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Abstract. Finding understandable and meaningful feature representa-
tion of multivariate time series (MTS) is a difficult task, since informa-
tion is entangled both in temporal and spatial dimensions. In particular,
MTS can be seen as the observation of simultaneous causal interactions
between dynamical variables. Standard way to model these interactions is
the vector linear autoregression (VAR). The parameters of VAR models
can be used as MTS feature representation. Yet, VAR cannot general-
ize on new samples, hence independent VAR models must be trained to
represent different MTS. In this paper, we propose to use the inference
capacity of neural networks to overpass this limit. We propose to asso-
ciate a relational neural network to a VAR generative model to form an
encoder-decoder of MTS. The model is denoted Seq2VAR for Sequence-
to-VAR. We use recent advances in relational neural network to build
our MTS encoder by explicitly modeling interactions between variables
of MTS samples. We also propose to leverage reparametrization tricks for
binomial sampling in neural networks in order to build a sparse version
of Seq2VAR and find back the notion of Granger causality defined in
sparse VAR models. We illustrate the interest of our approach through
experiments on synthetic datasets.

Keywords: Multivariate time series, Vector linear autoregression, Re-
lational neural networks, Granger causality

1 Introduction

Nowadays, more and more data come as multivariate time series (MTS) and
finding understandable and meaningful feature representation of observed MTS
samples is needed for information mining and downstream machine learning
tasks. Among standard MTS representation and modeling [3], vector linear auto-
regression (VAR) [20] captures dynamical and causal information contained in
the data. Yet, VAR does not have representation inference mechanism: one model
fits all samples. Consequently, to represent different MTS, independent VAR
models must be trained. This operation becomes very expensive when VAR pa-
rameters are constrained, for example with sparsity [1] or symmetry, since there
are no closed-form nor simple regularization to solve it. In contrast, efficient and



powerful inference is a key advantage of neural networks based representation
learning.

Many recent works on neural generative models have been used for repre-
sentation learning, with particular attention on variational autoencoders (VAE)
[7,21]. The VAE, as a latent variable model, finds the joint distribution between
observed data and a set of latent variables. With appropriate assumptions on
the variational distribution and regularization, one hopes to uncover and dis-
entangle independent causal sources of variations in the data, with a certain
form of interpretability and a good representation power. However, finding such
disentangled representation cannot be successfully done without an appropriate
inductive bias [11].

In this context, a specialized VAE architecture, called neural relational in-
ference (NRI), has recently been developed for interaction inference in MTS [8].
NRI uses the concept of relational learning [17] to explicitly capture the vari-
able interactions that explain the data dynamics. The inferred binary interaction
graph is used as a variable selection preceding a nonlinear auto-regressive de-
coding scheme. The objective, with an appropriate setting, is both to help the
generative decoder with sparsity and to uncover the real interactions in an unsu-
pervised manner. Nevertheless, this approach suffers from its powerful decoder,
that does not necessarily need meaningful latent representation to recover data.
The general problem of information vanishing in the presence of a too expressive
decoder is classical [13,19]: in extreme cases, the inference part becomes mean-
ingless, transforming the VAE into a standard generative auto-regressive model
[9]. In our experiments, we show that in the NRI case, this problem manifests
when the interactions to discover are heterogeneous, i.e., the latent interaction
graph is weighted. As a result, the unsupervised interaction discovery does not
correspond anymore to true physical reality while the model still decodes prop-
erly. Finally, by construction, NRI only covers information contained in first
previous time step for prediction part. Therefore, it needs lagged information as
explicit input, which mechanically increases the number of parameters to train.

