Variance reduction by conditioning in the pricing problem where the underlying is a continuous-time finite state Markov process

Wolfgang Runggaldier, University of Padova

Workshop "Sequential Monte Carlo methods and Efficient simulation in Finance", Paris, October 2012

1based on joint work with J.M. Montes and V. Prezioso
Asset price evolutions are generally given by a geometric Brownian motion or an exponential Levy.

The latter includes the case of a continuous time Markov chain (CTMC), but for this case a direct approach is computationally more convenient.
A full theory of financial markets based on CTMC (prices, rates or, more generally, factors) is given in Norberg (2003).

For an underlying $X_t \in \{x^1, \cdots, x^N\}$ with a time homogeneous transition intensity matrix Q and a simple claim of the form $H(X_T) = H_0 := [H(x^1), \cdots, H(x^N)]'$, the price $\Pi_i(t)$ at time t when $X_t = x^i$ is given by

$$\Pi_i(t) = [\exp\{(Q - R)(T - t)\} H_0]_i$$

where $[z]_i$ denotes the i–th component of the vector z and R is the diagonal matrix with elements r^i ($i = 1, \cdots, N$) having assumed that $r_t = r^i$ if $X_t = x^i$.
The previous explicit formula may not be of much use if:

- The evolution of the underlying is not time homogeneous;
- the underlying is multivariate;
- the derivative is path dependent.
In all these more involved cases a Monte Carlo (MC) simulation is always possible:

- For the CTMC X_t simulate the successive jump times τ_n and the values X_n of X_t at τ_n.

- For an intensity matrix $Q = \{q_{i,j}\}$, putting $q_i = \sum_{i \neq j} q_{i,j}$ one has that, if $X_{\tau_n} = x^i$, the inter-jump times $\tau_{n+1} - \tau_n$ are exponentially distributed with parameter q_i and the probability for $X_{\tau_{n+1}} = j \neq i$ is $p_{i,j} = \frac{q_{i,j}}{q_i}$.
Show that, conditionally on the number $\nu_{t,T}$ of jumps of X_t in a given interval $[t, T]$, one can obtain an \textit{explicitly computable expression} also for \textit{exotic derivatives} and when the underlying is \textit{multivariate} and/or has a time \textit{non homogeneous} evolution.
Since

\[\Pi_i(t) = E^{\tilde{P}} \left\{ e^{-\int_t^T r_s ds} H(X_T) \mid X_t = i \right\} \]

\[= E^{\tilde{P}} \left\{ E^{\tilde{P}} \left\{ e^{-\int_t^T r_s ds} H(X_T) \mid \nu_{t,T}, X_t = i \right\} \mid X_t = i \right\} \]

where \(\tilde{P} \) is a (calibrated) martingale measure, then, since the inner expression allows for an explicit computation, one needs to simulate only the r.v. \(\nu_{t,T} \).

With respect to a full MC this allows to reduce the variance (variance reduction by conditioning).

→ Shall show how to compute the inner expression in various more general cases
For convenience of exposition we first present the procedure for the case of a simple claim on a time homogeneous underlying X_t given by a CTMC.

Successively we show the extensions/changes for the more general case.

Finally we present numerical results and comparisons.
The model

The model (simple case first)

\(X_t \) a \textbf{CTMC} under a martingale measure \(\tilde{P} \)

- state space \(E = \{x^1, x^2, \ldots, x^N\}, \ N \in \mathbb{N} \) \textit{(identify } x^i \textit{ with } i \text{)}
- \(Q = (q_{i,j})_{1 \leq i,j \leq N} \) the \textit{transition intensity matrix}, homogeneous w.r. to time
- \(q_i := \sum_{j=1 \atop j \neq i}^{N} q_{i,j}, \ i = 1, \ldots, N \) the \textit{intensities} associated with the states \(x^i \).
The model

- \(\tau_n \): random time at which the \(n^{th} \) jump occurs,
- \(X_n := X_{\tau_n} \) and \(X_s \equiv X_n \) for \(s \in [\tau_n, \tau_{n+1}) \)
- \(r_{\tau_n} = r^i \) if \(X_{\tau_n} = x^i \) \((i = 1, \ldots, N)\), i.e. \(r^i = r(x^i) \)
 (write \(r_n := r_{\tau_n}; \ r_s = r_n \) for \(s \in [\tau_n, \tau_{n+1}) \))
- \((\tau_{n+1} - \tau_n \mid X_{\tau_n} = x^i) \sim \exp(q_i) \)

