parametric, Non-sparse)

‖V π − Φŵ‖n ≤

1
1− γ inf

u

[
‖V π − Φu‖n +

12γVmax L
√

s
ψ

(√
2 log(2d/δ)

n +
1

2n

)]
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