In this paper, we propose an alternative, simple MTS representation learn-
ing framework that exploits both VAR generative models and neural network
inference capacities. As in [8], we assume that MTS are the observation of a
system that can be represented with causal information. Following the classical
framework of encoder-decoder, we build the Seq2VAR model, whose architec-
ture presents three main advantages. First, we prevent information vanishing by
representing our MTS samples as the parameters of a VAR instead of the input
of a neural auto-regressive decoder. Second, we leverage recent advances in neu-
ral networks binary sampling [6,10,12] to build explicit sparse representations;
this way, non-zero entries of the inferred representation can be interpreted as
Granger causalities. Third, we help our model generalizing over the notion of
interactions by using a relational inference neural network (RINN) [8] as MTS
encoder. These three properties make Seq2VAR able to find meaningful MTS
representations.



After presenting Seq2VAR model and assumptions, we perform some experi-
ments to assess its different advantages. We then discuss (1) the interest of using
RINN encoder instead of recurrent neural networks (RNN), that are explicitly
made for time series modeling, and (2) the relations and differences between
Seq2VAR and the NRI model.

2 Model description

2.1 Notations and assumptions

Let X ⊆ Rd×T be some finite set of n d-dimensional MTS defined over the time
range t = 1, . . . , T . We assume that each MTS X(s), s = 1, . . . , n is generated by
some dynamical system. Specifically, we assume that each MTS follows aK-order
linear auto-regressive model, i.e., there exists some tensor A(s) ∈ RK×d×d such
that the MTS X(s) = (X

(s)
1 , . . . , X

(s)
T ) ∈ X satisfies X(s)

t =
∑K
k=1A

(s)
k X

(s)
t−k for

all t = K +1, . . . , T . Both the tensor A(s) and the initial values (X(s)
1 , . . . , X

(s)
K )

are unknown and can change from one sample to the other. Some additive ob-
servation noise can be added to the samples. In this paper, we assume that the
set of tensors {A(s), s = 1, . . . , n} belongs to A, the set of acceptable dynamical
systems. This set A is also unknown.

2.2 General problem setup

We place ourselves in the encoder-decoder framework. We use a relational infer-
ence neural network (RINN) as MTS encoder [8], which takes a sample X(s) as
input and outputs a tensor Â(s). The decoder is a VAR model parametrized by
Â(s). This tensor is therefore the latent representation of the MTS, with respect
to the linear decoding assumption. We denote the encoder by Fφ, where φ are a
parameter in some finite-dimensional space. Observe that Fφ is a mapping from
Rd×T to RK×d×d. The parameter φ is optimized for the objective function:
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(
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(s))
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Here Ω is a regularizing penalty function and λ a positive coefficient of penaliza-
tion. These can be used to control the sparsity of the output (number of non-zero
entries of the tensor Fφ(·)). We call our model Seq2VAR (sequence-to-VAR).

2.3 Sparsity in Seq2VAR

Seq2VAR offers the possibility to modify the encoding posterior distribution and
the regularization depending on the task of interest. In particular, the output
of the encoder Fφ may be made sparse [1,4,22]. For such constraint, we use
the recent advances in sparse representation learning based on derivations of
Gumbel-Softmax trick [5,14].



In theory, true sparse learning rely on L0 regularization. In practice L0 norm
cannot be directly used as penalty in the objective function since it is non-
differentiable. General approaches uses Ridge, LASSO or group-LASSO regu-
larization [4] as proxy for L0 regularization. This sparsity becomes implicit and
is difficult to control. As an alternative and to obtain explicit sparsity, we pro-
pose to use stochastic gates determining for each samples X(s) which entries
of Fφ(X(s)) are set to zero [12]. The probability of each gate is an additional
output of the RINN encoder. Gates are sampled using a continuous relaxation
of binomial sampling [5,14], to let the gradient flow. The encoder outputs the
probability of opening the gates, denoted Pφ(X

(s)). We denote Gφ(X(s)) the
binary gates that are sampled with the following derivation of Gumbel-softmax
trick proposed in [10]:

Gφ(X
(s)) = σ

(
Pφ(X

(s)) + logU − log(1− U)

τ

)
, (2)

with σ the sigmoid function, τ the temperature of the relaxation (the higher, the
smoother the approximated binary sampling) and U ∼ U(0, 1). The σ, log and +
are matrix element-wise operators, U has the same dimensions than Pφ(·), with
all entries sampled independently. Depending on the task, Gφ(·) lives either in
RK×d×d or in R1×d×d. The latter corresponds to variable selection, while the
former corresponds to variable and lag selection. The collection of gates forms a
binary mask that is directly applied to the dense tensor Fφ(·).