- \(\nu_t := \sup\{n \mid \tau_n \leq t\} \) \((\#\text{of jumps up to time } t)\)

\[
\begin{array}{ccccccc}
& & t & & & & T \\
\tau_{\nu_t} & | & \tau_{\nu_t+1} & | & \tau_{\nu_T} & | & \tau_{\nu_T+1}
\end{array}
\]
Pricing of a derivative

\[\Pi(t) = E^{\tilde{P}} \left\{ e^{- \int_t^T r_s ds} H(X_T) \mid \mathcal{F}_t \right\} \]

\[= \sum_{i=1}^N E^{\tilde{P}} \left\{ e^{- \int_t^T r_s ds} H(X_T) \mid X_t = i \right\} \mathbf{1}_{\{X_t=i\}} \]

\[\downarrow \]

\[\Pi_i(t) = E^{\tilde{P}} \left\{ \exp[r(t - \tau_{\nu t})] \exp \left[- \sum_{i=\nu t}^{\nu T-1} r_i(\tau_{i+1} - \tau_i) - r_T(T - \tau_{\nu T}) \right] H(X_T) \mid X_t = i \right\} \]

\[= \exp[r(t - \tau_{\nu t})] E^{\tilde{P}} \left\{ \exp \left[- \sum_{i=\nu t}^{\nu T-1} r_i(\tau_{i+1} - \tau_i) - r_T(T - \tau_{\nu T}) \right] H(X_T) \mid X_t = i \right\} \]

\[\rightarrow \text{Not restrictive to assume } t = \tau_{\nu t} \]
Prototype product

Prototype product (analogue to Arrow-Debreu prices)

- Its price at time $t < T$ is

$$V_{H_0,t,T}(X_t) = \mathbb{E}^{\tilde{P}} \left\{ \exp \left[- \sum_{i=\nu_t}^{\nu_T-1} r_i (\tau_{i+1} - \tau_i) - r_{\nu_T} (T - \tau_{\nu_T}) \right] H_0(X_T) \mid X_t \right\}$$

with

$$H_0(\cdot) = \sum_{i=1}^{N} w_i^0 1_{\{\cdot = x^i\}}, \quad x^i \in E, \quad w_i^0 \in \mathbb{R}$$

→ In the calculations to follow we shall drop the last factor, i.e. compute an upper bound (in general it is small and can be included in the simulations).
For given $n \in \mathbb{N}$ consider the recursions
\[
\begin{align*}
H_0(X_{\nu_t+n}) & \text{ given by the } \textbf{Prototype payoff} \quad (H_0(\cdot) = \sum_{i=1}^{N} w_i^0 1_{\{\cdot = x^i\}}) \\
H_h(X_{\nu_t+n-h}) & = \mathbb{E}_{\tilde{P}} \left\{ e^{-r_{\nu_t+n-h}(\tau_{\nu_t+n-h+1}-\tau_{\nu_t+n-h})} H_{n-1}(X_{\nu_t+n-h+1}) \mid X_{\nu_t+n-h} \right\} \\
& \forall h = 1, \ldots, n
\end{align*}
\]

Proposition: The price of the Prototype product can be computed as
\[
V_{H_0,t,T}(X_t) = \mathbb{E}_{\tilde{P}} \left\{ H_{\nu_t,T}(X_t) \mid X_t \right\} = \sum_{n=0}^{+\infty} H_n(X_t) \tilde{P}(\nu_{t,T} = n \mid X_t)
\]
where
- $\nu_{t,T} = \nu_T - \nu_t$ (number of jumps between t and T)
- $H_n(X_t) = H_n(X_{\nu_t})$ is as obtained recursively above.
Setting \(\underline{x} = [x^1, \ldots, x^N]' \) we have the representations

\[
H_0(\underline{x}) := [w_1^0, \ldots, w_N^0]' \quad \rightarrow \quad H_n(\underline{x}) := [w_1^n, \ldots, w_N^n]'
\]

Putting, furthermore,

\[
\tilde{Q} = (\tilde{q}_{i,j})_{1 \leq i, j \leq N} \quad \text{with} \quad \tilde{q}_{i,j} = \begin{cases} \frac{q_{i,j}}{r^i + q_i} & i \neq j \\ 0 & i = j \end{cases}
\]

one obtains, at the generic \(\tau_n \), the following one-step evolution of \(H_n \),

\[
H_n(\underline{x}) = \tilde{Q} H_{n-1}(\underline{x}),
\]

\(\rightarrow \) It also follows that \(H_n(\underline{x}) = \tilde{Q}^n H_0(\underline{x}) \) by putting \(\tilde{Q}^0 = I_N \).
The actual derivative price is then given by

\[\Pi_i(t) = V_{H_0,t,T}(X_t)|_{X_t=x^i} \]

\[= \sum_{n=0}^{\infty} \left[\tilde{Q}^n H_0(x) \right]_i \tilde{P} \left(\nu_{t,T} = n \mid X_t = x^i \right) \]

\[= \mathbb{E} \tilde{P} \left\{ \left[Q^{\nu_{t,T},H_0}(x) \right]_i \mid X_t = x^i \right\} \]

([z]_i is the i-th component of the vector z).

From here two possibilities for actual computation:

- **Explicit numerical computation** (middle term)
- **MC simulation by simulating just \(\nu_{t,T} \)** (rightmost term), i.e. **MC simulation by conditioning.**
CIR AFFINE TERM
STRUCTURE MODEL
\[
\begin{align*}
 dr(t) &= \theta(k - r(t)) \, dt + \sigma \sqrt{r(t)} \, dW_t \\
 r(0) &= \tilde{r}
\end{align*}
\]

RECOMBINING BINOMIAL TREE (RBT)

CONTINUOUS-TIME AFFINE DIFFUSION MODEL (closed formula) (CF)

KUSHNER’S APPROXIMATION (K-A)

PROTOTYPE PRODUCT METHOD (PPM)
 prototype product

Bond prices with **CF, RBT, PPM(MC1)+K-A and PPM(MC2)+K-A**

(*stepsMC=stepsRBT=500*)

<table>
<thead>
<tr>
<th>T(years)</th>
<th>0.5</th>
<th>0.5</th>
<th>0.5</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{r}(=r^i)$</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>k</td>
<td>0.8</td>
<td>0.5</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>θ</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>σ</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CF</td>
<td>0.995014</td>
<td>0.990051</td>
<td>0.985116</td>
<td>0.990052</td>
</tr>
<tr>
<td>RBT</td>
<td>0.995042</td>
<td>0.99007</td>
<td>0.985146</td>
<td>0.990072</td>
</tr>
<tr>
<td>PPM(MC1)+K-A</td>
<td>0.995024</td>
<td>0.990143</td>
<td>0.985128</td>
<td>0.990059</td>
</tr>
<tr>
<td>PPM(MC2)+K-A</td>
<td>0.994988</td>
<td>0.989963</td>
<td>0.984903</td>
<td>0.990049</td>
</tr>
</tbody>
</table>
Prototype product

Bond prices with **CF**, **RBT**, **PPM(MC1)+K-A** and **PPM(EF)+K-A**
(\(stepsMC=stepsRBT=500\))

<table>
<thead>
<tr>
<th></th>
<th>(T) (years)</th>
<th>(\tilde{r} (= r^i))</th>
<th>(k)</th>
<th>(\theta)</th>
<th>(\sigma)</th>
<th>CF</th>
<th>RBT</th>
<th>PPM(MC1)+K-A</th>
<th>PPM(EF)+K-A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.95124806</td>
<td>0.951343</td>
<td>0.951022</td>
<td>0.951324</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.05</td>
<td>0.95123369</td>
<td>0.951329</td>
<td>0.950859</td>
<td>0.951723</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.90497717</td>
<td>0.905157</td>
<td>0.905229</td>
<td>0.905012</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.86113958</td>
<td>0.861394</td>
<td>0.861104</td>
<td>0.861756</td>
</tr>
</tbody>
</table>
Extensions

- Time inhomogeneous case
 - Knock-in/knock-out options
 (may include credit risky derivatives)

- X_t multivariate
 - Path dependent derivatives/claims
 - lookback options
 - Asian options
Consider e.g. \((X_t, Y_t)\) with

\[
X_t \in \{x^1, \ldots, x^N\} \quad \text{and} \quad Y_t \in \{y^1, \ldots, y^M\}
\]

and put

\[
r_{\tau_n} = r^{i,h} \quad \text{if} \quad (X_{\tau_n}, Y_{\tau_n}) = (x^i, y^h)
\]

\rightarrow (in the more general time-inhomogeneous case)

\[
Q(n) = \left\{ q^h_{(i,h),(j,k)} \right\} \begin{bmatrix}
i, j & = 1, \ldots, N \\
h, k & = 1, \ldots, M
\end{bmatrix}
\]
With \(z = (x, y)' \) where \(x = (x^1, \cdots, x^N), \ y = (y^1, \cdots, y^M) \) and

\[
H_0(z) = H_0(x, y) = [w_1, \cdots, w_{N\cdot M}]'
\]

also

\[
H_n(z) = \tilde{Q}(n)H_{n-1}(z)
\]

where

\[
\tilde{Q}(n) = \left\{ \frac{q^n_{(i,h),(j,k)}}{r^{i,h} + q^n_{i,j}} \right\}
\]

\[
\begin{bmatrix}
 i, j & = 1, \cdots, N \\
 h, k & = 1, \cdots, M
\end{bmatrix}
\]

with \(q^n_{i,j} = \sum_{j \neq i, k \neq h} q^n_{(i,h),(j,k)} \).
Lookback call options

- For an underlying CTMC X_t consider a claim of the form

$$ H_T = \left(X_T - g(X^T_0) \right)^+ $$

- Put $Y_t := g(X^t_0)$ assuming $g(\cdot)$ to take a given finite number of values.