We can now control the sparsity of the model with an appropriate penalty
function Ω applied to Gφ(·) in the following sparse problem:

n∑
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where � denotes component-wise multiplication.
In [12], the authors propose a method for creating sparse neural networks

with a similar method, in a Bayesian deep learning setting. They regularize the
sparsity with the norm of the probability of the gates. In (3) we generalize this
method to representation inference. We use the number of positive gates, i.e.,
the sum of all the entries of the (almost) binary mask as a proxy for the norm L0

on encoder output. Thanks to the continuous relaxation of the binary sampling
(2), this sum is differentiable with respect to φ and can be used as a penalization
in the objective function.

Remark 1. A particular case of sparse approach for Seq2VAR is the pure bi-
nary, i.e., by using only Gφ(·) as a VAR parameters. This case is studied in
the Experiment 3.2. In the experiments, we denote such Seq2VAR model as
binary-Seq2VAR.

2.4 Symmetry in Seq2VAR

Another constraint that can be easily imposed to Seq2VAR is the symmetry of
the tensor Â(s). Thanks to the inference mechanism, we can force Â(s) to be



symmetric by imposing Â(s) = 1/2(Fφ(X
(s)) + Fφ(X

(s))T (1,2)), where T (1, 2)
is the transposition of dimensions 1 and 2 of the tensor. This setting can be
particularly important in the case where the interactions between variables are
physical. We experiment more specifically this constraint in section 3.3, where
this model is referred to as symmetric-Seq2VAR. Note that symmetry can be
easily coupled with sparsity.

3 Experiments

3.1 Methodology

As a preliminary experimenal work, we illustrate our approach on several syn-
thetic datasets, each with several levels of difficulty to illustrate generalization
capacity, causality discovery and representation power. First, in order to assess
the generalization capacity of Seq2VAR, we use a test set with intrinsic parame-
ters (causality graphs, interaction intensities) that differ from those of the train
set in all experiments. Second, causality discovery is assessed through the F1-
score between inferred and ground truth causality graphs. When Â(s) is dense,
we keep the most significant entries, i.e., those above a certain percentile of
all entries in absolute value. This percentile is chosen with a priori knowledge.
Third, since the set A is finite, we can assess unsupervisely learned representa-
tion with a standard downstream task. We classify the systems with the inferred
tensors Â(s). The classification is a 1-nearest-neighbor on the tensors, for the
Frobenius norm. The classification is completed in test set representation. Test
set is devided in train and test subset for the classification task.

For each experiment, we compare Seq2VAR to NRI [8] and VAR [20], from
which we respectively inspire for encoder and decoder. We remind that NRI
learning relies on variational inference, whose objective function contains a Kullback-
Leibler divergence between variational posterior and a certain prior distribution
[7]. In binary and sparse setting, the prior of each latent graph is the proportion
of 1 wanted in the whole latent graph, since all latent entries are independently
sampled, by the mean-field assumption of VAEs. We always give NRI the true
proportion as prior. For Seq2VAR, eventual usage of sparsity or regularization
is specified when existing.

To provide fair comparison benchmarks, the experiments are built such that
both VAR and NRI model fit in. Technical details about neural network architec-
tures and parameters are given in Appendix A. We used the Statsmodel python
library [18] for the VAR. The code used for the experiments is available at:
https://github.com/edouardpineau/Seq2VAR. Experiments on real datasets,
in particular in the context of system health monitoring at Safran, will be the
developed as a future work.

3.2 Assessing Seq2VAR in binary linear setting

For our first experiment, we aim at (1) showing that binary sampling approach
is relevant for Seq2VAR model and (2) analysing how Seq2VAR behaves in the

https://github.com/edouardpineau/Seq2VAR


presence of noise. We place ourselves in a favorable setting for VAR, NRI and
Seq2VAR. We generate samples from a stationary 1-order linear autoregressive
model, where the linear transition matrix is a permutation matrix. We add
several level of additive Gaussian noise to the observations (see Figure 1 for an
illustration).

Fig. 1: 10-dimensional permutation MTS with observation noise N (0, 0.3).

We chose d = 10, T = 50, K = 1. Taking #A = 20, we generate 10 per-
mutation matrices for the train set and 10 other permutation matrices for the
test set. From each matrix we generate 100 samples with random N (0, 1) initial
conditions. We train two versions of the Seq2VAR: dense with no penalty and
binary. After training, Seq2VAR has generalized the notion of permutation. We
note that the binary version is naturally the only one to find the real permu-
tation matrices. Figure 2 shows the outputs of different versions of Seq2VAR
encoder at test time, with different level of observation noise.

Fig. 2: Inferred transition matrices for different test samples, using VAR, NRI,
Seq2VAR and binary Seq2VAR, compared to ground truth, depending on the
level of observation noise: N (0, 0.1) (left), N (0, 0.3) (middle), N (0, 0.5) (right).

We see in Figure 2 an illustration of the problems created by an increase
of observation noise variance. While signal-to-noise ratio decreases, disentangle-
ment of the permutations from the noise becomes harder. VAR overestimate the
density of the matrix. Optimal mean-square solution (closed form) of VAR de-
codes noisy signal by mixing noisy signals. On the contrary, Seq2VAR (without
regularization) is parsimonious (but not sparse), i.e. it it gathers many entries
of Â(s) around zero (see Figure 3).



Fig. 3: Histogram of the distribution of the entries of inferred transition matrices
over a test set, using VAR, NRI, Seq2VAR and binary Seq2VAR, compared
to ground truth, depending on the level of observation noise: N (0, 0.1) (left),
N (0, 0.5) (right).

We explain this behavior by two facts. First the inference mechanism of
Seq2VAR is shared by all samples and has integrated the noise by seeing numer-
ous noisy examples. Second, the low expressive decoder cannot integrate noise
nor deal with complex mixture of noisy signals. This second point explains why
Seq2VAR resists better to noise than NRI.

We present in Table 1 the classification accuracy and causality recovery in the
presence of different level of observation noise. Seq2VAR approaches outperform
VAR and NRI when noise gets stronger. binary-Seq2VAR give also better results,
as its assumption fits the data better.

Dataset Perm. + N (0, 0.1) Perm. + N (0, 0.3) Perm. + N (0, 0.5)

Tasks
Supervised
classification

Causality
detection

Supervised
classification

Causality
detection

Supervised
classification

Causality
detection

VAR [20] 100 ± 0.0 72.2 ± 0.2 96.85 ± 3.8 61.8 ± 4.5 96.5 ± 1.6 52.6 ± 3.9
NRI [8] 100 ± 0.0 95.63 ± 3.1 97.6 ± 3.4 84.3 ± 4.9 97.0 ± 2.1 68.3 ± 3.7
Seq2VAR 100 ± 0.0 97.3 ± 0.3 97.0 ± 4.3 92.5 ± 2.1 97.8 ± 3.9 83.6 ± 2.3
B-Seq2VAR 100 ± 0.0 97.2 ± 0.1 100 ± 0.0 94.6 ± 2.7 97.0 ± 4.3 90.1 ± 2.9

Table 1: Test classification accuracy (%) and causality discovery (F1-score). The
standard deviations correspond to the variation in results between different gen-
erated datasets (train and test). B-Seq2VAR stands for binary Seq2VAR.