 - For $t \leq T$, the process Y_t then takes a finite number of values (w.l.o.f g. we can identify them with $h = 1, \ldots, M$)
 - it jumps only at jump times of X_t.

- Assume, furthermore,

$$ g(X^{\tau_n}_0) = G(X_{\tau_n}, g(X^{\tau_{n-1}}_0)) \quad \text{for some measurable } G(\cdot, \cdot) $$

 - (X_t, Y_t) is a CTMC and $H_T = (X_T - Y_T)^+$.
 - Need only to derive the Q–matrix for (X_t, Y_t).
Recall that, if for a scalar CTMC X_t the Q–matrix is $q = \{q_{i,j}\}$, then the transition probabilities of the embedded chain X_n are

$$p_{i,j} = \frac{q_{i,j}}{q_i} \quad \text{with} \quad q_i = \sum_{j \neq i} q_{i,j} \quad (q_{i,i} = p_{i,i} = 0)$$

Viceversa, given $p_{i,j}$, there are various possible $q_{i,j}$ that lead to the same $p_{i,j}$. They differ by the choice of q_i since we have $q_{i,j} = q_i p_{i,j}$.
Since in our case Y_t can jump only when X_t does, we may put

$$q_{(i,h)} \quad (= \sum_{j,k} q_{(i,h),(j,k)}) = q_i \quad \forall h = 1, \ldots, M$$

where q_i is the intensity of leaving state i for the chain X_t. (At a generic τ_n the process X_t actually leaves the current state, while Y_t may jump to itself)

\rightarrow Start thus from constructing $p_{(i,h),(j,k)}$.
We have (recall $X_n = X_{\tau_n}$, $Y_n = Y_{\tau_n}$)

$$p(i,h),(j,k) := P\{X_{n+1} = j, Y_{n+1} = k \mid X_n = i, Y_n = h\}$$

$$= P\{X_{n+1} = j, G(X_{n+1}, Y_n) = k \mid X_n = i, Y_n = h\}$$

$$= P\{X_{n+1} = j \mid X_n = i\} 1\{G(j,h)=k\} = p_{i,j} 1\{G(j,h)=k\}$$

$$\rightarrow q(i,h),(j,k) = p(i,h),(j,k) \cdot q_i = q_{i,j} 1\{G(j,h)=k\}$$
Example

Let \(Y_t = g(X_t) := \min_{s \leq t} X_s \)

(Yₜ has the same finite number of possible values as Xₜ)

\[
G(X_{\tau_n}, g(X_{0}^{\tau_n-1})) = \min \left[X_{\tau_n}, \min_{s \leq \tau_n-1} X_s \right]
\]

In this case (states in increasing order of magnitude)

\[
p_{(i,h),(j,k)} = \begin{cases}
 p_{ik} & \text{if } k < h \\
 p_{ij} & \text{if } k = h, j \geq k \\
 0 & \text{if } k > h
\end{cases}
\]

and, consequently,

\[
q_{(i,h),(j,k)} = p_{(i,h),(j,k)} \cdot q_i = \begin{cases}
 q_{ik} & \text{if } k < h \\
 q_{ij} & \text{if } k = h, j \geq k \\
 0 & \text{if } k < h
\end{cases}
\]
Asian options

For Asian options consider the two processes

\[
\begin{align*}
 & X_t \quad \text{a CTMC, and} \\
 & Y_t := \int_0^t X_s ds = \sum_{\tau_n \leq t} X_{\tau_{n-1}}(\tau_n - \tau_{n-1}) + X_{\tau_n}(t - \tau_n)
\end{align*}
\]

The claim of a **standard Asian option** can then be represented as (assume \(T = \tau_{\nu_T} \))

\[
H_T = \left(\frac{1}{T - t} \int_t^T X_s ds - K \right)^+ = \left(\frac{1}{T - t} (Y_T - Y_t) - K \right)^+
\]
Assuming that *(increasing order of magnitude)*

\[X_t \in \{ x^1, \cdots, x^N \} , \quad \text{(denote them by} \ i = 1, \cdots, N) \]

the range for the values of \(Y_t \) is

\[
\left[0, T \max_{t \leq T} X_t \right] = \left[0, T x^N \right]
\]