In Figure 4, we see the boxplot representations of the distribution of the
L1 distance between ground truth and inferred causality graph within the test
set, for several levels of observation noise. We first see that all methods suffer
from noise. When noise is low, both NRI, Seq2VAR and binary-Seq2VAR offers
almost perfect graph discover. However, the outliers (red crosses) of NRI spread



further than the one of Seq2VAR, which means that NRI fails to find the latent
graph not by simply missing some entries but by finding a completely different
graph that still fits the decoding requirements.

Fig. 4: Quartiles of the distribution of the L1 distances between true and inferred
causality graphs with VAR, NRI, Seq2VAR and binary Seq2VAR respectively
with observation noise N (0, 0.1) (left), N (0, 0.3) (middle) and N (0, 0.5) (right).
b-Seq2VAR stands for binary Seq2VAR.

3.3 Assessing Seq2VAR in physical setting

We now propose to assess the capacity of Seq2VAR to find Granger causality
graph hidden in physical data. We use 10-ball-springs system data, consisting of
the simultaneous trajectories of 10 identical balls in a 2D space, each ball being
connected to others by springs with probability 0.5. The connection network
is called interaction graph. System dynamics follows Newton’s law of motion,
sampled with ∆t = 0.001 and then subsampled at frequency 1/100. The system
can be represented as a Granger causality graph [2] (see Figure 5). Each sample
is 49 timesteps long. Note that this experiment is used in NRI paper [8].

For the experiments of this section, we sample 20 different balls-spring binary
interaction graphs, 10 for the train set and 10 for the test set. Each of the 20
dynamical systems associated to the 20 graphs is built at random, with balls
linked by a spring with probability 0.5. Each graph characterizes a class. We
propose two different datasets: one with identical rigidity 1 for all springs (un-
weighted interaction graph) and one with variable rigidity (weighted interaction
graph). For the later, the rigidity of each spring is uniformly sampled in [0.5, 1].
Each binary graph characterizes a class. We use 1000 samples per class. As for
permutation MTS (see 3.2) we use different systems for the train set and the
test set to challenge the generalization power of Seq2VAR.

We trained respectively a VAR, a dense Seq2VAR, a symmetric dense Seq2VAR
and a sparse Seq2VAR. We chose K = 2 for all the experiments. For the
later, we impose a slight regularization on the level of sparsity, i.e. on the
number of null entries in the matrix. In Equation 3 we use Ω(Gφ(X

(s))) =∣∣ 1
100‖Gφ(X

(s))‖1 − 0.5
∣∣ and λ is set at 1e−3, 0.5 being the sparsity prior. Without

this regularization, the sparse Seq2VAR generally converges naturally towards



Fig. 5: Example of 3-ball-springs system (left) and its Granger causality graph
(right). The causality graph represents the first-order dynamical dependen-
cies between balls position at each time t and the positions of their direct
neighbors at previous time steps t − 1 . . . t − K. For all t = K . . . T and
i ∈ {1, 2, 3}, arrows indicates a dynamical dependency between (X

(i)
t , Y

(i)
t ) and{

(X
(j)
t−1, Y

(j)
t−1), . . . , (X

(j)
t−K , Y

(j)
t−K)

}
j∈pa(i)

, with pa(i) the set of parents of node i

in the directed graph.

the right proportion of true zeros. The regularization is added for preventing
an eventual trivial solution where the mask is a matrix of ones or local min-
ima where only the diagonal paramaters are kept. The only occurrence of this
problem happened in the heterogeneous problem.

Table 2 gathers the results. We see that Seq2VAR scores better on both qual-
ity measures than the usual VAR approach learned on the test set. If NRI gives
very good results of causality detection on homogeneous springs, its causality
discovery performance drops when dealing with heterogeneous springs. On the
contrary, Seq2VAR gives good results for both homogeneous and heterogeneous
rigidity graph.

Dataset Homogeneous springs Heterogeneous springs

Tasks Supervised
classification

Causality
detection

Supervised
classification

Causality
detection

VAR [20] 17 55.7 14.2 54.0
NRI [8] 100 96.1 100 78.5*
Seq2VAR 100 89.4 100 84.5
Symmetric Seq2VAR 99.9 91.4 100 90.4
Sparse Seq2VAR 99.7 88.2 99.2 81.4

Table 2: Test classification accuracy (%) and causality discovery (F1-score). *Hy-
perparameters different than the one used for homogeneous springs case (from
the original paper [8]) to obtain better results. See Appendix A for more details.

It is interesting to notice that using an expressive inference network that ex-
plicitly model dependencies between variables capitalize on the global informa-



tion of the dataset and (1) generalize on new data and (2) overpass the statistical
identifiability problem due to subsampling. It is also interesting to notice that
sparsity is not optimal in Seq2VAR as it is in NRI. As variable spring rigidity
makes the distribution wider and makes the causality less identifiable in both
linear (Seq2VAR) and nonlinear (NRI) decoding process, with respect to our
experimental setup.

We find in Figure 6 an illustration of the inference capacities of our model.

Fig. 6: Three examples of inferred transition matrices over a test set, using VAR,
NRI, Seq2VAR, Symmetric Seq2VAR, Sparse Seq2VAR and Sparse Symmetric
Seq2VAR, compared to ground truth.

4 Discussions

This section proposes discussions around our Seq2VAR approach for MTS rep-
resentation with VAR matrices and causality graph.

4.1 RINN vs. RNN as Seq2VAR encoder

The main assumption when modeling time series data is the autoregressive struc-
ture of the observed signal. A generic and expressive autoregressive model is the
recurrent neural network (RNN). Hence, in practice we could use RNN to take
the MTS as input and do the inference of the tensor A.

Our different attempts with RNN encoder were not able to generalize over
the notion of causal interactions, no matter the regularization technique used to
avoid overfitting (reduction of network memory capacities, increasing of depth
[16], dropout [23], batch-norm [15], L1-norm and L2-norm penalty on weights).



We show in Figure 7 an example of train and test performances evolution during
training, respectively for permutation and ball-springs experiments with GRU
encoder instead of RINN encoder. We can see that a Seq2VAR using RNN as
encoder overfits.

We explain this by the fact that RINN explicitly takes as input all the pairs of
univariate time series constituting the MTS and outputs a tensor whose entries
represent an embedding of each pair. Therefore, this inductive bias incites the
network to model one-to-one interactions. We remind that the causality graphs
of the test set are different from the causality graphs of the train set. Hence
we ask our inference network to generalize over a discontinuous manifold. RINN
inference networks and its explicit one-to-one interactions modeling learns well
to generalize. Conversely, RNNs implicitly learn the notion of interactions during
training, with a vector output that needs to be folded into the right shape. The
generalization is more difficult.

(a) MSE prediction (b) Causality F1-score

Fig. 7: Train and test performances during training of Seq2VAR with GRU en-
coder instead of RINN encoder. Column (a): MSE of the 1-step VAR prediction.
Column (b): F1-score of the inferred causality graph. Top row: permutation
dataset. Bottom row: homogeneous 10-ball-springs dataset.



4.2 Relation with NRI

For the inference learning, the closer existing model is the Neural Relational In-
ference (NRI) [8], that uses a modified version of the interaction neural networks
[17]. The NRI consists on a graph inference model, set as a VAE with binary
latent space. The inferred graph is used as a variable selection procedure for a
prediction model. This configuration specifically applies to physical interacting
systems MTS (like ball-springs system). Three major differences appear between
Seq2VAR and NRI.

First the form of the decoder. NRI decoding scheme is a non linear network
that takes as input an embedding of the pairwise variable interactions at each
time step and output the incremental change to predict next time step from
current time step. On the contrary, we propose to leverage the simplicity of a
linear autoregressive decoder that is potentially less expressive but do not require
additional parameters.