Partition now the interval \([0, T x^N]\) into intervals of equal length \(\Delta \) assuming that \(T x^N = K \Delta \) for a suitable positive integer \(K \). The generic \(k-\)th interval of the partition is then

\[
A^k = [a^{k-1}, a^k) = [(k - 1) \Delta, k \Delta) , \quad k = 1, \cdots, K
\]
Denote by y^k the midpoint of A^k (other choices are possible) and let $Y_t = y^k$ if $Y_t \in A^k$ (in what follows denote this value simply by k).

At the generic jump time $\tau_n < T$ of the chain X_t we then have

$$Y_{n+1} \in A^k \iff Y_n + X_n(\tau_{n+1} - \tau_n) \in A^k$$

$$\iff \tau_{n+1} - \tau_n \in \left[\frac{a^{(k-1)} - Y_n}{X_n}, \frac{a^k - Y_n}{X_n} \right]$$

$$= \left[\frac{(k-1) \Delta - Y_n}{X_n}, \frac{k \Delta - Y_n}{X_n} \right]$$
For $\tau_n \leq T$ it turns out that

$$P\{X_{n+1} = j, Y_{n+1} = k \mid X_n = i, Y_n = h\}$$

$$= P\{Y_{n+1} = y^k \mid X_{n+1} = x^j, X_n = x^i, Y_n = y^h\} p_{i,j}$$

$$= P\{Y_{n+1} \in A^k \mid X_n = x^i, Y_n = y^h\} p_{i,j}$$

$$= P \left\{ \frac{(k-1)\Delta - y^h}{x^i} \leq \tau_{n+1} - \tau_n < \frac{k\Delta - y^h}{x^i} \right\} p_{i,j}$$

$$= e^{-q_i \frac{(k-1)\Delta - y^h}{x^i}} \left[1 - e^{-q_i \frac{\Delta}{x^i}} \right] \frac{q_{ij}}{q_i}$$

It follows that

$$q_{(i,h),(j,k)} = q_{ij} e^{-q_i \frac{(k-1)\Delta - y^h}{x^i}} \left[1 - e^{-q_i \frac{\Delta}{x^i}} \right]$$
Comparing Plain MC and MC + Variance Reduction for Lookback Call pricing.

\(E = [0.8, 0.9, 1.0, 1.1, 1.2], \ x_0 = 3, \ T = 2 \text{ years} \)

- **Q-matrix for Test 1**

\[
Q = \begin{bmatrix}
-1200 & 300 & 300 & 300 & 300 \\
0.6 & -2.4 & 0.6 & 0.6 & 0.6 \\
6 & 6 & -24.0 & 6 & 6 \\
21 & 21 & 21 & -84 & 21 \\
400 & 400 & 400 & 400 & -1600
\end{bmatrix}
\]

- **Q-matrix for Test 2**

\[
Q = \begin{bmatrix}
-0.12 & 0.03 & 0.03 & 0.03 & 0.03 \\
0.3 & -1.2 & 0.3 & 0.3 & 0.3 \\
0.6 & 0.6 & -2.3 & 0.5 & 0.6 \\
0.9 & 0.8 & 1 & -3.7 & 1 \\
1.1 & 1 & 0.9 & 0.8 & -3.8
\end{bmatrix}
\]
Running Mean of Price vs. Iteration Number (Test 1)

(Red) Plain MC; (Blue) MC+Variance Reduction

Diagram Width = 3 empirical standard deviations
Running Mean of Price vs. Iteration Number (Test 2)

(Red) Plain MC; (Blue) MC+Variance Reduction

Diagram Width = 3 empirical standard deviations
(Left) Empirical Distribution of Jump Counts for Test 1 samples
(Right) Empirical Distribution of Jump Counts for Test 2 samples
Price vs. Jump Count:
Test 1 samples (Left); Test 2 samples (Right)
red - sample price; green - theoretical price
Weighted Price vs. Jump Count:
Test 1 samples (Left); Test 2 samples (Right)

red - sample price; green - theoretical price
We have considered a specific market model where the underlying evolves as a continuous time finite state Markov chain (CTMC).

For those cases where an explicit analytic pricing formula is not available (i.e. most of the cases) we have presented a hybrid MC simulation method which, with respect to a plain MC allows to:

i) reduce the variance

ii) obtain more precise results

We have presented numerical results and comparisons for the case of lookback call options.
Thank you for your attention