Second, as a consequence of the form of the decoder: the latent representation.
We can infer both binary and real latent representation to respectively represent
existence and intensity of the causal interactions in the data. The real part is
implicit in NRI. Experiment 3.3 shows that NRI does not disentangle existence
and intensity of the interactions: when springs are not equally rigid, NRI is
perturbed and finds a latent graph that does not correspond to physical reality.
Our Seq2VAR, thanks to its continuous part, explicitly disentangles latent causal
structure from other information and finds an acceptable causal graph.

Third difference, which is also as a consequence of the decoder: the minimal
input information requirement. In fact, the notion of time lag is absent from
NRI and lagged information needs to be furnished as input. For example, with
the ball-springs systems data, Seq2VAR only needs measures of the location
of each ball at each time step while NRI requires both location and velocity.
Beyond the minimal input information requirement, the absence of lag in NRI
modeling imposes that causality graph remains the same for all lags, like in
physical structures.

Finally, these differences materialize with the results of the experiments pre-
sented in Section 3. Note that they also procure a significant advantage in term
of complexity. We assess this complexity with the number of parameters and
computing CPU time. These results are in Table 3.

5 Conclusions and future works

In this paper, we propose the Seq2VAR model, which learns to represent multi-
variate time series as Granger causal graph. Seq2VAR a encoder-decoder model
consists of a relational neural network for inference and a linear autoregressive
for generation. By construction, our model is immune to information vanishing in
neural autoregressive framework. It is also capable of generalizing over the notion
of interaction and Granger causality, i.e. estimating good VAR representation
for unseen samples. The chosen representation is robust to continuous structural



Experiments Permutations (batch size=128) Ball-springs (batch size=64)
Number of
parameters

CPU time
per epoch (s)

Number of
parameters

CPU time
per epoch (s)

NRI [8] 65031 5.1 72966 38.8
Seq2VAR 47811 1.2 52550 4.7
Symmetric Seq2VAR - - 52550 4.7
Binary Seq2VAR 47811 1.4 - -
Sparse Seq2VAR - - 61071 5.7

Table 3: Memory and computing time. Absence of results means that model is
not used.

changes in data, and can easily interpretated. We demonstrated these proper-
ties with experiments on two different cases, and compared to state-of-the-art
methods.

In further work, we intend to generalize the model to non-linear settings, as
well as extending the way sparsity is controlled and constrained.

A Appendix: hyperparameters

For our Seq2VAR, we used a succession of 2-layers perceptrons for our relational
encoder, as in NRI [8]. The parameters to chose concern latent dimension for
all layers and the temperature parameter τ for the relaxed binary sampling (see
Section 2.3). They are presented in Table 4.

Experiments Permutations Homogeneous springs Heterogeneous springs

Parameters Latent
dimension τ

Latent
dimension τ

Latent
dimension τ

NRI [8] 64 0.5 64 0.5 64 0.1
Seq2VAR 64 0.1 64 0.5 64 0.5
Symmetric Seq2VAR 64 0.1 64 0.5 64 0.5
Sparse Seq2VAR 64 0.1 64 0.5 64 0.5

Table 4: Training parameters.

For NRI, all other parameters are the one of the original paper for the homo-
geneous springs rigidity except for the dimensionality of the latent space which
we set to 64 instead of 256, since in the experimental setup of the original pa-
per, it gives the same results while diminishing computing time and memory
needs. For the heterogeneous rigidity, the parameter prediction_steps is set to 5
instead of 10 and τ is set to 0.1. These parameters gave the best average results.
In fact, due to the highly expressive form of its decoder, NRI was able to build
good predictor with not the good graph. We played with parameters to get more
stable and better results. For the experiments, we also tried to change the skip



first parameter that is set to False or True in the original paper [8], depending
on the dataset studied. It did not change the results of the experiments.
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